# Infinity of Zeros of Recurrence Sequences 

S. Kaouache (Corresponding author)<br>LMPA. Département de Mathématiques, Faculté des Sciences<br>Université de Jijel, BP 98, Ouled Aissa<br>Jijel 18000, Algerie<br>E-mail: smailkaouache@yahoo.fr<br>T. Zerzaihi<br>LMPA. Département de Mathématiques, Faculté des Sciences<br>Université de Jijel, BP 98, Ouled Aissa<br>Jijel 18000, Algerie<br>E-mail: zerzaihi@yahoo.com

Received: January 27, 2011 Accepted: February 12, 2011 doi:10.5539/jmr.v3n3p130


#### Abstract

The purpose of this work is to study the zeros of linear recurrence sequence, with constant coefficients. We give a simple proof of well known Skolem-Mahler-Lech theorem. The advantage of this work is similar to the one done by V. Halava and collaborators, but in a simple way. We study the problem when the general term of the recurrent sequence is of exponential polynomial with some initial conditions that simplify the problem.


Keywords: Linear recurrent sequence, Skolem-Mahler-Lech theorem, $p$-adic numbers, Power series

## 1. Introduction

In this section, we give some basic concepts and well-known results about linear recurrence sequences which are needed in the later section.
Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a $k-t h$ order linear recurring sequence defined by

$$
\begin{equation*}
u_{n}=s_{k-1} u_{n-1}+\ldots \ldots \ldots \ldots .+s_{0} u_{n-k} \tag{1}
\end{equation*}
$$

for all $n \geq k$ with fixed algebraic numbers $s_{i}$ and $u_{j}$ for $i=0, \ldots, k-1$ and $j=0, \ldots, k-1$.The $k$ first elements $u_{0}, u_{1} \ldots \ldots \ldots . . ., u_{k-1}$ of the linear recurrent sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in (1) are called the initial conditions. If the initial conditions are given, every element of the sequence is uniquely determined by the recurrence (1).
Every recurrent sequence satisfying (1) has a characteristic polynomial

$$
\begin{equation*}
p(x)=x^{k}-\sum_{i=0}^{k-1} s_{i} x^{j} \tag{2}
\end{equation*}
$$

its zeros are called the characteristic roots. We assume that $s_{0} \neq 0$, then each characteristic roots is different from zero. We let $\alpha_{1}, \alpha_{1}, \ldots, \alpha_{r}$, with multiplicity $m_{i}, 1 \leq i \leq r$, be the distinct characteristic roots of $\left(u_{n}\right)_{n \in \mathbb{N}}$, then there exist unique polynomials $h_{i}(x)$ for $i=0, \ldots, r$ with $\operatorname{deg} h_{i} \leq m_{i}-1$, such that for each $n \in \mathbb{N}$, we have

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{r} h_{i}(n) \alpha_{i}^{n}, \tag{3}
\end{equation*}
$$

For a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, we define its set of zeroes by

$$
\begin{equation*}
G\left(u_{n}\right)=\left\{n \in \mathbb{N} \text { such that } u_{n}=0\right\} . \tag{4}
\end{equation*}
$$

Here, an infinite arithmetic progression is a set of the form $a+b \mathbb{Z}$ where $a \in \mathbb{Z}$ and $b$ is a positive integer.
The following result is the well known Skolem-Mahler-Lech theorem.
Theorem 1. (Skolem-Mahler-Lech): If $\left(u_{n}\right)$ is a sequence given by a linear recurrence (1), then the set $G\left(u_{n}\right)$ defined by (4) is a union of finitly many arithmic progressions and a finite set.

One of the most well known linear recurrence equation is that for which $u_{n}=3 u_{n-2}-u_{n-4}$ with the initial conditions ( $\left.u_{0},, u_{1}, u_{2}, u_{3}\right)=(0,0,1,0)$. The sequence is given by

$$
\begin{equation*}
u_{n}=\left(1+(-1)^{n}\right)\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) \tag{5}
\end{equation*}
$$

And the set of $n$ such that $u_{n}=0$ is the union of the finite set $\{0\}$ and the the arithmitic progression $\{1,3,5, \ldots\}$.

