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Abstract

In this paper, we obtain necessary and sufficient conditions for the existence of fall coloring with fall achromatic number

Δ(G) + 1 in the power of a cycle Ck
n and in the Cartesian product of two cycles.
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1. Introduction

A k-vertex coloring of a graph G is an assignment of k colors 1, 2, . . . , k, to the vertices. The coloring is proper if no

two distinct adjacent vertices share the same color. A graph G is k-colorable if G has a proper k-vertex coloring. The

chromatic number χ(G) is the minimum number r such that G is r-colorable. Each set of vertices colored with one color

is an independent set of vertices of G, so a coloring is a partition of the vertex set into independent sets. Color of a vertex

v is denoted by c(v).

Many graph invariants related to colorings have been defined. Most of them try to minimize the number of colors used

to color the vertices under some constraints. For some other invariants, it is meaningful to try to maximize this number.

The b-chromatic number is such an example. A b-coloring is a coloring of the vertices of a graph such that each color

class contains a vertex that has a neighbor in all other color classes.(Mostafa Blidia, 2009, p. 1787-1793). Any such

vertex is called as a colorful vertex. (Saeed Shaebani, 2009). The b-chromatic number b(G) is the largest integer k such

that G admits a b-coloring with k colors. A fall coloring of a graph G is a proper coloring such that every vertex of

G has neighbors in all the other color classes. (Saeed Shaebani, 2009). A fall achromatic coloring is a particular case

of b-coloring in which every vertex is colorful. (Dunbar, J.E., 2000, p.257-273). We call fall achromatic number, the

maximum cardinality of a fall coloring of G which we denote by ψ f (G). Not all graphs are fall colorable. Dunbar et al.

have proved that the problem of deciding if a given graph admits a fall coloring is NP-complete. (Dunbar, J.E., 2000,

p.257-273)

For a graph G, and for any vertex v of G, the neighborhood of v is the set N(v) = {u ∈ V(G)/(u, v) ∈ E(G)} and the degree

of v is deg(v) = |N(v)|. Δ(G) denotes the maximum degree of a vertex in G. Then every graph G satisfies b(G) ≤ Δ(G)+1.

A graph is a power of cycle, denoted Ck
n, if V(Ck

n) = {v0(= vn), v1, v2, . . . , vn−1} and E(Ck
n) = E1 ∪ E2 ∪ . . . ∪ Ek, where

Ei = {(v j, v( j+i)(mod n)) : 0 ≤ j ≤ n− 1} and k ≤  n−1
2
�. (Campos, CN., 2007, p. 585-597) Note that Ck

n is a 2k-regular graph

and that k ≥ 1. We take (v0, . . . , vn−1) to be a cyclic order on the vertex set of G, and always perform modular operations

on edge and vertex indexes. (Campos, CN., 2007, p. 585-597).

A graph G̃ is called covering of G with projection f : G̃ → G if there is a surjection f : V(G̃) → V(G) such that
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f |N(ṽ) : N(ṽ) → N(v) is a bijection for any vertex v ∈ V(G) and ṽ ∈ f −1(v). (Tamizh Chelvam T., 2009, p. 56-62). In

2001, Lee has introduced a method of studying the domination parameters such as perfect and independent domination

through covering projections. (Lee, J., 2001, p. 231-239). He proved the following theorem.

Theorem 1 (Lee, J., 2001, p. 231-239) Let p : G̃ → G be a covering projection and let S be a perfect dominating set of
G. Then p−1(S ) is a perfect dominating set of G̃. Moreover, if S is independent, then p−1(S ) is independent.

Tamizh Chelvam and Sivagnanam Mutharasu have studied the efficient open dominating sets through covering projections.

(Tamizh Chelvam T., 2009, p. 56-62). They proved that the inverse image of an efficient open dominating set under a

covering projection is an efficient open dominating set. They proved the following lemma. (Tamizh Chelvam T., 2009, p.

56-62).

Lemma 2 (Tamizh Chelvam T., 2009, p. 56-62) Let f : F̃ → F and g : G̃ → G be two covering projections. Then there
exists a covering projection h : H̃ → H, where H̃ = F̃�G̃ and H = F�G.

