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Abstract

The present work deals with two prey species living in two habitats and a predator specie which attacks the most abundant
prey specie. The harvesting of both prey species is taken into account in the analysis. Non-zero equilibrium states have
been examined with regard to their stability and the conditions for stability have been obtained. Using as a bifurcation
parameter the conversion rate of prey to predator, conditions for a bifurcation to occur are obtained. A Hopf bifurcation
theorem has been derived. In the investigations we used six forms of predation and harvesting rates to analyze the theory,
however, we display graphical results for only one particular case.
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1. Introduction

Good functional representation is necessary in the analytical treatment of predator-prey systems. If harvesting of the preys
is to be included then we must also have a representation of that interaction.

In constructing interaction functions it is useful in many cases to get a general form for the function together with any
general conditions one may wish them to satisfy, then using elementary functions, construct specific functions. This will
be our guide for the determination of the interaction functions. Our present model of predator-prey systems will be based
on the models of (Bhatt, 2000, p 3133-3137), (Bhatt, 2002, p 2304-2309) and (Owen, 2010, p 281-295).

In (Bhatt, 2000, p 3133-3137) , systems of two preys which live in two different habitats and one predator specie which
may switch towards the most abundant prey specie is treated. In (Bhatt, 2002, p 2304-2309) , the authors extend (Bhatt,
2000, p 3133-3137) by including general predator-prey interactions which allow the predator to interact in the same way
with the two preys. That is, the predatory rates are given the same functional form. In (Owen, 2010, p 281-295) predator
interference is allowed.

Our objective in the present work is to extend the above works by allowing harvesting of the preys. This is carried out
by considering general harvesting functions in addition to the general predatory functions. We determine the equilibrium
states, their stability conditions and Hopf bifurcation points and we present a Hopf bifurcation theorem.

In our applications we consider hypothetical systems and examine only those equilibrium states where all species coexist.

In our investigations we examined the following hypothetical systems where predator and harvesting functions are depen-
dent only on the ratio of the prey populations. The systems had only one equilibrium state and we derived conditions for
the stability of these states.
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The hypothetical systems have the following predatory and harvesting functions:
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where n is a positive integer and the functions ki, hi, i = 1, 2 represent predatory and harvesting rates, respectively, which
occur in the equations defining the model.

We point out that the parameters used in our numerical calculations do not represent any real situation and are used for
illustrative purposes only. These values were obtained by careful guessing. Of the six systems examined we graphically
display the results of only System 5.

In Section 2 we give the equations defining our model. Section 3 is devoted to the stability of equilibrium states, while
Section 4 contains the Hopf bifurcation analysis. In Section 5 we consider one application while Section 6 contains the
results.

2. System of equations defining the Model

The predator-prey model in which the predator can switch towards the most abundant prey specie and which allows
general predatory and harvesting rates is defined by the equations:
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y (1)

where

xi : represents the prey population in the two different habitats,

δi : represents the harvesting rate of the prey population in the two different habitats,

y : represents the abundance of predator species,

βi : the predator response rates towards the prey xi,

ci : the rate of conversion of prey to predator,

εi : inversion barrier strength in going out of the habitat,

pi j : the probability of successful transition from the ith habitat to the jth habitat,

αi : specific growth rate of the prey in the absence of predation,

μ : per capita death rate of the predator and
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are assued to satisfy certain general conditions which are given by Assumptions 1 - 3 in section 3. All the coefficients,
δi, βi, ci, εi, pi j, αi, and μ are positive.

3. Stability of the equilibrium

Let (X1, X2,Y) be the equilibrium states of the system described by equations (1), when all species coexist. On solving
the equilibrium equations, we get the following expressions for (X1, X2,Y) :
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We note that there are two expressions for Y , hence as it stands, the equilibrium point E = (X1, X2,Y) may or may not exist
and even if it exists it may not represent real populations. The following Lemma provides conditions for the equilibrium
point, (X1, X2,Y) to exist and to represent real populations.

Lemma 1: The equilibrium point, (X1, X2,Y) of equations (1), exists and represents real populations if X̄(=
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Proof: Equating the two expressions for Y , thus producing equation (3), ensures existence of the equilibrium point while
inequalities (4) make Y > 0 so as to represent a real population.

