On Fully-M-Cyclic Modules

Samruam Baupradist (Corresponding author)
Department of Mathematics, Faculty of Science
Chulalongkorn University, Bangkok 10330, Thailand
Tel: 66-83-137-1119 E-mail: samruam.b@chula.ac.th
Suphawat Asawasamrit
Department of Mathematics, Faculty of Applied Science
King Mongkut 's University of Technology North Bangkok
Bangkok 10800, Thailand
Tel: 66-81-346-6321 E-mail: suphawata@kmutnb.ac.th

Received: November 26, 2010 Accepted: December 7, 2010 doi:10.5539/jmr.v3n2p23

Abstract

The aim of this work was to generalize generator, M-generated modules in order to apply them to a wider class of rings and modules. We started by establishing a new concept which is called a fully- M-cyclic module. We defined this notation by using $\operatorname{Hom}_{R}(M, *)$ operators which are helpful to contract the new construction and describe their properties. Finally, we could see the structure of fully- M-cyclic module and quasi-fully-cyclic module by the structure of M.

Keywords: Fully-M-cyclic modules, Quasi-fully-cyclic modules, Generator modules, Self-generator modules

1. Introduction

Throughout this paper, R is an associative ring with identity and M_{R} is the category of unitary right R-modules. Let M be a right R-module and $S=E n d_{R}(M)$, its endomorphism ring. A right R-module N is called M-generated if there exists an epimorphism $M^{(I)} \longrightarrow N$ for some index set I. If I is finite, then N is called finitely M-generated. In particular, N is called M-cyclic if it is isomorphic to M / L for some submodule L of M. Following Wisbauer [1991], $\sigma[M]$ denotes the full subcategory of Mod- R, whose objects are the submodules of M-generated modules. A module M is called a self-generator if it generates all of its submodules. M is called a subgenerator if it is a generator of $\sigma[M]$.

2. On Fully- M-cyclic module

In this part, a module M be given as a right R-module.
Definition 2.1. Let $N \in M_{R}$. N is called a fully- M-cyclic module if every submodule A of N is of the form $s(M)$ for some s in $\operatorname{Hom}_{R}(M, N)$.

Remark 2.2. Dealing directly from definition, the following statements are routine:
(1) Submodule of a fully- M-cyclic module is a fully- M-cyclic module.
(2) If M is simple module and N is fully- M-cyclic module, then any nonzero submodule of N is simple submodule.

Definition 2.3. The module $M \in M_{R}$ is called a quasi-fully-cyclic module if it is a fully- M-cyclic module.
Obviously, every semi-simple module is a quasi-fully-cyclic module.
Lemma 2.4. Let N be a fully-M-cyclic module. If M is a noetherian module then $\operatorname{Soc}(M) \cong \operatorname{Soc}(N)$.
Proof. Since N is a fully- M-cyclic module, a simple submodule B of N is of the form $s(M)$ for some $s \in \operatorname{Hom}_{R}(M, N)$. By the simply property of B, there is $b \in B$ such that $B=b R$. Suppose that $s(a)=b$ for some $a \in M$. In noetherian module $a R$, there exists a simple submodule A containing a. It is easily to see that $A \cong B$. Conversely, if A is a simple submodule of M then $s(A)=B$ is a simple submodule of N and then $A \cong B$ for all $s \in \operatorname{Hom}_{R}(M, N)$. This shows that $\operatorname{Soc}(M) \cong \operatorname{Soc}(N)$.

Lemma 2.5. If N is a fully-M-cyclic module then N has no nonzero small submodule.

Proof. In a contrary, we suppose that there is a nonzero submodule A which is small in N. Let B be a submodule of N
such that $A+B=N$. Since N is a fully- M-cyclic module, there are $s, t \in \operatorname{Hom}_{R}(M, N)$ such that $s(M)=A, t(M)=B$. Put $f=s+t$, then f is an epimorphism from M to N. Since A is a small submodule of N, t is an epimorphism and hence s is an epimorphism. It follows that $A=N$, a contradiction, showing that N has no nonzero small submodule.