To give a short history of the problem, it was first proved by T. Skolem in 1934 for a linear recurrence over the rational numbers. The result of Skolem was later proved for a linear recurrence over the algebraic numbers, also by Mahler in 1935 and by Lech in 1953 for arbitrary fields of characteristic 0. The result of Skolem-Mahler-Lech, also has been proved by Laxton [1968], Mignotte [1973], Van der poorten [1976], and Robba [1977]. Recently, V. Halava, T. Harju and J. Karhumaki [2005] presented the proof of a special case of Skolem-Mahler-Lech theorem in a form given by G.Hansel [1986]. The employed methods of proof of his different results are difficult.
In this paper we shall give a simple proof of the well known Skolem-Mahler-Lech theorem. The advantage of this work is similar to [V. Halava, 2005], but in a simple way. We study the problem where the general term of $\left(u_{n}\right)$ defined in the field $\mathbb{Q}_{p}$ by

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{r} h_{i}(n) \exp \left(n \ln \alpha_{i}\right) \tag{6}
\end{equation*}
$$

and we suppose that for each $i(i=1, \ldots r)$, the roots $\alpha_{i}$ satisfy $\alpha_{i} \equiv 1(\bmod p)$, and we will apply the following theorem:
Theorem 2. Let $p>2$ be a prime number and $d_{i}$ any sequence of integers, and define

$$
\begin{equation*}
b_{n}=\sum_{i=0}^{n} c_{n}^{i} p^{i} d_{i} \tag{7}
\end{equation*}
$$

If $b_{n}=0$ for infinitely many $n$, then $b_{n}=0$ for each $n$.

For a proof, see for example [V. Halava, 2005].

## 2. Valuations of algebraic numbers and $p$-adic power series

For convenience we review a few facts about valuations of number and some proprieties of power serie. For a more comprehension we refer to [A. M. Robert, 2000] and [S. Katok, 2000]. Let $p>2$ be the prime number. The valuation of an integer $x$ then can be defined as follows

$$
v_{p}(x)=\left\{\begin{array}{c}
0, \text { if } p \nmid x  \tag{8}\\
r, \text { if } p^{r} \backslash x \text { but } p^{r+1} \nmid x
\end{array}\right.
$$

For any rational number $x=\frac{a}{b}$, we have $v_{p}(x)=v_{p}(a)-v_{p}(b)$ according to the previous definition. Valuation $v_{p}$ is called the $p$-adic valuation.
We normalise these valuations as follows

$$
|x|_{p}=\left\{\begin{array}{c}
p^{-v_{p}(x)}, \text { if } x \neq 0  \tag{9}\\
0, \text { if } x=0
\end{array}\right.
$$

$1 . I_{p}$ is a non-Archimedian norm in $\mathbb{Q}$. The distance induced by a non-Archimedian norms is said to be an ultrametric. Instead of the triangle inequality for the usual distance function

$$
\begin{equation*}
d(a, c) \leq d(a, b)+d(b, c) \tag{10}
\end{equation*}
$$

it satisfies the strong triangle inequality

$$
\begin{equation*}
d(a, c) \leq \max (d(a, b), d(b, c)) . \tag{11}
\end{equation*}
$$

Notice that if $a, b \in \mathbb{N}$, then $a \equiv b\left(\bmod p^{n}\right)$ if and only if $|a-b|_{p} \leq p^{-n}$.
We define the field $\mathbb{Q}_{p}$ to be the completion of $\mathbb{Q}$ with respect to the $p$-adic norm $|.|_{p} .\left(\mathbb{Q}_{p},\left|.| |_{p}\right)\right.$ is a complete normed field. The set of the $p$-adic integers is denoted by $\mathbb{Z}_{p}$, so $\mathbb{Z}_{p}=\left\{\sum_{i=0}^{\infty} a_{i} p^{i}\right\}$. It is easy to see that

$$
\begin{equation*}
\mathbb{Z}_{p}=\left\{a \in \mathbb{Q}_{p} /|a|_{p} \leq 1\right\} \tag{12}
\end{equation*}
$$

Lemma 3. If the elements $x, y$ of a non-Archemedian field satisfy the inequality $\|x-y\|_{p}<\|y\|_{p}$, then $\|x\|_{p}=\|y\|_{p}$.