3.1 Assumptions and general stability conditions

The stability of the equilibrium point, (X1, X2,Y) where X1, X2,Y are all positive will now be considered. We begin by
making the following three assumptions:

[Assumption 1:]

Each predatory / harvesting function ki

( xi

x j

)
, hi

( xi

x j

)
i = 1, 2, is positive, smooth and has a Taylor expansion in the two

variables x1, x2 about the point (X1, X2) where (X1, X2,Y) is an equilibrium point of the system of equations (1).

[Assumption 2:]

The predatory / harvesting functions, ki, hi i = 1, 2 satisfy the following inequalities

k′1
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< 0 (5)
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where x1, x2 are positive and k′1(z), z =
xi

x j

, denotes the derivative of k1 with respect to z, etc.

[Assumption 3: (The Switching Assumption)]

The predator rate functions, for x1, x2 both positive, satisfy:
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Assumption 3, the switching assumption, reflects the type of feeding mechanism which is adapted by the predators. This
is a switching mechanism in our present situation.

3.2 Stability analysis

To consider the stability of the equilibrium point, (X1, X2,Y), we linearize the equations (1) by considering a small pertur-
bation about the equilibrium point i.e. by substituting x1 = X1 + u, x2 = X2 + v, y = Y +w, in all functions in equations (1)
and expanding them using Taylorś expansion and neglecting second and higher order terms in u, v,w.

Defining w1, w2, A, B, C and D as follows
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we see that the linearized form of equations (1) can be written as

dV

dt
= JV,

where, V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ u

v

w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. The corresponding characteristic equation is given by

|J| =

∣∣∣∣∣∣∣∣∣∣
−D

X̄
− λ D −w1

C −CX̄ − λ −w2
AY BY −λ

∣∣∣∣∣∣∣∣∣∣ = 0. (7)

where A, B,C,D are given by equations (6).

We may write equation (7) as

λ3 + b1λ
2 + b2λ + b3 = 0 (8)

where

b1 = X̄C +
D

X̄
,

b2 = Y(Aw1 + Bw2),

b3 =
Y

X̄
(AX̄ + B)(Dw2 +CX̄w1). (9)
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For stability of the equilibrium to be ensured the eigenvalue solutions, λ, must have negative real parts. The Routh-
Hurwitz criteria provide conditions for this to happen. These criteria tell us that the eigenvalues will have negative real
parts if and only if

b1 > 0,

b3 > 0,

b1b2 − b3 > 0.

From Assumption 2 we see that C > 0, D > 0, hence b1 > 0. From equations (9) we see also that b3 is positive if
X̄A + B > 0 since X̄,Y,w1,w2,C,D are all positive. Now with the help of equations (6) we can indeed show that

X̄A + B =
μ

X2

which tells us that b3 > 0.

In the light of the above results we can write the following general theorem:

Theorem 1: If the functions ki, hi obey Assumptions 1, 2 and the conditions of the above Lemma 1 hold and A, B,C,D
are defined by equations (6) with ki,

′ given as in Assumption (2), then the stability of the equilibrium point (X1, X2,Y) is

assured if and only if

Δ ≡ b1b2 − b3 =
{
β2k2

(X1

X2

)
− β1k1

(X2

X1

)}
(BCX1 − ADX2) > 0. (10)

4. Hopf Bifurcation

Assuming A > 0, B > 0 and using the rate of conversion of prey to predator, c1, as the bifurcation parameter, we search
for Hopf bifurcations with respect to the equations (1).

Using Assumption 2 with A > 0, B > 0, we see, that C,D, b1, b2, b3 are all positive. (Actually, b3 was shown to be positive
without assuming A > 0, B > 0 in the previous section 3).

Also, it is seen that X̄,Y,C,D are all independent of the parameters c1 and c2. That C,D are independent of c1, c2 can be
seen from equations (6) and by noting that -

k′2
(X1

X2

)
, h′2

(X1

X2

)
, k′1

(X2

X1

)
, h′1

(X2

X1

)
are functions of X̄ which is independent of c1, c2. We also see that b1,w1,w2 are

independent of c1, c2.