In this paper, we introduced a method of studying fall coloring in graphs through covering projections. We obtain a

necessary and sufficient condition for the existence of fall coloring with Δ(G) + 1 colors in the power of a cycle Ck
n. Also,

we show that the graph Ck
n is b-colorable. Further, we obtain a necessary and sufficient condition for the existence of fall

coloring with Δ(G) + 1 colors in the Cartesian product of two cycles.

2. Fall Coloring in Ck
n

In this section, we obtain a necessary and sufficient condition for the existence of fall coloring with fall coloring number

Δ(G) + 1 in Ck
n. Further, we illustrate a method of b-coloring the graph Ck

n with Δ(G) + 1 colors.

Lemma 3 Let f : G → H be a covering projection from a graph G on to another graph H. If H has fall coloring number
n, then so is G.

Proof. Assume that H admits a fall coloring with fall achromatic number n and {H1,H2, . . . ,Hn} is a color partition of

V(H) under f . Define Gi = f −1(Hi) for 1 ≤ i ≤ n. We prove that the graph G admits fall coloring with color classes

G1,G2, . . . ,Gn and ψ f (G) = n.

Since each Hi is an independent vertex subset of H, by Theorem , each Gi is an independent vertex subset of G for

1 ≤ i ≤ n. Thus the class {G1,G2, . . . ,Gn} is a vertex partition of independent subsets of G. It remains to show that each

vertex of G is colorful.

Let u ∈ V(G). Then v ∈ Gi for some 1 ≤ i ≤ n. Without loss of generality, assume i = 1. Then u ∈ G1 and f (u) = v
for some v ∈ H1 (by the construction of G1). Since v ∈ H1 and by the definition of {H1,H2, . . . ,Hn}, there exist vertices

v2, v3, . . . , vn such that vi ∈ Hi and (v, vi) ∈ E(H) for 2 ≤ i ≤ n.

Let f −1(vi) = ui for 2 ≤ i ≤ n. Then ui ∈ Gi for 2 ≤ i ≤ n. Since f |N(u) : N(u) → N(v) is a bijection, N(v) ⊇ {v2, v3, . . . , vn}
and f −1(vi) = ui for 2 ≤ i ≤ n, we can conclude that N(u) ⊇ {u2, u3, . . . , un}. Thus u is adjacent to ui ∈ Gi for 2 ≤ i ≤ n.

Hence u is a colorful vertex of G. �

Lemma 4 If 2k + 1 divides n, then the graph G = Ck
n admits fall coloring with fall achromatic number Δ(G) + 1.

Proof. Let V(G) = {v0, v1, . . . , vn−1} and E(G) = E1 ∪ E2 ∪ . . . ∪ Ek, where Eg = {(v j, v( j+g)(mod n)) : 0 ≤ j ≤ n − 1}. Note

that, for each g with 1 ≤ g ≤ k, the vertex v j has exactly two neighbors v j⊕ng, v j⊕n(n−g) ∈ Eg, where ⊕n is the operation,

addition modulo n. Hence N(v j) = {v j⊕n1, v j⊕n2, . . . , v j⊕nk, v j⊕n(n−1), v j⊕n(n−2), . . . , v j⊕n(n−k)}. Note that Δ(G) = 2k. Let us

color the vertices as follows:

For each j with 0 ≤ j ≤ n − 1, color of the vertex v j is denoted and defined by c(v j) = j(mod (2k + 1)). Let v ∈ V(G).

Then v = vi for some integer i with 0 ≤ i ≤ n − 1 and c(vi) = i(mod (2k + 1)) = g for some 0 ≤ g ≤ 2k. Hence

c(vi⊕n1) = g + 1(mod (2k + 1)), c(vi⊕n2) = g + 2(mod (2k + 1)), . . . , c(vi⊕nk) = g + k(mod (2k + 1)), c(vi⊕n(n−k)) = g + k +
1(mod (2k + 1)), c(vi⊕n(n−(k−1))) = g + k + 2(mod (2k + 1)), . . . , c(vi⊕n(n−1)) = g + 2k(mod (2k + 1)).