Proof. By the strong triangle inequality, we have

$$
\|x\|_{p}=\|x-y+y\|_{p} \leq \max \left(\|x-y\|_{p},\|y\|_{p}\right)=\|y\|_{p}
$$

On the other hand

$$
\|y\|_{p}=\|y-x+x\|_{p} \leq \max \left(\|x-y\|_{p},\|x\|_{p}\right)
$$

Now $\|x-y\|_{p}>\|x\|_{p}$ would imply $\|y\|_{p} \leq\|x-y\|_{p}$, then a contradiction.
Therefore $\|x-y\|_{p} \leq\|x\|_{p}$, and $\|y\|_{p} \leq\|x\|_{p}$. So, $\|y\|_{p}=\|x\|_{p}$
Lemma 4. if $p>2$ is any prime number and for each $i \in \mathbb{N}$, then

$$
\begin{equation*}
\left\|\frac{1}{i!}\right\|_{p} \leq p^{\frac{i}{p-1}} \tag{13}
\end{equation*}
$$

Proof. For an integer $i \in \mathbb{N}$, we have

$$
v_{p}(i!)=\frac{i-S_{i}}{p-1}
$$

where $S_{i}$ is the sum of digits of $i$ written in base $p$.
From the formula

$$
\|x\|_{p}=p^{-v_{p}(x)}
$$

we obtain

$$
\begin{aligned}
\left\|\frac{1}{i!}\right\|_{p} & =p^{\frac{i-S_{i}}{p-1}} \\
& \leq p^{\frac{i}{p-1}}
\end{aligned}
$$

Definition 5. A formal power series $f(x) \in \mathbb{Q}_{p}[[x]]$ is an expression of the form

$$
f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

It is clear that it converges if and only if $\left|a_{n} x^{n}\right|_{p} \rightarrow 0$. In particular, every $f(x) \in \mathbb{Z}_{p}[[x]]$ converges in the disc $\left\{x \in \mathbb{Q}_{p} /|x|_{p}<1\right\}$.
Now, let us consider the formal power series $f(x) \in \mathbb{Q}_{p}[[x]]$ Such that

$$
\begin{equation*}
f(x)=\ln _{p}(x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n} \tag{14}
\end{equation*}
$$

wich is called the logarithm in base $p$.It is clear that $f(x)$ converges in

$$
\begin{equation*}
D_{p}=\left\{x \in \mathbb{Q}_{p} /|x-1|_{p}<1\right\}=1+p \mathbb{Z}_{p} \tag{15}
\end{equation*}
$$

and diverges otherwise.
Similary, we define the $p-$ adic exponential and denoted by

$$
\begin{equation*}
\exp _{p}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \tag{16}
\end{equation*}
$$

wich converges in the disc

$$
\begin{equation*}
B_{p}=\left\{x \in \mathbb{Q}_{p} /|x|_{p}<p^{\frac{-1}{p-1}}\right\}=p \mathbb{Z}_{p} \tag{17}
\end{equation*}
$$

and diverges otherwise.