In the rest of this section we shall follow the Hopf bifurcation analysis as in (Bhatt, 2002, p 2304-2309) . We shall not,
however, reproduce the initial part of the analysis.

For c1 ∈ (c̄1 − ε, c̄1 + ε), ε small, and c̄1 a positive root of b1b2 = b3, we can write the general roots of eigenvalue equation
(8) as

λ1(c1) = u(c1) + iv(c1), λ2(c1) = u(c1) − iv(c1), λ3(c1) = −b1(c1).

Now from (Massden, 1975) , we must verify the transversality condition

du

dc1

∣∣∣∣∣
c1=c̄1

� 0.

We can show, as in (Bhatt, 2002, p 2304-2309) , that

du

dc1
= −2b2(b1b′2 − b′3)

4(b 2
2 + b 2

1 b2)
,

where b′2 =
db2

dc1
, b′3 =

db3

dc1
. We shall use this notation for the derivative w.r.t. c1 in what follows.

To show Hopf bifurcation at c1 = c̄1 we must show that at c1 = c̄1

b1b′2 − b′3 � 0

because the denominator of
du

dc1
is positive and b2 is also positive.
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Since X̄,Y,C,D are independent of c1, c2 we can show that

b1b′2 − b′3 =
Y

X̄
(w2X̄ − w1)(B′CX̄ − A′D).

Now from equations (6) and Assumption 2 we see that A′ > 0, B′ < 0,C > 0 hence B′CX̄ − A′D < 0. Therefore

du

dc1

∣∣∣∣∣
c1=c̄1

� 0.

provided X̄ �
w1

w2
.

We can write these results in the following theorem:

Theorem 2: Let the predatory / harvesting functions, ki, hi, i = 1, 2, satisfy Assumptions 1 and 2 above, and let the

conditions of the Lemma 1 hold. Let also A, B defined by equations (6), be both positive. If c̄1 is a positive root of the

equation b1b2 = b3, where bi, i = 1, 2, 3 are given by equation (9), then we have a Hopf bifurcation as c1 passes through

c̄1 provided β2k2

(X1

X2

)
� β1k1

(X2

X1

)
.

Performing a similar analysis with c2 (the rate of conversion of the prey in the second habitat to the predator) as the
variable parameter, we shall get a similar result.

5. Applications

We examined six hypothetical systems which are defined by the predatory and harvesting functions given in the Introduc-
tion. The results support the present theory. However, we display graphically the results for only one of these. This is the
system given by System 5 in the Introduction. In System 5 the functions are interpreted as defining a system where the
predators may attack the two types of preys in the same way while harvesting of the preys is conducted in a similar but
different way. The equilibrium point (X1, X2,Y) of this system is such that:

X1 =
μX̄

c1β1k
( 1

X̄

)
X̄ + c2β2k(X̄)

,

X2 =
μ

c1β1k
( 1

X̄

)
X̄ + c2β2k(X̄)

,

Y =
α2 − ε2 + ε1 p12X̄ − δ2h(X̄)

k(X̄)β2

Y =

(α1 − ε1) +
ε2 p21

X̄
− δ1h

( 1
X̄

)
k
( 1

X̄

)
β1

(11)

where

X̄ =
X1

X2
, k
( 1

X̄

)
=

X̄n

1 + X̄n
, k(X̄) =

1
1 + X̄n

,

h
( 1

X̄

)
= exp

(
− 1

X̄n

)
, h(X̄) = exp(−X̄n)

and since the conditions of the Lemma 1 are satisfied, X̄ satisfies:

X̄β1k
( 1

X̄

)(
α2 − ε2 + ε1 p12X̄ − δ2h(X̄)

)
=

β2k(X̄)
[{
α1 − ε1 − δ1h

( 1
X̄

)}
X̄ + ε2 p21

]
(12)

and

δ2h(X̄) + ε2 − α2

ε1 p12
< X̄ <

ε2 p21

δ1h
( 1

X̄

)
+ ε1 − α1

. (13)
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From equation (10) stability of the equilibrium point is assured if and only if

