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Abstract

The aim of this work was to generalize generator, M-generated modules in order to apply them to a wider class of rings
and modules. We started by establishing a new concept which is called a fully-M-cyclic module. We defined this notation
by using HomR(M, ∗) operators which are helpful to contract the new construction and describe their properties. Finally,
we could see the structure of fully-M-cyclic module and quasi-fully-cyclic module by the structure of M.
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1. Introduction

Throughout this paper, R is an associative ring with identity and MR is the category of unitary right R-modules. Let M be
a right R-module and S = EndR(M), its endomorphism ring. A right R-module N is called M-generated if there exists
an epimorphism M(I) −→ N for some index set I. If I is finite, then N is called finitely M-generated. In particular, N is
called M-cyclic if it is isomorphic to M/L for some submodule L of M. Following Wisbauer [1991], σ[M] denotes the full
subcategory of Mod-R,whose objects are the submodules of M-generated modules. A module M is called a self-generator

if it generates all of its submodules. M is called a subgenerator if it is a generator of σ[M].

2. On Fully-M-cyclic module

In this part, a module M be given as a right R-module.

Definition 2.1. Let N ∈ MR. N is called a fully-M-cyclic module if every submodule A of N is of the form s(M) for some
s in HomR(M,N).

Remark 2.2. Dealing directly from definition, the following statements are routine:
(1) Submodule of a fully-M-cyclic module is a fully-M-cyclic module.
(2) If M is simple module and N is fully-M-cyclic module, then any nonzero submodule of N is simple submodule.

Definition 2.3. The module M ∈ MR is called a quasi-fully-cyclic module if it is a fully-M-cyclic module.

Obviously, every semi-simple module is a quasi-fully-cyclic module.

Lemma 2.4. Let N be a fully-M-cyclic module. If M is a noetherian module then S oc(M) � S oc(N).

Proof. Since N is a fully-M-cyclic module, a simple submodule B of N is of the form s(M) for some s ∈ HomR(M,N).
By the simply property of B, there is b ∈ B such that B = bR. Suppose that s(a) = b for some a ∈ M. In noetherian
module aR, there exists a simple submodule A containing a. It is easily to see that A � B. Conversely, if A is a simple
submodule of M then s(A) = B is a simple submodule of N and then A � B for all s ∈ HomR(M,N). This shows that
S oc(M) � S oc(N). �

Lemma 2.5. If N is a fully-M-cyclic module then N has no nonzero small submodule.

Proof. In a contrary, we suppose that there is a nonzero submodule A which is small in N. Let B be a submodule of N
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such that A + B = N. Since N is a fully-M-cyclic module, there are s, t ∈ HomR(M,N) such that s(M) = A, t(M) = B. Put
f = s + t, then f is an epimorphism from M to N. Since A is a small submodule of N, t is an epimorphism and hence s is
an epimorphism. It follows that A = N, a contradiction, showing that N has no nonzero small submodule. �

Corollary 2.6. If N is a fully-M-cyclic module then Rad(N) = 0.

Definition 2.7. Let N be a fully-M-cyclic module. For a submodule A of N there exists a homomorphism s ∈ HomR(M,N)
such that s(M) = A. s is called a presented homomorphism of A.

Lemma 2.8. Let N be a fully-M-cyclic module. If s is a presented homomorphism of a submodule A of N then A is

maximal if and only if every t ∈ S = HomR(M,N) with Im(t) containing the image of presented homomorphism of A is an

epimorphism.

Proof. Let A = s(M) ⊂> Im(t) in N. Since A is a maximal submodule of N then Im(t) must be N, and hence t is
an epimorphism. Conversely, let A = s(M) and A ⊂> B. Since N is a fully-M-cyclic module, there is an element
t ∈ HomR(M,N) such that B = t(M). By assumption, the non equality s(M) ⊂> t(M) follows that t is an epimorphism,
and hence B = N. �

Leading directly from definition, the following properties in Lemma 2.9 are routine,

Lemma 2.9. Let N be a fully-M-cyclic module and A be a submodule of N and s its a presented homomorphism.

(1) If M is an epimorphism image of M′ then N is also a fully-M′-cyclic module.

(2) If M is a fully-M′-cyclic module then N is also a fully-M′-cyclic module.

(3) A is an essential in N if and only if for any nonzero element t of HomR(M,N), Im(t) ∩ Im(s) � 0.
(4) A is uniform if and only if every t ∈ HomR(M,N) with 0 � Im(t) ⊂> Im(s) then Im(t) is an essential in Im(s).
(5) A is a direct summand of N if and only if there exists t ∈ HomR(M,N) such that Im(s) ∩ Im(t) = 0 and s + t is an

epimorphism.

3. Quasi-fully-cyclic module

In this part, we put S = EndR(M). We have known that for any right R-module M, the direct summand A of M is image
of a presented homomorphism which is an idempotent of S but not all. Which is case of the form submodules such that
every its presented homomorphisms are idempotents?. The following lemma is a clear answer:

Lemma 3.1. Let M be a quasi-fully-cyclic module. If A is a simple submodule of M with s its a presented homomorphism

then s is an idempotent of S = EndR(M).

Proof. Let s be a presented homomorphism of A. Because A is a simple submodule of M then s2(A) � 0. Therefore, we
have 0 � s2(M) ⊂> s(M) = A and s2(M) must be equal to A = s(M), showing that s is an idempotent of S . �

Right now, we suppose that M be a quasi-fully-cyclic module. If e2 = e, the one gets a direct sum decomposition
M = e(M) ⊕ (1 − e)(M). Conversely, if M = A ⊕ B then we can write 1 = πA + πB with πA (resp. πB) being a natural
projection map from M to A ( resp. B). πA ( resp. πB) is an idempotent element of S which is a presented homomorphism
of A ( resp. B) so that we can get the following corollary.

