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Infinity of Zeros of Recurrence Sequences
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Abstract

The purpose of this work is to study the zeros of linear recurrence sequence, with constant coefficients. We give a simple
proof of well known Skolem-Mahler-Lech theorem. The advantage of this work is similar to the one done by V. Halava
and collaborators, but in a simple way. We study the problem when the general term of the recurrent sequence is of
exponential polynomial with some initial conditions that simplify the problem.
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1. Introduction

In this section, we give some basic concepts and well-known results about linear recurrence sequences which are needed
in the later section.
Let (un)n∈N be a k − th order linear recurring sequence defined by

un = sk−1un−1 + ............ + s0un−k (1)

for all n ≥ k with fixed algebraic numbers si and u j for i = 0, ..., k − 1 and j = 0, ..., k − 1.The k first elements
u0, u1............, uk−1 of the linear recurrent sequence (un)n∈N in (1) are called the initial conditions. If the initial condi-
tions are given, every element of the sequence is uniquely determined by the recurrence (1).
Every recurrent sequence satisfying (1) has a characteristic polynomial

p(x) = xk −
k−1∑
i=0

six
j (2)

its zeros are called the characteristic roots. We assume that s0 � 0, then each characteristic roots is different from zero.
We let α1, α1, ..., αr, with multiplicity mi, 1 ≤ i ≤ r, be the distinct characteristic roots of (un)n∈N, then there exist unique
polynomials hi(x) for i = 0, ..., r with deghi ≤ mi − 1, such that for each n ∈ N, we have

un =

r∑
i=1

hi(n)αn
i , (3)

For a sequence (un)n∈N, we define its set of zeroes by

G(un) = {n ∈ N such that un = 0} . (4)

Here, an infinite arithmetic progression is a set of the form a + bZ where a ∈ Z and b is a positive integer.
The following result is the well known Skolem-Mahler-Lech theorem.

Theorem 1. (Skolem-Mahler-Lech): If (un) is a sequence given by a linear recurrence (1), then the set G(un) defined by

(4) is a union of finitly many arithmic progressions and a finite set.
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One of the most well known linear recurrence equation is that for which un = 3un−2 − un−4 with the initial conditions (
u0,,u1, u2, u3)= (0, 0, 1, 0) . The sequence is given by

un = (1 + (−1)n)

⎛⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎝1 +
√

5
2

⎞⎟⎟⎟⎟⎠n

−
⎛⎜⎜⎜⎜⎝1 − √

5
2

⎞⎟⎟⎟⎟⎠n⎞⎟⎟⎟⎟⎟⎠ . (5)

And the set of n such that un = 0 is the union of the finite set {0} and the the arithmitic progression {1, 3, 5, ...} .

To give a short history of the problem, it was first proved by T. Skolem in 1934 for a linear recurrence over the rational
numbers. The result of Skolem was later proved for a linear recurrence over the algebraic numbers, also by Mahler in
1935 and by Lech in 1953 for arbitrary fields of characteristic 0. The result of Skolem-Mahler-Lech, also has been proved
by Laxton [1968], Mignotte [1973], Van der poorten [1976], and Robba [1977]. Recently, V. Halava, T. Harju and J.
Karhumaki [2005] presented the proof of a special case of Skolem-Mahler-Lech theorem in a form given by G.Hansel
[1986]. The employed methods of proof of his different results are difficult.

In this paper we shall give a simple proof of the well known Skolem-Mahler-Lech theorem. The advantage of this work
is similar to [V. Halava, 2005] , but in a simple way. We study the problem where the general term of (un) defined in the
field Qp by

un =

r∑
i=1

hi(n)exp(n lnαi) (6)

and we suppose that for each i (i = 1, ...r), the roots αi satisfy αi ≡ 1(modp), and we will apply the following theorem:

Theorem 2. Let p > 2 be a prime number and di any sequence of integers, and define

bn =

n∑
i=0

ci
n pidi (7)

If bn = 0 for infinitely many n, then bn = 0 for each n.

For a proof, see for example [V. Halava, 2005].