Δ ≡ b1b2 − b3 =
{
k
( 1

X̄

)
β1 − k(X̄)β2

}
(AD − BCX̄) > 0 (14)

where

A = c1β1k
( 1

X̄

)
+ c1β1

⎛⎜⎜⎜⎜⎜⎝n[k( 1
X̄

)]2

X̄n

⎞⎟⎟⎟⎟⎟⎠ − c2β2(nX̄n−1[k(X̄)]2),

B = c1β1

⎛⎜⎜⎜⎜⎜⎝−nk( 1
X̄

)

X̄n−1

⎞⎟⎟⎟⎟⎟⎠ + c2β2(nX̄n[k(X̄)]2) + c2β2k(X̄),

C = ε1 p12 + β2Y(nX̄n−1[k(X̄)]2) + δ2(nX̄n−1h(X̄)),

D = ε2 p21 + β1Y

⎛⎜⎜⎜⎜⎜⎝n[k( 1
X̄

)]2

X̄n−1

⎞⎟⎟⎟⎟⎟⎠ + δ1 ⎛⎜⎜⎜⎜⎜⎝nh( 1
X̄

)

X̄n−1

⎞⎟⎟⎟⎟⎟⎠ . (15)

In light of Theorem 2 we can write the following corollary for System 5:

Corollary: Let the predatory / harvesting functions ki, hi, i = 1, 2, be defined by System 5 in the Introduction thus

satisfying Assumptions 1 and 2. Also let the conditions of the Lemma 1 hold. If A, B defined by equations (15) are both

positive and if c̄1 is a positive root of the equation b1b2 = b3, where bi, i = 1, 2, 3 are given by equations (9), then we have

a Hopf bifurcation as c1 passes through c̄1 provided β1X1
n � β2X2

n.

6. Numerical Results - Both Predatory Rates Multiplicative & Both Harvesting Rates Exponential

Equations (1) were integrated for the six Systems mentioned in the Introduction using as initial conditions the corre-
sponding equilibrium values. To illustrate the theory , intervals of stability / instability and bifurcation points of non-zero
equilibrium states, using equations (11) to equations (15) with n = 1, n = 2 and n = 3 and c1 and c2 as the variable
parameters are shown in Table-1. The behavior of the populations with time, for only two parameter sets are displayed
graphically in Fig.1 and Fig.2. The results of all sets examined, support the theory. We chose the following parameter
sets:

1. μ = 0.01, α1 = 0.015, α2 = 0.025, β1 = 0.01, β2 = 0.02, p12 = 0.3, p21 = 0.2, ε1 = 0.02, ε2 = 0.03, δ1 = 0.0001,
δ2 = 0.0005, c1 = 0.1, c2 = 0.1, n = 1,

2. μ = 0.01, α1 = 0.015, α2 = 0.025, β1 = 0.02, β2 = 0.01, p12 = 0.3, p21 = 0.2, ε1 = 0.02, ε2 = 0.03, δ1 = 0.0001,
δ2 = 0.0005, c1 = 0.1, c2 = 0.4, n = 2.

NOTE: Table-1 appears here.

It may be observed that for all the data values considered in Table-1, the interval of stability decreases when the value of
n increases.

The behavior of the populations with time are graphically displayed in Figure 1 and Figure 2.

It is interesting to observe that in the cases we examined, when there is an instability and the populations of the predators
have a ’maximum’, i.e. increase, the population of the preys show a ’minimum’. That is, it appears that some of the preys
are ‘converted’ to predators and then afterwards the prey population receive ‘reinforcements’.

7. Bifurcation figures

If we fix c1 and all the other parameters and treat c2 as the bifurcation parameter, we can determine the value of c2 where
bifurcation takes place. Let us denote this value of c2 by Bifpt(c2).

The effect of different values of c1 and α2 (β2), while keeping all of the other parameters fixed at μ = 0.01, α1 =

0.015, β1 = 0.01, p12 = 0.3, p21 = 0.2, ε1 = 0.02, ε2 = 0.03, δ1 = 0.0001, δ2 = 0005, n = 1, on Bifpt(c2) was examined
and is displayed graphically.

Figure 3 shows the effect on Bifpt(c2) of different values of c1 and four values of α2, namely 0.025, 0.03, 0.035 and 0.04.
The values of the other parameters being as above together with β2 = 0.02.