Corollary 2.6. If N is a fully-M-cyclic module then $\operatorname{Rad}(N)=0$.
Definition 2.7. Let N be a fully- M-cyclic module. For a submodule A of N there exists a homomorphism $s \in H_{R}(M, N)$ such that $s(M)=A$. s is called a presented homomorphism of A.

Lemma 2.8. Let N be a fully-M-cyclic module. If s is a presented homomorphism of a submodule A of N then A is maximal if and only if every $t \in S=\operatorname{Hom}_{R}(M, N)$ with $\operatorname{Im}(t)$ containing the image of presented homomorphism of A is an epimorphism.

Proof. Let $A=s(M) C_{>} \operatorname{Im}(t)$ in N. Since A is a maximal submodule of N then $\operatorname{Im}(t)$ must be N, and hence t is an epimorphism. Conversely, let $A=s(M)$ and $A C_{>} B$. Since N is a fully- M-cyclic module, there is an element $t \in \operatorname{Hom}_{R}(M, N)$ such that $B=t(M)$. By assumption, the non equality $s(M) C_{>} t(M)$ follows that t is an epimorphism, and hence $B=N$.

Leading directly from definition, the following properties in Lemma 2.9 are routine,
Lemma 2.9. Let N be a fully-M-cyclic module and A be a submodule of N and s its a presented homomorphism.
(1) If M is an epimorphism image of M^{\prime} then N is also a fully- M^{\prime}-cyclic module.
(2) If M is a fully- M^{\prime}-cyclic module then N is also a fully- M^{\prime}-cyclic module.
(3) A is an essential in N if and only if for any nonzero element t of $\operatorname{Hom}_{R}(M, N), \operatorname{Im}(t) \cap \operatorname{Im}(s) \neq 0$.
(4) A is uniform if and only if every $t \in \operatorname{Hom}_{R}(M, N)$ with $0 \neq \operatorname{Im}(t) \subset_{>} \operatorname{Im}(s)$ then $\operatorname{Im}(t)$ is an essential in $\operatorname{Im}(s)$.
(5) A is a direct summand of N if and only if there exists $t \in \operatorname{Hom}_{R}(M, N)$ such that $\operatorname{Im}(s) \cap \operatorname{Im}(t)=0$ and $s+t$ is an epimorphism.

3. Quasi-fully-cyclic module

In this part, we put $S=E n d_{R}(M)$. We have known that for any right R-module M, the direct summand A of M is image of a presented homomorphism which is an idempotent of S but not all. Which is case of the form submodules such that every its presented homomorphisms are idempotents?. The following lemma is a clear answer:

Lemma 3.1. Let M be a quasi-fully-cyclic module. If A is a simple submodule of M with sits a presented homomorphism then s is an idempotent of $S=\operatorname{End}_{R}(M)$.

Proof. Let s be a presented homomorphism of A. Because A is a simple submodule of M then $s^{2}(A) \neq 0$. Therefore, we have $0 \neq s^{2}(M) \subset_{>} s(M)=A$ and $s^{2}(M)$ must be equal to $A=s(M)$, showing that s is an idempotent of S.
Right now, we suppose that M be a quasi-fully-cyclic module. If $e^{2}=e$, the one gets a direct sum decomposition $M=e(M) \oplus(1-e)(M)$. Conversely, if $M=A \oplus B$ then we can write $1=\pi_{A}+\pi_{B}$ with π_{A} (resp. π_{B}) being a natural projection map from M to A (resp. B). π_{A} (resp. π_{B}) is an idempotent element of S which is a presented homomorphism of A (resp. B) so that we can get the following corollary.

Corollary 3.2. In a quasi-fully-cyclic module, every simple submodule is a direct summand.
Theorem 3.3. Let M be a quasi-fully-cyclic module. M is a Noetherian (resp. Artinian) if and only if S is a right self Noetherian (resp. Artinian) ring.