## 3. Main Result

In this section, we present the simple proof of Skolem-Mahler-Lech theorem. The content of the simple proof of our main result is the following:

Theorem 6. Let $p>2$ be a prime number. If $\alpha \in \mathbb{Q}_{p}$ with $\alpha \equiv 1(\bmod p)$, then for all $x \in \mathbb{Z}_{p}$, there exist a formal power series $V_{\alpha}(x)=\sum_{j=0}^{\infty} v_{\alpha, j} x^{j}$, wich converge in $\mathbb{Z}_{p}$ and $V_{\alpha}(n)=\alpha^{n}, \forall n \in \mathbb{N}$.
Remark 7. We see that if $\alpha \equiv 1(\bmod p)$, we obtain $\alpha^{p-1} \equiv 1(\bmod p)$, then the previous theorem is still true if we change the role of $\alpha$ by $\alpha^{p-1}$.
The following auxiliary result is necessary for the proof of the theorem (6).
Lemma 8. Let $p>2$ be a prime number. If $\alpha \in \mathbb{Q}_{p}$ with $\alpha \equiv 1(\bmod p)$, we have

$$
\begin{equation*}
\left|\ln _{p}(1+\alpha)\right|_{p}=|\alpha|_{p} \tag{18}
\end{equation*}
$$

Proof. Since $\alpha \equiv 1(\bmod p)$ and $\left|\frac{1}{n!}\right|_{p} \leq p^{\frac{n-1}{p-1}}$, for each $n \geq 2$, we have

$$
\begin{equation*}
\left|\frac{\alpha^{n}}{n}\right|_{p} \leq\left|\frac{\alpha^{n}}{n!}\right|_{p} \leq\left(|\alpha|_{p} \cdot p^{\frac{1}{p-1}}\right)^{n-1} \cdot|\alpha|_{p}<|\alpha|_{p} \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\max _{n \geq 2}\left|\frac{\alpha^{n}}{n}\right|_{p}<|\alpha|_{p} \tag{20}
\end{equation*}
$$

Moreover, by the strong triangle inequality, we have

$$
\begin{equation*}
\left|\alpha+\sum_{n=2}^{\infty}(-1)^{n+1} \frac{\alpha^{n}}{n}\right|_{p} \leq \max \left(|\alpha|_{p}, \max _{n \geq 2}\left|\frac{\alpha^{n}}{n}\right|_{p}\right)=|\alpha|_{p} \tag{21}
\end{equation*}
$$

and by isosceles triangle property, we obtain

$$
\begin{equation*}
\left|\alpha+\sum_{n=2}^{\infty}(-1)^{n+1} \frac{\alpha^{n}}{n}\right|=|\alpha|_{p}, \tag{22}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|\ln _{p}(1+\alpha)\right|_{p}=|\alpha|_{p} \tag{23}
\end{equation*}
$$

Proof of theorem (6) Let $n \in \mathbb{N}$ and $\alpha \in \mathbb{Q}_{p}$, with $\alpha \equiv 1(\bmod p)$, then

$$
\begin{aligned}
\alpha^{n} & =\exp _{p}\left(n \ln _{p} \alpha\right)=\sum_{j=0}^{\infty} \frac{\left(\ln _{p} \alpha\right)^{j}}{j!} n^{j} \\
& =\sum_{j=0}^{\infty} v_{\alpha, j} n^{j}, \text { where } v_{\alpha, j}=\frac{\left(\ln _{p} \alpha\right)^{j}}{j!}
\end{aligned}
$$

Now, let us consider $V_{\alpha}(x)=\sum_{j=0}^{\infty} v_{\alpha, j} x^{j}$, so for every integer $p-$ adic $x \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\left\|v_{\alpha, j} x^{j}\right\|_{p} \leq\left\|v_{\alpha, j}\right\|_{p} \leq\left\|\ln _{p}(1+(\alpha-1))\right\|_{p}^{j} \cdot\left\|\frac{1}{j!}\right\|_{p} \tag{24}
\end{equation*}
$$

Using the lemma (4) and lemma (8), we have

$$
\left\|v_{\alpha, j} x^{j}\right\|_{p} \leq\|\alpha-1\|_{p}^{j} \cdot\left\|\frac{1}{j!}\right\|_{p} \leq p^{-j} \cdot p^{\frac{j}{p-1}}=p^{-j \frac{p-2}{p-1}}
$$

and hence $p^{-j \frac{p-2}{p-1}} \rightarrow 0$, when $j \rightarrow \infty$, for each $p>2$.