Figure 4 shows the effect on Bifpt(c2) of different values of c1 and four values of β2, namely 0.01, 0.015, 0.02, and 0.03.
The values of the other parameters again being as above together with α2 = 0.025.
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In Figure 3 and figure 4, we plotted the bifurcation point (c1, Bifpt(c2)) for different values of c1, α2(β2) and were able to
draw straight lines through the different sets of points thus suggesting that for the system with ki, hi, defined by System 5,
Bifpt(c2), in both cases, varies linearly with c1 in the interval considered.

NOTE: Fig 1 from file (p18f1.eps) appears here.

NOTE: Fig 2 from file (p18f4.eps) appears here.

NOTE: Fig 3 from file (alpha.eps) appears here

NOTE: Fig 4 from file (beta.eps) appears here

We feel that our work is of interest in the sense that we have used general predatory and harvesting rate functions, hence
it will compliment other existing works.
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Table 1. (k1, k2-multiplicative, h1, h2-exponential)

β1 β2 n STABLE UNSTABLE BIF-PT
c2 = 0.1 δ2 = 0.0005

0.01 0.02 1 0 ≤ c1 < 0.200962 c1 ≥ 0.200963 0.200962
2 0 ≤ c1 < 0.197796 c1 ≥ 0.197797 0.197796
3 0 ≤ c1 < 0.196620 c1 ≥ 0.196621 0.196620

0.02 0.01 1 c1 > 0.050625 0 ≤ c1 ≤ 0.050624 0.050625
2 c1 > 0.051273 0 ≤ c1 ≤ 0.051272 0.051273
3 c1 > 0.051486 0 ≤ c1 ≤ 0.051485 0.051486

c2 = 0.1 δ2 = 0.0002
0.01 0.02 1 0 ≤ c1 < 0.199658 c1 ≥ 0.199659 0.199658

2 0 ≤ c1 < 0.196497 c1 ≥ 0.196498 0.196497
3 0 ≤ c1 < 0.195308 c1 ≥ 0.195309 0.195308

0.02 0.01 1 c1 > 0.050306 0 ≤ c1 ≤ 0.050305 0.050306
2 c1 > 0.051071 0 ≤ c1 ≤ 0.051070 0.051071
3 c1 > 0.051356 0 ≤ c1 ≤ 0.051355 0.051356

c1 = 0.1 δ2 = 0.0005
0.01 0.02 1 c2 > 0.049762 0 ≤ c2 ≤ 0.049761 0.049762

2 c2 > 0.050558 0 ≤ c2 ≤ 0.050557 0.050558
3 c2 > 0.050860 0 ≤ c2 ≤ 0.050859 0.050860

0.02 0.01 1 0 ≤ c2 < 0.197534 c2 ≥ 0.197535 0.197534
2 0 ≤ c2 < 0.195035 c2 ≥ 0.195036 0.195035
3 0 ≤ c2 < 0.194230 c2 ≥ 0.195231 0.195230

c1 = 0.1 δ2 = 0.0002
0.01 0.02 1 c2 > 0.050086 0 ≤ c2 ≤ 0.050085 0.050086

2 c2 > 0.050892 0 ≤ c2 ≤ 0.050891 0.050892
3 c2 > 0.051202 0 ≤ c2 ≤ 0.051201 0.051202

0.02 0.01 1 0 ≤ c2 < 0.198786 c2 ≥ 0.198787 0.198786
2 0 ≤ c2 < 0.195808 c2 ≥ 0.195809 0.195808
2 0 ≤ c2 < 0.194720 c2 ≥ 0.194721 0.194720

PREDATORY RATE MULTIPLICATIVE, 
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Figure 1. Population with predatory rate multiplicative, harvesting rate exponential
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PREDATORY RATE MULTIPLICATIVE, 
HARVESTING RATE  EXPONENTIAL, n = 2

-1
1
3
5
7
9

11
13
15

0 20000 40000
TIME --->

PO
PU

LA
TI

O
N

S 
---

>

X1

X2

Y

Figure 2. Population with predatory rate multiplicative, harvesting rate exponential
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Figure 3. Population with predatory rate multiplicative, harvesting rate exponential
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Figure 4. Population with predatory rate multiplicative, harvesting rate exponential
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