Proof. Suppose that M is Noetherian. We may easily analogize our self the proof of the case Artinian. Take any ascending chain of the right ideals $s_{1} S \subset_{>} s_{2} S \subset_{>} s_{3} S \subset_{>} \ldots s_{n} S \subset_{>} \ldots$ of the ring S. Since $s_{i} S \subset_{>} s_{i+1} S$, $s_{i}=s_{i+1} t$ for some $t \in S$. We have $s_{i}(M) \subset_{>} s_{i+1}(M)$ for all $i \in N$. The ascending chain of the submodules $s_{1}(M) \subset_{>} s_{2}(M) \subset_{>}$ $s_{3}(M) \subset_{>} \ldots \subset_{>} s_{n}(M) \subset_{>} \ldots$ must be stationary in the noetherian module M so that $s_{n_{0}}(M)=s_{n_{0}+j}(M)$ for some n_{0} and all $j \geq 0$. This implies that for $i \geq n_{0}$ there is a permutation function $t \in S$ such that $s_{i+1}=s_{i} t$ for some $t \in S$. It follows that $s_{i+1} S C_{>} s_{i} S$, and hence $s_{i+1} S \subset_{>} s_{i} S$ for all $i \geq n_{0}$. It says that the ascending chain of the right ideals $s_{1} S \subset_{>} s_{2} S \subset_{>} s_{3} S \subset_{>} \ldots s_{n} S \subset_{>} \ldots$ must be exact stationary at n_{0}. Conversely, if S is a right self noetherian ring. Take any ascending chain of the submodules $A_{1} \subset_{>} A_{2} \subset_{>} A_{3} \subset_{>} \ldots \subset_{>} A_{n} \subset_{>} \ldots$ of M. Since M is a quasi-fully-cyclic module, for every i index, there is $s_{i} \in S$ such that $s_{i}(M)=A_{i}$. Following that $s_{1} S C_{>} s_{2} S \subset_{>} s_{3} S \subset_{>} \ldots s_{n} S C_{>} \ldots$ is a ascending chain of the right ideals of S. By assumption, this ascending chain must be stationary at some n_{0} index.

Therefore, $s_{i} S=S_{i+1} S$ for all $i \geq n_{o}$. This shows that $s_{i}(M)=s_{i+1}(M)$ for all $i \geq n_{0}$. And hence the given ascending chain of the submodules $A_{1} \subset_{>} A_{2} \subset_{>} A_{3} \subset_{>} \ldots \subset_{>} A_{n} \subset_{>} \ldots$ is stationary at n_{0}. The proof now is completed.

Lemma 3.4. For each quasi-fully-cyclic-module, the following statements are equivalent:
(1) S is artinian;
(2) M is finitely co-generated;
(3) M is semisimple and finitely generated;
(4) M is semisimple and noetherian;
(5) M is the direct sum of a finite set of simple submodules.

Proof. We refer to the ([Anderson, 1974], Proposition 10.15) for the proving of $3 \Longleftrightarrow 4 \Longleftrightarrow 5$. By the Theorem 3.3, we know that S is artinian if and only if M is artinian. By the Corollary 2.6, we have $\operatorname{Rad}(M)=0$. The proof is now completed by turning back to apply the ([Anderson, 1974], Proposition 10.15).

Definition 3.5. Let M be a right R-module. M is called Hopfian (resp. co-Hopfian) if every surjective (resp. injective) endomorphism of M is an automorphism.

Definition 3.6. Let M be a right R-module. M is called a Fitting module if every endomorphism f of M satisfies Fitting's lemma (i.e. there exists an integer $n \geq 1$ such that $\left.M=\operatorname{Ker}\left(f^{n}\right) \oplus \operatorname{Im}\left(f^{n}\right)\right)$.

Lemma 3.7. Let M be a quasi-fully-cyclic-module. If M is finitely cogenerated and Hopfian then for any $s \in S$ there exists an integer number n such that $M=\operatorname{Ker}\left(s^{n}\right) \oplus \operatorname{Im}\left(s^{n}\right)$.