## Proof of theorem (1). (Skolem-Mahler-Lech Theorem)

Let us consider $u_{n}$ in $\mathbb{Q}_{p}$, be given as

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{r} h_{i}(n) \exp \left(n \ln \alpha_{i}\right), \tag{25}
\end{equation*}
$$

where $\alpha_{i} \equiv 1(\bmod p)$.
For any number $n$, we can write $n=m+(p-1) N$, where $0 \leq m \leq p-2$ and $n \in \mathbb{N}$. Then we have

$$
\begin{equation*}
u_{m+(p-1) N}=\sum_{i=1}^{r} h_{i}(m+(p-1) N) \alpha_{i}^{m}\left(\alpha_{i}^{p-1}\right)^{N} \tag{26}
\end{equation*}
$$

And by theorem (2) and remark (7), every sequence

$$
\begin{aligned}
u_{(p-1) N}= & \sum_{i=1}^{r} h_{i}((p-1) N)\left(\alpha_{i}^{p-1}\right)^{N} \\
u_{1+(p-1) N}= & \sum_{i=1}^{r} h_{i}(1+(p-1) N) \alpha_{i}\left(\alpha_{i}^{p-1}\right)^{N} \\
& \cdot \\
& \cdot \\
u_{(p-2+(p-1) N)}= & \left.\sum_{i=1}^{r} h_{i}(p-2)+(p-1) N\right) \alpha_{i}^{p-2}\left(\alpha_{i}{ }^{p-1}\right)^{N}
\end{aligned}
$$

is equal to formal power series which converge in $\mathbb{Z}_{p}$.
which shows that either sequence $\left(u_{m+(p-1) N}\right)$, for all $0 \leq m \leq p-2$, vanishes identically or contains only finitely many zeros. This completes the proof.

## References

A. J. Van der Poorten. (1976). Zeros of p-adic exponenttial polynomials, Nedert. Akad. Wetensch. porc. Ser. A 79; Indag. Math., 38, 46-49.
A. M. Robert. (2000). A Course in p-adic Analysis, Springer-Verlag Berlin Heidelbery New York.
C. Lech. (1953). A note on recurring series. Ark. Mat., 2, 417-421.
G. Hansel. (1986). Unel d emonstration simple du théorème de Skolem-Mahler-Lech. Theoret. Comput. Sci., 43, no. 1, 91-98.
H. P. Schlickewei. Multiplicities of algebraic linear recurrences (to appear).
K. Mahler. (1935). Eine arithmetische Eigenschaft der Taylor Koeffizienten rationaler Funktionen. Proc. Akad. Wet. Amsterdam, 38, 51-60.
M. Mignotte. (1973). Suites récurrents linéaires, Sém. Delange-Pisot-Poitou $15^{e}$ années, $l 74 \mathrm{n} 14,9 \mathrm{pp}$.
P. Robba. (1977). Zéros de suites récurrentes linéaires, Groupe d'étude d'analyse ultramétrique $5^{e}$ année, $l 78$, n 13, 5 pp .
R. R. Laxton. (1968). linear p-adic recurrences, Quart. J. Math. Oxford, (2), 19, 305-311.

S . Katok. (2001). real and p-adic analysis, course notes for Math 497C, Mass Program, Fall 2000.
T. Skolem. (1935). Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen. In: Comptes rendus du congrés des mathèmaticiens scandinaves, Stockholm, 1934, pp. 163-188.
V. Halava, T. Harju, M. Hirvensalo and J. Karhumaki. (2005). Skolem's Problem- On the Border Between Decidability and Undecidability. TUCS Technical Report, No 683, pp.19, 21-22. (April 2005).