Thus the vertex vi is a colorful vertex of G and the above coloring is a proper coloring of G. Hence G is fall colorable

with 2k + 1 colors. �

Lemma 5 If the graph G = Ck
n is fall colorable with Δ(G) + 1 colors, then 2k + 1 divides n.

Proof. Assume that G is fall colorable with Δ(G) + 1 = 2k + 1 colors, namely 0, 1, 2, . . . , 2k. Suppose 2k + 1 does not

divide n. Then n = i(2k + 1) + j for some positive integers i, j with 1 ≤ j ≤ 2k.
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Consider the vertex v0. Without loss of generality, assume that c(v0) = 0. Since G is fall colorable with 2k + 1 colors

and N(v0) = {v1, v2, . . . , vk, vn−1, vn−2, . . . , vn−k}, we should color all these vertices with different colors among the colors

1, 2, . . . , 2k. Without loss of generality, assume the following: c(v1) = 1, c(v2) = 2, . . ., c(vk) = k, c(vn−k) = k + 1,

c(vn−(k−1)) = k + 2, . . ., c(vn−1) = 2k.

Consider the vertex v1. Note that N(v1) = {v2, v3, . . . , vk+1, v0, vn−1, vn−2, . . . , vn−(k−1)} and all the neighbors of v1 except the

vertex vk+1 are colored with different colors, namely 0, 2, 3, . . . , k, k + 2, k + 3, . . . , 2k. Also c(v1) = 1. Hence the vertex

vk+1 must be colored with the color k + 1. That is c(vk+1) = k + 1.

Similarly, one can obtain the following: c(vk+2) = k + 2, c(vk+3) = k + 3, . . ., c(v2k) = 2k, c(v2k+1) = 0, c(v(2k+1)+1) = 1,

c(v(2k+1)+2) = 2, . . ., c(v(2k+1)+2k) = 2k, c(v2(2k+1)) = 0, c(v2(2k+1)+1) = 1 and so on.

Hence, we must have c(vi(2k+1)) = 0, c(vi(2k+1)+1) = 1, c(vi(2k+1)+2) = 2, . . ., c(vi(2k+1)+ j) = c(vn) = c(v0) = j, where j � 0, a

contradiction to the fact that c(v0) = 0. �

From Lemma and Lemma , one can derive the following theorem which gives a necessary and sufficient condition for the

existence of fall coloring with Δ(G) + 1 colors in the graph Ck
n.

Theorem 6 The graph Ck
n is fall colorable with Δ(G) + 1 colors if and only if 2k + 1 divides n.

It is conjectured that every d-regular graph with girth at least 5 has a b-coloring with d + 1 colors. (El-Sahili, A., 2006).

Mostafa Blidia, Frederic Maffray and Zoham Zemira showed that the Petersen graph infirms this conjecture, and they

propose a new formulation of this question and give a positive answer for small degree as given below. (Mostafa Blidia,

2009, p. 1787-1793).

Theorem 7(Mostafa Blidia, 2009, p. 1787-1793) Let G be a d-regular graph with girth g(G) ≥ 5, different from the
Petersen graph, and with d ≤ 6. Then b(G) = d + 1.

Further they proposed the following conjecture.

Conjecture: Every d-regular graph with girth at least 5, different from the Petersen graph, has a b-coloring with d + 1

colors.

In the next lemma, we prove that a 2k-regular graph Ck
n is b-colorable with 2k + 1 colors. Note that the girth of Ck

n is 3

when k ≥ 2.

Lemma 8 The graph Ck
n is b-colorable with 2k + 1 colors.

Proof. Let V(G) = V(Ck
n) = {v0, v1, . . . , vn−1} and E(Ck

n) = E1∪E2∪. . .∪Ek, where Eg = {(v j, v( j+g) (mod n)) : 0 ≤ j ≤ n−1}.
By division algorithm, one can write n = h(2k + 1) + j for some positive integers j, h with 0 ≤ j ≤ 2k and h =  n

2k+1
�.

Case 1: Suppose 1 ≤ j ≤ k. Color the vertices as follows:

For 0 ≤ g ≤ h(2k + 1), color of the vertex vg as c(vg) = g (mod (2k + 1)) and c(vh(2k+1)+1) = k + 1, c(vh(2k+1)+2) =

k + 2, . . . , c(vh(2k+1)+( j−1)) = k + j − 1.

