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Abstract

In this paper, we investigate the Gaussian curvature of graph-like surfaces in 3-dimensional hyperbolic space. We prove
that the graph defined by a radially symmetric function with nonpositive Gaussian curvature is necessarily a surface with
Gaussian curvature zero.
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1. Introduction

The differential geometry of surfaces (or hypersurfaces) in hyperbolic space has been studied by many authors in recent
years. Lin (Lin, 1989) and Sa Earp & Toubiana (Sa Earp & Toubiana, 2000) investigated the minimal graphs in hyperbolic
space. De Silva & Spruck (De Silva & Spruck, 2009), Lopez (Lopez, 2001) and Nitsche (Nitsche, 2002) studied more
generalized graphs in hyperbolic space with constant or arbitrary mean curvature. Rosenberg & Spruck (Rosenberg &
Spruck, 1994) and Guan et al. (Guan, Spruck & Szapiel, 2009; Guan & Spruck, 2010) investigated the Gaussian curvature
and other curvatures of hypersurfaces in hyperbolic space. But still little is known about the Gaussian curvature of surfaces
in hyperbolic space. In this paper. we will investigate the Gaussian curvature of graph-like surfaces in 3-dimensional
hyperbolic space.

In this paper we use a model of hyperbolic space which was first introduced by Nitsche (Nitsche, 2002). We call this
model the Nitsche’s model of hyperbolic space. One can also refer to Zhang (Zhang, 2005) for an explanation of the
Nitsche’s model. Now we give a quick review of this model. Let Hn+1 be the upper halfspace model of hyperbolic space
with curvature −1, that is,

Hn+1 = {(x, xn+1) ∈ Rn+1 : xn+1 > 0}
equipped with the hyperbolic metric

ds2 =
(dx1)2 + (dx2)2 + . . . + (dxn+1)2

(xn+1)2 ,

where x = (x1, x2, . . . , xn). Define mapping

Ψ : Dn × R→ Hn+1, Ψ(x, t) =
2et

1 + |x|2

(
x,

1 − |x|2
2

)
,

where | · | denotes the Euclidean norm, and Dn ≡ {x ∈ Rn : |x| < 1}. Then Ψ is a diffeomorphism. Let ḡ be the pull-back
metric of the hyperbolic metric ds2 of Hn+1. Then Dn × R equipped with metric ḡ is the Nitsche’s model of hyperbolic
space. From now on we denote byHn+1 the Nitsche’s model of hyperbolic space.

In this paper we only consider 3-dimensional hyperbolic space H3 = D2 × R. Let Ω be an open subset of D2 and φ be a
smooth function defined on Ω. Then

Σ = {(x, φ(x)) ∈ Ω × R : x ∈ Ω} ⊂ H3

is a surface ofH3. We call Σ the graph of φ (Σ is also called a graph-like surface ofH3). If Ω = BR, the open disc of R2

with center o (the origin of R2) and (Euclidean) radius R < 1, and φ(x) = Φ(r(x)) for some function Φ(r) (x ∈ Ω), where
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r = r(x) denotes the hyperbolic distance from o to x, then we say that φ is radially symmetric (around o). If φ is radially
symmetric, the graph Σ of φ is called a radial graph.

Let Ω ⊂ D2, φ ∈ C∞(Ω) and Σ be the graph of φ. We recall the definition of Gaussian curvature K of graph Σ. Let ∇ and
∇ be the Riemannian connections of H3 and Σ, respectively. For any p ∈ Σ and u, v ∈ TpΣ (the tangent space of Σ at p),
define

II(u, v) =
(
∇UV − ∇UV

)∣∣∣∣
p
,

where U,V are vector fields on Σ such that U |p = u,V |p = v. Define l by

II(u, v) = −l(u, v)ξ, (1)

where ξ denotes a unit normal vector field of Σ. We call l the real valued second fundamental form of Σ. The Gaussian
curvature K of Σ at a point p ∈ Σ is defined by

K(p) =
l(u, u)l(v, v) − l(u, v)2

g(u, u)g(v, v) − g(u, v)2 , (2)

where u, v ∈ TpΣ is linear independent (Gallot et al., 1987).

The main result of this paper is the following:

Main Theorem Let Ω = BR ⊂ D2 (0 < R < 1) and φ ∈ C∞(Ω). Let Σ = {(x, φ(x)) | x ∈ Ω} be the graph of φ in hyperbolic
space H3 = D2 × R and K be the Gaussian curvature of Σ. If φ is radially symmetric around o and K ≤ 0, then φ is
constant on Ω and K ≡ 0.