Corollary 3.2. In a quasi-fully-cyclic module, every simple submodule is a direct summand.

Theorem 3.3. Let M be a quasi-fully-cyclic module. M is a Noetherian (resp. Artinian) if and only if S is a right self

Noetherian (resp. Artinian) ring.

Proof. Suppose that M is Noetherian. We may easily analogize our self the proof of the case Artinian. Take any
ascending chain of the right ideals s1S ⊂> s2S ⊂> s3S ⊂> ...snS ⊂> ... of the ring S . Since siS ⊂> si+1S , si = si+1t

for some t ∈ S . We have si(M) ⊂> si+1(M) for all i ∈ N. The ascending chain of the submodules s1(M) ⊂> s2(M) ⊂>
s3(M) ⊂> ... ⊂> sn(M) ⊂> ... must be stationary in the noetherian module M so that sn0 (M) = sn0+ j(M) for some n0
and all j ≥ 0. This implies that for i ≥ n0 there is a permutation function t ∈ S such that si+1 = sit for some t ∈ S .
It follows that si+1S ⊂> siS , and hence si+1S ⊂> siS for all i ≥ n0. It says that the ascending chain of the right ideals
s1S ⊂> s2S ⊂> s3S ⊂> ...snS ⊂> ... must be exact stationary at n0. Conversely, if S is a right self noetherian ring.
Take any ascending chain of the submodules A1 ⊂> A2 ⊂> A3 ⊂> ... ⊂> An ⊂> ... of M. Since M is a quasi-fully-cyclic
module, for every i index, there is si ∈ S such that si(M) = Ai. Following that s1S ⊂> s2S ⊂> s3S ⊂> ...snS ⊂> ...
is a ascending chain of the right ideals of S . By assumption, this ascending chain must be stationary at some n0 index.
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Therefore, siS = S i+1S for all i ≥ no. This shows that si(M) = si+1(M) for all i ≥ n0. And hence the given ascending
chain of the submodules A1 ⊂> A2 ⊂> A3 ⊂> ... ⊂> An ⊂> ... is stationary at n0. The proof now is completed. �

Lemma 3.4. For each quasi-fully-cyclic-module, the following statements are equivalent:

(1) S is artinian;

(2) M is finitely co-generated;

(3) M is semisimple and finitely generated;

(4) M is semisimple and noetherian;

(5) M is the direct sum of a finite set of simple submodules.

Proof. We refer to the ([Anderson, 1974], Proposition 10.15) for the proving of 3 ⇐⇒ 4 ⇐⇒ 5. By the Theorem 3.3,
we know that S is artinian if and only if M is artinian. By the Corollary 2.6, we have Rad(M) = 0. The proof is now
completed by turning back to apply the ([Anderson, 1974], Proposition 10.15). �

Definition 3.5. Let M be a right R-module. M is called Hopfian (resp. co-Hopfian) if every surjective (resp. injective)
endomorphism of M is an automorphism.

Definition 3.6. Let M be a right R-module. M is called a Fitting module if every endomorphism f of M satisfies Fitting’s
lemma (i.e. there exists an integer n ≥ 1 such that M = Ker( f n) ⊕ Im( f n)).

Lemma 3.7. Let M be a quasi-fully-cyclic-module. If M is finitely cogenerated and Hopfian then for any s ∈ S there

exists an integer number n such that M = Ker(sn) ⊕ Im(sn).

Proof. Since M is both a quasi-fully-cyclic and finitely cogenerated and by the Lemma 3.4, we have M is artinian.
Applying the ([Anderson, 1974], Lemma 11.6) to the Hopfian module M, we have M is a Fitting module. This shows that
for any s ∈ S there exists an integer number n such that M = Ker(sn) ⊕ Im(sn). �

Theorem 3.8. Let M be a quasi-fully-cyclic module.

(1) For any s, u ∈ S , lS (Im(u)) + S s ⊂> lS (Im(u) ∩ Ker(s)).
(2) If N is a maximal submodule of M then lS (N) is a minimal left ideal of S .

Proof. (1) According to the relationship Im(u) ∩ Ker(s) ⊂> Im(u) follows that lS (Im(u)) ⊂> lS (Im(u) ∩ Ker(s)). Take
any ts ∈ S s and m ∈ Im(u) ∩ Ker(s). We have ts(m) = 0. It implies that ts ∈ lS (Im(u) ∩ Ker(s)), and hence S s ⊂>
lS (Im(u) ∩ Ker(s)). Therefore, lS (Im(u)) + S s ⊂> lS (Im(u) ∩ Ker(s)).

(2) Since M is quasi-fully-cyclic module, there exists s0 ∈ S such that s0(M) = N. Therefore, lS (N) = {t ∈ S |ts0 = 0}. It is
easy to see that lS (N) is one of the form of left ideals of S . Take any 0 � t ∈ lS (N) then t(N) = 0 saying that N ⊂> Ker(t).
By maximality of N, Ker(t) is N. Right now, if we take any k ∈ lS (N), k(N) = 0 shows that Ker(t) ⊂ Ker(k). It follows
that there is s ∈ S such that k = st, and hence k ∈ S t. Thus it is lS (N) ⊂ S t, and hence lS (N) = S t, showing minimality of
lS (N). �
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