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Abstract

Based on the exponent transform to eliminate the “convection item” in the equation and the fourth-order compact dif-
ference formulas for the first and second derivatives, two chasses of new implicit difference schemes are proposed for
solving the one-dimensional convection-diffusion equation. The methods are of order O

(
τ2 + h4

)
and O

(
τ4 + h4

)
respec-

tively. The former is proved to be unconditionally stable while the later is unconditionally unstable by Fourier analysis.
The result of numerical experiment shows that the O

(
τ2 + h4

)
scheme is an effective difference scheme to solve the

convection diffusion problem.
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1. Introduction

For one-dimensional convection diffusion problem,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t
+ k ∂u

∂x
= d ∂

2u
∂x2 0 < x < 1, 0 < t ≤ T, (1)

u(x, 0) = f (x) 0 ≤ x ≤ 1, (2)
u(0, t) = g0(t), u(1, t) = g1(t) 0 < t ≤ T. (3)

here, f , g0 and g1 are known functions, and u is unknown function, α and β are constants greater than 0.

The numerical solution of the convection diffusion equation is the important part in the numerical math, and in tens of
years, it has been studied and applied further (Douglas J, 1982, P.871-885 & Lu, 1998, P.161-167 & Wang, 2002, P.194-
199 & Lu, 2002, P.35-37 & Qin, 2003, P.25-27 & Huang, 2005, P.38-41 & Mehdi Dehghan, 2004, P.307-319 & Mehdi
Dehghan, 2004, P.5-19). But the standard difference method or the finite element method often fail to this problem, and
the essential cause is the existence of the “convection item”. The exponential transform is used in this article to transform
the equation and eliminate the “convection item” in the equation, and the transformed equation is diffusion equation,
because it has many effective numerical solutions (Ge, 2005, P.107-110). Based on that, the O

(
τ2 + h4

)
difference scheme

and the O
(
τ4 + h4

)
difference scheme are constructed to solve the one-dimensional convection diffusion equation. The

Fourier method is used to analyze the stability of the difference scheme in this article, and the accuracy and reliability of
the method are tested by the numerical example.

2. Exponential transform

To eliminate the convection item in the equation, supposed that u = eαx+βtv, so ∂u
∂t
=
(
βv + ∂v

∂t

)
eαx+βt, ∂u

∂x
=
(
αv + ∂v

∂x

)
eαx+βt,

and ∂
2u
∂x2 =

(
α2v + 2α∂v

∂x
+ ∂

2v
∂x2

)
eαx+βt.

Substituting above derivatives into the formula (1), so ∂v
∂t
+ (k − 2αd) ∂v

∂x
= d ∂

2v
∂x2 +

(
dα2 − kα − β

)
v.

And if
{

k − 2αd = 0
dα2 − kα − β = 0 , so when

{
α = k

2d

β = − k2

4d

, the formula (1) could be transformed as following form.

∂v

∂t
= d
∂2v

∂x2 (4)
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3. Establishment of the difference scheme

First, establish the difference grid. Take the space step length h > 0, the node x j = jh, j = 0, 1, 2, · · · ,M = [1/h], and the
time step length τ > 0, the node tn = nτ, n = 0, 1, 2, · · · ,N = [T/τ]. And for simplifying the discussion, supposed that
k > 0, d > 0.

3.1 O
(
τ2 + h4

)
scheme

To keep the network frame of two layers and three points in the scheme, consider the value of the formula (4) at the time
of n + 1

2 , so

[
∂v

∂t

]n+ 1
2

j

= d

[
∂2v

∂x2

]n+ 1
2

j

(5)

In space, the four-order compact difference is used to approach the formula,

[
∂2v

∂x2

]
j

=

[
1 +

h2

12
δ2x

]−1

δ2xv j + O
(
h4
)

(6)

where,

δ2xv j =
v j+1 − 2v j + v j−1

h2 (7)