Remark It is a well-known fact that Dn × {t} is a totally geodesic submanifold of hyperbolic space Hn+1 = Dn × R for
each t ∈ R (Zhang, 2005). So, in the above Main Theorem, the claim that φ is constant means that the graph Σ defined by
φ is totally geodesic inH3.

2. Preliminaries

Consider the Nitsche’s model of 3-dimensional hyperbolic Space H3 = D2 × R. Let ḡ be the hyperbolic metric of H3.
For every t ∈ R, it is easy to see that ḡ|D2×{t} is just the hyperbolic metric of the unit Poincaré disk D2:

g =
4|dx|2

(1 − |x|2)2 , (3)

where |dx|2 denotes the Euclidean metric on D2. Note that

D2 = {z ∈ C : |z| < 1}.

Let
z = ρeiθ, ρ = tanh

r
2
,

where ρ ∈ [0, 1) and r ∈ [0,∞). (r, θ) are the hyperbolic geodesic polar coordinates on D2. Then the hyperbolic metric of
the unit Poincaré disk D2 can be expressed as

g = (dr)2 + sinh2 r dθ2. (4)

(Chavel, 1984). Hence the hyperbolic metric ofH3 can be expressed as

ḡ =
4

(1 − |x|2)2 |dx|2 + (1 + |x|2)2

(1 − |x|2)2 dt2 (Nitsche, P.-A., 2002)

= (dr)2 + sinh2 r dθ2 +
(1 + |x|2)2

(1 − |x|2)2 dt2 (by Eq. (3) and Eq. (4))

= (dr)2 + sinh2 r dθ2 + cosh2 r dt2. (5)

Now we recall some notations about product manifolds (O’Neill, 1983). Consider the product D2 × R. Let

π : D2 × R→ D2, π(x, t) = x,
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and
σ : D2 × R→ R, π(x, t) = t,

be the projections of the product D2 ×R. For any (x, t) ∈ D2 ×R, π−1(x) and σ−1(t) are called the fibers and the leaves of
the product D2 × R, respectively. A vector at a point ofH3 tangent to the leaf at this point is called to be horizontal, and
tangent to the fiber at this point is called to be vertical. Then functions or vector fields on the factor spaces (D2 and R) can
be viewed, by lifts (horizontal or vertical lifts) via the above projections , as functions or vector fields on H3 = D2 × R.
For details see (O’Neill, 1983). That is to say, if X is a vector field on D2, then there exists a unique horizontal vector field
X∗ onH3 = D2 ×R such that dπ(X∗) = X (we call X∗ the horizontal lift of X); but, for convenience, we will use the same
symbol X to denote both the vector fields X∗ and X (the exact meaning of X can be known by the context.). In a similar
way, for a vector field U on R, we also have a unique vertical vector field U∗ onH3 such that dσ(U∗) = U. We also use
U to denote both U and U∗.

3. Proof of the Main Theorem

Proof of the Main Theorem: At first we calculate the unit normal vector field ξ of Σ. Define mapping

Λ : Ω ⊂ D2 → Σ ⊂ H3, x 7→ (x, φ(x)), (x ∈ Ω).

Let ∂r and ∂θ be the coordinate vector fields of geodesic polar coordinates (r, θ) on D2. Define

v1 = dΛ(∂r), v2 = dΛ(∂θ).

A calculation shows that
v1 = ∂r +

∂φ

∂r
∂t, v2 = ∂θ +

∂φ

∂θ
∂t, (6)

where ∂t denotes the coordinate vector field of R (here viewed as a vector field on H3). For simplicity, from now on we
let f = cosh r. Then one can verifies directly that the unit normal vector field of Σ can be chosen as following

ξ =
∂t − f 2 gradφ
∥∂t − f 2 gradφ∥H3

, (7)

where gradφ denotes the gradient of φ in the hyperbolic metric of D2.

Now we calculate the Christoffel symbols of the Poincaré disk D2 with respect to the geodesic polar coordinates. For
convenience, we rewrite ∂r = ∂1 and ∂θ = ∂2. The metric matrix is(

g11 g12
g21 g22

)
=

(
1 0
0 sinh2 r

)
,

where gi j = g(∂i, ∂ j). The inverse of (gi j) is (
g11 g12

g21 g22

)
=

(
1 0
0 1

sinh2 r

)
.

The Christoffel symbols of the Poincaré disk D2 are

Γk
i j =

1
2

∑
s

gks
(
∂ jgsi − ∂sgi j + ∂ig js

)
=

1
2

gkk
(
∂ jgki − ∂kgi j + ∂ig jk

)
. (8)

Then a calculation gives the Christoffel symbols of Poincaré disk D2
Γ1

11 = Γ
2
11 = Γ

2
22 = Γ

1
12 = 0,

Γ1
22 = − sinh r cosh r,

Γ2
12 = coth r.