Case 2: Suppose k + 1 ≤ j ≤ 2k + 1. Color the vertices as follows:

For 0 ≤ g ≤ h(2k + 1), color of the vertex vg as c(vg) = g (mod (2k + 1)) and c(vh(2k+1)+1) = 1, c(vh(2k+1)+2) =

2, . . . , c(vh(2k+1)+( j−1)) = j − 1.

One can easily verify that in both the cases, the above colorings are b-colorings of Ck
n with 2k + 1 colors. �

3. Fall coloring on Cartesian product of two cycles with achromatic number Δ + 1

The Cartesian product G�H of two graphs G and H, is the graph with vertex set V(G�H) = V(G) × V(H) and edge set

E(G�H) = {((x1, y1), (x2, y2)) : (x1, x2) ∈ E(G) with y1 = y2 or (y1, y2) ∈ E(H) with x1 = x2}. (Haynes, T.W., 2000). In

this section, a necessary and sufficient condition for the existence of fall coloring with Δ(G) + 1 colors in the Cartesian

product of two cycles has been obtained. The vertex set of the cycle Ci is taken as V(Ci) = {0, 1, . . . , (i − 1)}.
Remark 9 When V(C5) = {0, 1, 2, 3, 4}, the sets A1, A2, A3, A4 and A5 forms a vertex partition of independent subsets of

V(C5�C5), where A1 = {(1, 1), (2, 3), (3, 0), (4, 2), (0, 4)}, A2 = {(2, 1), (3, 3), (4, 0), (0, 2), (1, 4)}, A3 = {(0, 1), (1, 3), (2, 0),

(3, 2), (4, 4)}, A4 = {(1, 2), (2, 4), (3, 1), (4, 3), (0, 0)} and A5 = {(1, 0), (2, 2), (3, 4), (4, 1), (0, 3)}.
Lemma 10 Let m, n be integers which are multiples of 5. Then the graph G = Cm�Cn is fall colorable with fall achromatic
number Δ(G) + 1.

154 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 4; November 2011

Proof. Let m, n be integers which are multiples of 5. Note that Δ(G) + 1 = 5.

Claim 1: The graph C5�C5 is fall colorable with 5 colors.

Consider the vertex subsets A1, A2, A3, A4 and A5 as given in Remark .

Color the vertices of C5�C5 as follows: For each i with 1 ≤ i ≤ 5, c(v) = i if and only if v ∈ Ai. Since Ai’s are independent,

to prove the claim, it is enough to prove that each vertex is colorful.

Note that, for (a, b) ∈ V(C5�C5), N((a, b)) = {(a⊕5 1, b), (a⊕5 4, b), (a, b⊕5 1), (a, b⊕5 4)}. Consider the vertex (1, 1) ∈ A1.

It is adjacent with the vertices (2, 1) ∈ A2, (0, 1) ∈ A3, (1, 2) ∈ A4 and (1, 0) ∈ A5. Hence (1, 1) is a colorful vertex of

C5�C5. Similarly, one can easily verify that each other vertex of C5�C5 is a colorful vertex of C5�C5 under the above

coloring.

Claim 2: The graph Cm�Cn is fall colorable with fall achromatic number 5.

Define f : V(Cm) → V(C5), by f (x) = x (mod 5) for all x ∈ V(Cm) and g : V(Cn) → V(C5), by g(x) = x (mod 5) for all

x ∈ V(Cn). Then f and g are covering projections respectively from Cm and Cn onto the graph C5. Then by Lemma , there

exists a covering projection from Cm�Cn onto the graph C5�C5. By Claim 1 and by Lemma , one can conclude that the

graph G = Cm�Cn is fall colorable with Δ(G) + 1 colors. �

Lemma 11 Let m, n ≥ 5 be integers. Suppose the graph Cm�Cn is fall colorable with fall achromatic number Δ(G) + 1,
then m and n are multiples of 5.

Proof. Suppose the graph Cm�Cn is fall colorable with 5 colors. Since each vertex of Cm�Cn is adjacent with exactly

four vertices, all these adjacent vertices must be colored with different colors.