And substitute v
n+ 1

2
j

by the arithmetic mean value of vn
j and vn+1

j , and take the central difference of the time item of
[
∂v
∂t

]n+ 1
2

j
,

vn+1
j − vn

j

τ
=

d

2

[
1 +

h2

12
δ2x

]−1

δ2x
(
vn

j + vn+1
j

)
(8)

so,

[
1 +

h2

12
δ2x

] (
vn+1

j − vn
j

)
=

dτ

2
δ2x
(
vn

j + vn+1
j

)
(9)

Unfold the formula (20) according to the form of the formula (7), and suppose r = d τ
h2 , so

(10 + 12r) vn+1
j + (1 − 6r)

(
vn+1

j+1 + vn+1
j−1

)
= (10 − 12r) vn

j + (1 + 6r)
(
vn

j+1 + vn
j−1

)
(10)

The difference scheme of the formula (1) can be obtained by the inverse transformation, V = e−(αx+βt)U,so

(10 + 12r) un+1
j + (1 − 6r)

(
e−αhun+1

j+1 + eαhun+1
j−1

)
= eβτ

[
(10 − 12r) un

j + (1 + 6r)
(
e−αhun

j+1 + eαhun
j−1

)] (11)

it has the compact implicit scheme with two layers and three points, and from the deduction process, its truncation error
is O

(
τ2 + h4

)
.

3.2 O
(
τ4 + h4

)
scheme

To enhance the time order to four-order, use the four-order formula to the time derivative item.

[
∂v

∂t

]n

=

[
1 +
τ2

6
δ2t

]−1

δtv
n + O

(
τ4
)

(12)

Where,

δtv
n = vn+1−vn−1

2τ ,

δ2t vn = vn+1−2vn+vn−1

τ2

⎫⎪⎪⎬⎪⎪⎭ (13)

For the time derivative item, the four-order compact difference is still used to approach the formula (6), and considering
the value of the formula (4) at the time of n,
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[
1 +
τ2

6
δ2t

]−1

δtv
n
j = d

[
1 +

h2

12
δ2x

]−1

δ2xvn
j (14)

i.e.,

δt

[
1 +

h2

12
δ2x

]
vn

j = dδ2x

[
1 +
τ2

6
δ2t

]
vn

j (15)

Substitute the formula (7) and the formula (13) into the formula (19), and supposed that r = d τ
h2 , so

(5 + 4r) vn+1
j +

(
1
2 − 2r

) (
vn+1

j+1 + vn+1
j−1

)
= −16rvn

j + 8r
(
vn

j+1 + vn
j−1

)
+ (5 − 4r) vn−1

j +
(

1
2 + 2r

) (
vn−1

j+1 + vn−1
j−1

) (16)

The difference scheme of the formula (1) can be obtained by the inverse transformation, V = e−(αx+βt)U,so

e−βτ
[
(5 + 4r) un+1

j +
(

1
2 − 2r

) (
e−αhun+1

j+1 + eαhun+1
j−1

)]
= −16run

j + 8r
(
e−αhun

j+1 + eαhun
j−1

)
+eβτ

[
(5 − 4r) un−1

j +
(

1
2 + 2r

) (
e−αhun−1

j+1 + eαhun−1
j−1

)] (17)

it has the compact implicit scheme with two layers and three points, and from the deduction process, its truncation error
is O

(
τ4 + h4

)
.

4. Stability analysis

Supposed that the boundary conditions are satisfied exactly, and to prove the stability, the Lemma is introduced.

Lemma (Lu, 1987): The sufficient and necessary condition that the module of the real coefficient two-order equation
x2 − bx − c = 0 is less than 1 is |b| ≤ 1 − c ≤ 2.

4.1 Stability analysis of O
(
τ2 + h4

)
scheme

The Fourier method is used to prove the stability of the difference scheme (11). It is easy to solve that the growth factor is

G =
10 + 2 cosσh − 12r (1 − cosσh)
10 + 2 cosσh + 12r (1 − cosσh)

(18)

and because 1 − cosσh ≥ 0, so |G| ≤ 1, i.e. the formula (1) is unconditionally stable.