2. Valuations of algebraic numbers and p−adic power series

For convenience we review a few facts about valuations of number and some proprieties of power serie. For a more
comprehension we refer to [A. M. Robert, 2000] and [S . Katok, 2000]. Let p > 2 be the prime number. The valuation of
an integer x then can be defined as follows

vp(x) =
{

0, if p � x

r, if pr\x but pr+1 � x
(8)

For any rational number x = a
b
, we have vp(x) = vp(a) − vp(b) according to the previous definition. Valuation vp is called

the p-adic valuation.

We normalise these valuations as follows

|x|p =
{

p−vp(x), if x � 0
0, if x =0 (9)

|.|p is a non-Archimedian norm in Q. The distance induced by a non-Archimedian norms is said to be an ultrametric.
Instead of the triangle inequality for the usual distance function

d (a, c) ≤ d (a, b) + d (b, c) (10)

it satisfies the strong triangle inequality

d (a, c) ≤ max (d (a, b) , d (b, c)) . (11)

Notice that if a, b ∈ N, then a ≡ b(modpn) if and only if |a − b|p ≤ p−n.

We define the field Qp to be the completion of Q with respect to the p-adic norm |.|p.
(
Qp, |.|p

)
is a complete normed

field. The set of the p-adic integers is denoted by Zp, so Zp =
{∑∞

i=0 ai p
i
}
. It is easy to see that

Zp =
{
a ∈ Qp/ |a|p ≤ 1

}
(12)

Lemma 3. If the elements x, y of a non-Archemedian field satisfy the inequality ||x − y||p < ||y||p, then ||x||p = ||y||p .
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Proof. By the strong triangle inequality, we have

||x||p = ||x − y + y||p ≤ max
(
||x − y||p , ||y||p

)
= ||y||p .

On the other hand
||y||p = ||y − x + x||p ≤ max

(
||x − y||p , ||x||p

)
Now ||x − y||p > ||x||p would imply ||y||p ≤ ||x − y||p, then a contradiction.
Therefore ||x − y||p ≤ ||x||p, and ||y||p ≤ ||x||p . So, ||y||p = ||x||p �

Lemma 4. if p > 2 is any prime number and for each i ∈ N, then∣∣∣∣∣∣∣∣∣∣ 1i!
∣∣∣∣∣∣∣∣∣∣

p

≤ p
i

p−1 (13)

Proof. For an integer i ∈ N, we have

vp(i!) =
i − S i

p − 1
,

where S i is the sum of digits of i written in base p.
From the formula

||x||p = p−vp(x),

we obtain ∣∣∣∣∣∣∣∣∣∣ 1i!
∣∣∣∣∣∣∣∣∣∣

p

= p
i−S i
p−1

≤ p
i

p−1

�

Definition 5. A formal power series f (x) ∈ Qp [[x]] is an expression of the form

f (x) =
∞∑

n=1

anxn

It is clear that it converges if and only if |anxn|p → 0. In particular , every f (x) ∈ Zp [[x]] converges in the disc{
x ∈ Qp / |x|p ≺ 1

}
.

Now, let us consider the formal power series f (x) ∈ Qp [[x]] Such that

f (x) = lnp(x) =
∞∑

n=1

(−1)n+1 (x − 1)n

n
(14)

wich is called the logarithm in base p.It is clear that f (x) converges in

Dp =
{
x ∈ Qp / |x − 1|p ≺ 1

}
= 1 + pZp. (15)

and diverges otherwise.

Similary, we define the p − adic exponential and denoted by

expp(x) =
∞∑

n=1

xn

n!
(16)

wich converges in the disc

Bp =

{
x ∈ Qp / |x|p < p

−1
p−1

}
= pZp (17)

and diverges otherwise.

3. Main Result

In this section, we present the simple proof of Skolem-Mahler-Lech theorem. The content of the simple proof of our main
result is the following:

132 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011

Theorem 6. Let p > 2 be a prime number. If α ∈ Qp with α ≡ 1(modp), then for all x ∈ Zp, there exist a formal power

series Vα(x) =
∑∞

j=0 vα, j x
j, wich converge in Zp and Vα(n) = αn, ∀n ∈ N.