Proof. Since M is both a quasi-fully-cyclic and finitely cogenerated and by the Lemma 3.4, we have M is artinian. Applying the ([Anderson, 1974], Lemma 11.6) to the Hopfian module M, we have M is a Fitting module. This shows that for any $s \in S$ there exists an integer number n such that $M=\operatorname{Ker}\left(s^{n}\right) \oplus \operatorname{Im}\left(s^{n}\right)$.

Theorem 3.8. Let M be a quasi-fully-cyclic module.
(1) For any $s, u \in S, l_{S}(\operatorname{Im}(u))+S s \subset_{>} l_{S}(\operatorname{Im}(u) \cap \operatorname{Ker}(s))$.
(2) If N is a maximal submodule of M then $l_{S}(N)$ is a minimal left ideal of S.

Proof. (1) According to the relationship $\operatorname{Im}(u) \cap \operatorname{Ker}(s) \subset_{>} \operatorname{Im}(u)$ follows that $l_{S}(\operatorname{Im}(u)) \subset_{>} l_{S}(\operatorname{Im}(u) \cap \operatorname{Ker}(s))$. Take any $t s \in S s$ and $m \in \operatorname{Im}(u) \cap \operatorname{Ker}(s)$. We have $t s(m)=0$. It implies that $t s \in l_{S}(\operatorname{Im}(u) \cap \operatorname{Ker}(s))$, and hence $S s \subset_{>}$ $l_{S}(\operatorname{Im}(u) \cap \operatorname{Ker}(s))$. Therefore, $l_{S}(\operatorname{Im}(u))+S s \subset_{>} l_{S}(\operatorname{Im}(u) \cap \operatorname{Ker}(s))$.
(2) Since M is quasi-fully-cyclic module, there exists $s_{0} \in S$ such that $s_{0}(M)=N$. Therefore, $l_{S}(N)=\left\{t \in S \mid t s_{0}=0\right\}$. It is easy to see that $l_{S}(N)$ is one of the form of left ideals of S. Take any $0 \neq t \in l_{S}(N)$ then $t(N)=0$ saying that $N \subset_{>} \operatorname{Ker}(t)$. By maximality of $N, \operatorname{Ker}(t)$ is N. Right now, if we take any $k \in l_{S}(N), k(N)=0$ shows that $\operatorname{Ker}(t) \subset \operatorname{Ker}(k)$. It follows that there is $s \in S$ such that $k=s t$, and hence $k \in S t$. Thus it is $l_{S}(N) \subset S t$, and hence $l_{S}(N)=S t$, showing minimality of $l_{S}(N)$.

Acknowledgment

The authors would like to thank Dr. Hong Dinh Hai for his encouragement and suggestion. This paper is supported by King Mongkut's University of Technology North Bangkok, Thailand.

References

Anderson, F. W. \& Fuller, K. R. (1974). Rings and Categories of Modules, Graduate Texts in Math. No.13, SpringerVerlag, New York, Heidelberg, Berlin.
Camillo, V. \& Yousif, M. F. (1991). Continuous rings with ACC on annihilators. Cand. Math. Bull., 34, 642-644.
Dung, N. V., Huynh, D. V., Smith, P. F. \& Wisbauer, R. (1994). Extending Modules. Research Notes in Mathematics Series, 313, Pitman London.
Faith, C. (1966). Rings with ascending chain condition on annihilators. Nagoya Math. J., 27, 179-191.
Jain, S. K., Singh, S., \& Symonds, R. G. (1976). Rings whose proper cyclic modules are quasi-injective. Pacific J. Math, 67, 461-472.
Kasch, F. (1977). Moduln and Ringe, Stuttgart.

Mohamed, S. H. \& Müller, B.J. (1990). Continuous and Discrete Modules. London Math. Soc. Lecture Note Series, No. 147, Cambridge Univ. Press.

Nicholson, W. K. \& Yousif.M. F. (1995). Principally injective rings. Journal of Algebra, 174, 77-93.
Sanh, N. V., Shum, K. P., Dhompongsa, S. \& Wongwai, S. (1999). On quasi-principally injective modules. Algebra Colloquium, 6:3, 269-276.

Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, London, Tokyo, e.a.