(9)

Now suppose that φ is radially symmetric, let φ(x) = Φ(r(x)). We compute the Gaussian curvature K of Σ. Let φi =

∂iφ, φi j = ∂ j∂iφ. By Eq. (1), Eq. (6) and Eq. (7), the second fundamental form of Σ is given by

l(vi, v j) = −ḡ
(
II(vi, v j), ξ

)
= −ḡ

(
∇vi v j − ∇vi v j, , ξ

)
= −ḡ

(
∇vi v j, ξ

)
= − 1

∥∂t − f 2 gradφ∥H3
ḡ
(
∇∂i∂ j + φ j∇∂i∂t + φi j∂t + φi∇∂t∂ j + φiφ j∇∂t∂t, ∂t − f 2 gradφ

)
. (10)
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Note that gradφ = Φ′∂r (here Φ′ = dΦ
dr ). By use of Eq. (5), after a tedious computation, we get

∇∂i∂t = ∇∂t∂i =
∂i f

f
∂t =


f ′

f ∂t, i f i = 1,

0, i f i = 2,
(11)

and

∇∂t∂t = −
f 2

f
grad f = − f f ′∂r. (12)

Since leaves are totally geodesic, so ∇∂i∂ j = D∂i∂ j (here D denotes the covariant derivative with respect to the hyperbolic
metric of D2). Thus from Eq. (9) we get


∇∂1∂1 = D∂1∂1 = Γ

1
11∂1 + Γ

2
11∂2 = 0,

∇∂2∂2 = D∂2∂2 = Γ
1
22∂1 + Γ

2
22∂2 = − sinh r cosh r ∂1 = − f f ′∂r,

∇∂1∂2 = D∂1∂2 = Γ
1
12∂1 + Γ

2
12∂2 = coth r ∂θ.

(13)

Let
C0 =

1
∥∂t − f 2 gradφ∥H3

.

Thus we have

l(v1, v1) = −C0ḡ
(
∇∂1∂1 + φ1∇∂1∂t + φ11∂t + φ1∇∂t∂1 + (φ1)2∇∂t∂t, ∂t − f 2 gradφ

)
.

= −C0 f
{
Φ′′ f + 2Φ′ f ′ + (Φ′)3 f 2 f ′

}
, (14)

l(v2, v2) = −C0ḡ
(
∇∂2∂2 + φ2∇∂2∂t + φ22∂t + φ2∇∂t∂2 + (φ2)2∇∂t∂t, ∂t − f 2 gradφ

)
= −C0Φ

′ f 3 f ′, (15)

and

l(v1, v2) = −C0ḡ
(
∇∂1∂2 + φ2∇∂1∂t + φ12∂t + φ1∇∂t∂2 + φ1φ2∇∂t∂t, ∂t − f 2 gradφ

)
.

= 0. (16)

Hence

l(v1, v1)l(v2, v2) − l(v1, v2)2 = C2
0 f

[
Φ′′ f + 2Φ′ f ′ + (Φ′)3 f 2 f ′

]
Φ′ f 3 f ′

= C2
0 f 4 f ′

[
Φ′Φ′′ f + 2(Φ′)2 f ′ + (Φ′)4 f 2 f ′

]
. (17)

We know that, at every point p of Σ (p , Λ(o)),

g(v1, v1)g(v2, v2) − g(v1, v2)2 > 0.

So by Eq. (2) and from the hypothesis of the theorem that K ≤ 0, we get

l(v1, v1)l(v2, v2) − l(v1, v2)2 ≤ 0

at p , Λ(o). Then Eq. (17) yields, for any 0 < r < Rh (Rh denotes the hyperbolic radius of Ω) (and hence for any
0 ≤ r < Rh ),

Φ′Φ′′ f + 2(Φ′)2 f ′ + (Φ′)4 f 2 f ′ ≤ 0. (18)

Therefore,
Φ′Φ′′ ≤ 0. (19)

The radial symmetry of φ implies that Φ′(0) = 0. So we have

[(Φ′)2]′

2
= Φ′Φ′′ ≤ 0
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on [0,Rh). Now (Φ′)2 is decreasing on [0,Rh). But Φ′(0) = 0 and (Φ′)2 ≥ 0, it follows that Φ′(r) ≡ 0 and hence Φ(r) is
constant on [0,Rh), and hence φ is constant on Ω. From Eq. (17) we also know K ≡ 0. The proof of the main theorem is
finished.
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