In this lemma, by five consecutive vertices of Cm�Cn, we mean that {(a, b ⊕n i) : 0 ≤ i ≤ 4}.
Claim 1: Any five consecutive vertices receive different colors.

On the contrary, assume that there are two vertices x and y in a set of five consecutive vertices have the same color.

[Figure 1]

Case 1: Suppose x = (a, b ⊕n i) and y = (a, b ⊕n (i + 1)) for 0 ≤ i ≤ 3. Then the coloring is not a proper coloring.

Case 2: Suppose x = (a, b ⊕n i) and y = (a, b ⊕n (i + 2)) for 0 ≤ i ≤ 2. In this case, the two neighbors of the vertex

(a, b ⊕n (i + 1)), namely x y will have the same color and so the vertex (a, b ⊕n (i + 1)) is not a colorful vertex.

Case 3: Suppose x = (a, b ⊕n i) and y = (a, b ⊕n (i + 3)) for 0 ≤ i ≤ 1.

Without loss of generality, assume x = (a, b) and y = (a, b ⊕n 3) as shown in Figure 1. Without loss of generality, assume

that c(x) = c(y) = 1.

Consider the vertex d and their uncolored neighboring vertices b, e and g. Without loss of generality, assume that c(d) = 2,

c(b) = 4, c(e) = 3 and c(g) = 5.

Consider the vertex c. Obviously, we can not use colors 3 and 4 to color the vertex c. If c(c) = 2, then the vertex b is not

a colorful vertex, a contradiction. If c(c) = 1, then i is not a colorful vertex, a contradiction. Hence c(c) = 5.

Now, consider the vertex h. Clearly, we can not use the colors 3 and 5 to color the vertex h. If c(h) = 2, then the vertex g
is not a colorful vertex. If c(h) = 1, then the vertex e is not a colorful vertex. Hence c(h) = 4.

Consider the vertex f . Clearly, we can not use the colors 1 and 5 to color the vertex f . If c( f ) = 2 or 4, then the vertex g
is not a colorful vertex. Hence c( f ) = 3.

Now, consider the vertex a. We cannot use the colors 1,2,3,4 and 5 to color the vertex a, a contradiction to the fact that

Cm�Cn is fall colorable with 5 colors.

Case 4: Suppose x = (a, b) and y = (a, b ⊕n 4) as shown in Figure 2. Assume that c(x) = c(y) = 1.

By Case 1 and Case 2, we cannot use the color 1 to color the vertices d, e and f . Consider the vertex e and their uncolored

neighboring vertices b, d, f and h. Without loss of generality, assume that c(b) = 5, c(d) = 4, c( f ) = 3 and c(h) = 1.

Consider the vertex c. Obviously, we can not use the colors 3 and 5 to color the vertex c. If c(c) = 1, then the vertex j is

not a colorful vertex, a contradiction. If c(c) = 2, then b is not a colorful vertex, a contradiction. Hence c(c) = 4.
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Now consider the vertex i. Clearly we can not color the vertex i with colors 1 and 3. Also, when c(i) = 2, the vertex h will

not be a colorful vertex and when c(i) = 4, the vertex f will not be a colorful vertex. Hence c(i) = 5.

Consider the vertex g. Clearly we can not color the vertex g with colors 1 and 4. Also, when c(g) = 2 or 5, the vertex h
will not be a colorful vertex. Hence c(g) = 3.

Now, consider the vertex a. We cannot use the colors 1, 2, 3, 4 and 5 to color the vertex a, a contradiction to the fact that

Cm × Cn is fall colorable with 5 colors.

Thus in all the cases, we get a contradiction and hence Claim 1 is true. Hence n must be a multiple of 5.

[Figure 2]

Similarly, by considering {(a ⊕m i, b) : 0 ≤ i ≤ 4} as five consecutive vertices, one can prove that any five consecutive

vertices receive different colors and hence m is also a multiple of 5. �

From Lemma and Lemma , one can conclude the following theorem.

Theorem 12 Let m, n ≥ 5 be integers. Then the graph Cm�Cn is fall colorable with Δ(G)+1 colors if and only if 5 divides
m and n.
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