Remark 7. We see that if α ≡ 1(modp), we obtain αp−1 ≡ 1(modp), then the previous theorem is still true if we change

the role of α by αp−1.
The following auxiliary result is necessary for the proof of the theorem (6).

Lemma 8. Let p > 2 be a prime number. If α ∈ Qp with α ≡ 1(modp), we have∣∣∣lnp(1 + α)
∣∣∣
p
= |α|p (18)

Proof. Since α ≡ 1(modp) and
∣∣∣ 1

n!

∣∣∣
p
≤ p

n−1
p−1 , for each n ≥ 2, we have∣∣∣∣∣αn

n

∣∣∣∣∣
p

≤
∣∣∣∣∣αn

n!

∣∣∣∣∣
p

≤
(
|α|p · p

1
p−1

)n−1
· |α|p < |α|p (19)

Then
max
n≥2

∣∣∣∣∣αn

n

∣∣∣∣∣
p

< |α|p (20)

Moreover, by the strong triangle inequality, we have∣∣∣∣∣∣∣α +
∞∑

n=2

(−1)n+1α
n

n

∣∣∣∣∣∣∣
p

≤ max
(
|α|p ,max

n≥2

∣∣∣∣∣αn

n

∣∣∣∣∣
p

)
= |α|p (21)

and by isosceles triangle property, we obtain ∣∣∣∣∣∣∣α +
∞∑

n=2

(−1)n+1α
n

n

∣∣∣∣∣∣∣ = |α|p , (22)

and hence ∣∣∣lnp(1 + α)
∣∣∣
p
= |α|p (23)

�

Proof of theorem (6) Let n ∈ N and α ∈ Qp, with α ≡ 1(modp), then

αn = expp(n lnp α) =
∞∑
j=0

(lnp α) j

j!
n j

=

∞∑
j=0

vα, jn
j, where vα, j =

(lnp α) j

j!

Now, let us consider Vα(x) =
∑∞

j=0 vα, j x
j, so for every integer p − adic x ∈ Zp , we have

∣∣∣∣∣∣vα, j x j
∣∣∣∣∣∣

p
≤ ∣∣∣∣∣∣vα, j∣∣∣∣∣∣p ≤ ∣∣∣∣∣∣lnp(1 + (α − 1))

∣∣∣∣∣∣ j
p
·
∣∣∣∣∣∣∣∣∣∣ 1

j!

∣∣∣∣∣∣∣∣∣∣
p

(24)

Using the lemma (4) and lemma (8), we have∣∣∣∣∣∣vα, j x j
∣∣∣∣∣∣

p
≤ ||α − 1|| jp ·

∣∣∣∣∣∣∣∣∣∣ 1
j!

∣∣∣∣∣∣∣∣∣∣
p

≤ p− j · p
j

p−1 = p− j
p−2
p−1

and hence p− j
p−2
p−1 → 0, when j → ∞ , for each p > 2.

Proof of theorem (1). (Skolem-Mahler-Lech Theorem)
Let us consider un in Qp , be given as

un =

r∑
i=1

hi(n) exp(n lnαi), (25)
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where αi ≡ 1(modp).
For any number n, we can write n = m + (p − 1)N, where 0 ≤ m ≤ p − 2 and n ∈ N. Then we have

um+(p−1)N =

r∑
i=1

hi(m + (p − 1)N)αi
m(αi

p−1)N (26)

And by theorem (2) and remark (7), every sequence

u(p−1)N =

r∑
i=1

hi((p − 1)N)(αi
p−1)N

u1+(p−1)N =

r∑
i=1

hi(1 + (p − 1)N)αi(αi
p−1)N

.

.

.

u(p−2+(p−1)N) =

r∑
i=1

hi(p − 2) + (p − 1)N)αi
p−2(αi

p−1)N

is equal to formal power series which converge in Zp.

which shows that either sequence (um+(p−1)N), for all 0 ≤ m ≤ p − 2, vanishes identically or contains only finitely many
zeros. This completes the proof.
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