4.2 Stability analysis of O
(
τ4 + h4

)
scheme

The Fourier method is used to prove the stability of the difference scheme (17). It is easy to solve that the growth matrix
is

G =

⎡⎢⎢⎢⎢⎣ −16r(1−cosσh)
5+cosσh+4r(1−cosσh) 5 + cosσh − 4r (1 − cosσh)

1
5+cosσh+4r(1−cosσh) 0

⎤⎥⎥⎥⎥⎦ (19)

and its characteristic equation is

x2 +
16r (1 − cosσh)

5 + cosσh + 4r (1 − cosσh)
x − 5 + cosσh − 4r (1 − cosσh)

5 + cosσh + 4r (1 − cosσh)
= 0 (20)

so

|b| + c =
5 + cosσh + 12r (1 − cosσh)
5 + cosσh + 4r (1 − cosσh)

(21)

and obviously, |b| + c > 1, so from the Lemma, the scheme (17) is unstable without preconditions.

5. Numerical experiment

For the problem with the steady state solution,
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t
+ k ∂u

∂x
= d ∂

2u
∂x2 (0 < x < 1, 0 < t < T, d > 0),

u (x, 0) = 0 (0 < x < 1),
u (0, t) = 0, u (1, t) = 1 (0 < t < T ).

(22)

its exact solution is (D.J.Evans, 1985, P.145-154),

u (x, t) =
ekx/d − 1
ek/d − 1

+

∞∑
m=1

(−1)m mπ

(mπ)2 +
(

k
2d

)2 ek(x−1)/2d sin (mπx)e−[(mπ)2d+k2/4d]t (23)

By respectively using the O
(
τ2 + h4

)
scheme and the O

(
τ4 + h4

)
scheme, and taking k = 1.0, d = 1.0 and h = 0.02, the

numerical result when t = 0.4 is computed when τ = 0.004 and τ = 0.0004, and the results are respectively seen in Table
1 and Table 2.

The numerical result shows that solving the non-convection dominant diffusion problem by the scheme of O
(
τ2 + h4

)
could obtain small numerical diffusion, few numerical vibration, and highorder. At the same time, because each time
layer only has three grid points, so the difference equation tri-diagonal equation, and it can be solved by the chase-after
method directly with less computation quantity and without iteration. When τ = O

(
h2
)
, the computation achieves the four-

order precision in space, and it is stable for any big grid ratio r. The O
(
τ4 + h4

)
scheme is unstable without preconditions,

so it cannot be used in practical computation.
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Table 1. Numerical result when k = 1.0,d = 1.0,τ = 0.004, h = 0.02,t = 0.4

j
(
x j

) O
(
τ2 + h4

)
scheme

O
(
τ2 + h4

)
scheme Exact solution

Numerical solu-
tion

Absolute error Relative error

5 0.059072 0.001067 0.017746

Unstable without preconditions

0.060139
10 0.124582 0.002138 0.016875 0.12672
15 0.197432 0.003088 0.015401 0.20052
20 0.278596 0.003814 0.013506 0.28241
25 0.369101 0.004219 0.011300 0.37332
30 0.470016 0.004214 0.008886 0.47423
35 0.582434 0.003776 0.006441 0.58621
40 0.707472 0.002878 0.004051 0.71035
45 0.846260 0.001600 0.001887 0.84786

Table 2. Numerical result when k = 1.0,d = 1.0,τ = 0.0004,h = 0.02,t = 0.4

j
(
x j

)
O
(
τ2 + h4

)
scheme

O
(
τ2 + h4

)
scheme Exact solution

Numerical solution Absolute error Relative error
5 0.059072 0.001067 0.017747

Unstable without preconditions

0.060139
10 0.124581 0.002139 0.016876 0.12672
15 0.197431 0.003089 0.015403 0.20052
20 0.278595 0.003815 0.013508 0.28241
25 0.369101 0.004219 0.011302 0.37332
30 0.470016 0.004214 0.008887 0.47423
35 0.582434 0.003776 0.006441 0.58621
40 0.707473 0.002877 0.004051 0.71035
45 0.846270 0.001590 0.001876 0.84786
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