On Fully-M-Cyclic Modules

Samruam Baupradist (Corresponding author) Department of Mathematics, Faculty of Science Chulalongkorn University, Bangkok 10330, Thailand Tel: 66-83-137-1119 E-mail: samruam.b@chula.ac.th

Suphawat Asawasamrit

Department of Mathematics, Faculty of Applied Science King Mongkut 's University of Technology North Bangkok Bangkok 10800, Thailand Tel: 66-81-346-6321 E-mail: suphawata@kmutnb.ac.th

Received: November 26, 2010 Accepted: December 7, 2010 doi:10.5539/jmr.v3n2p23

Abstract

The aim of this work was to generalize generator, M-generated modules in order to apply them to a wider class of rings and modules. We started by establishing a new concept which is called a fully-M-cyclic module. We defined this notation by using $Hom_R(M, *)$ operators which are helpful to contract the new construction and describe their properties. Finally, we could see the structure of fully-M-cyclic module and quasi-fully-cyclic module by the structure of M.

Keywords: Fully-M-cyclic modules, Quasi-fully-cyclic modules, Generator modules, Self-generator modules

1. Introduction

Throughout this paper, *R* is an associative ring with identity and M_R is the category of unitary right *R*-modules. Let *M* be a right *R*-module and $S = End_R(M)$, its endomorphism ring. A right *R*-module *N* is called *M*-generated if there exists an epimorphism $M^{(I)} \longrightarrow N$ for some index set *I*. If *I* is finite, then *N* is called *finitely M*-generated. In particular, *N* is called *M*-cyclic if it is isomorphic to M/L for some submodule *L* of *M*. Following Wisbauer [1991], $\sigma[M]$ denotes the full subcategory of Mod-*R*, whose objects are the submodules of *M*-generated modules. A module *M* is called a *self-generator* if it generates all of its submodules. *M* is called a *subgenerator* if it is a generator of $\sigma[M]$.

2. On Fully-M-cyclic module

In this part, a module *M* be given as a right *R*-module.

Definition 2.1. Let $N \in M_R$. *N* is called a fully-*M*-cyclic module if every submodule *A* of *N* is of the form s(M) for some *s* in $Hom_R(M, N)$.

Remark 2.2. Dealing directly from definition, the following statements are routine:
(1) Submodule of a fully-*M*-cyclic module is a fully-*M*-cyclic module.
(2) If *M* is simple module and *N* is fully-*M*-cyclic module, then any nonzero submodule of *N* is simple submodule.

Definition 2.3. The module $M \in M_R$ is called a quasi-fully-cyclic module if it is a fully-*M*-cyclic module.

Obviously, every semi-simple module is a quasi-fully-cyclic module.

Lemma 2.4. Let N be a fully-M-cyclic module. If M is a noetherian module then $Soc(M) \cong Soc(N)$.

Proof. Since *N* is a fully-*M*-cyclic module, a simple submodule *B* of *N* is of the form s(M) for some $s \in Hom_R(M, N)$. By the simply property of *B*, there is $b \in B$ such that B = bR. Suppose that s(a) = b for some $a \in M$. In noetherian module *aR*, there exists a simple submodule *A* containing *a*. It is easily to see that $A \cong B$. Conversely, if *A* is a simple submodule of *M* then s(A) = B is a simple submodule of *N* and then $A \cong B$ for all $s \in Hom_R(M, N)$. This shows that $Soc(M) \cong Soc(N)$.

Lemma 2.5. If N is a fully-M-cyclic module then N has no nonzero small submodule.

Proof. In a contrary, we suppose that there is a nonzero submodule A which is small in N. Let B be a submodule of N

such that A + B = N. Since N is a fully-M-cyclic module, there are $s, t \in Hom_R(M, N)$ such that s(M) = A, t(M) = B. Put f = s + t, then f is an epimorphism from M to N. Since A is a small submodule of N, t is an epimorphism and hence s is an epimorphism. It follows that A = N, a contradiction, showing that N has no nonzero small submodule.

Corollary 2.6. If N is a fully-M-cyclic module then Rad(N) = 0.

Definition 2.7. Let *N* be a fully-*M*-cyclic module. For a submodule *A* of *N* there exists a homomorphism $s \in Hom_R(M, N)$ such that s(M) = A. *s* is called a *presented homomorphism* of *A*.

Lemma 2.8. Let N be a fully-M-cyclic module. If s is a presented homomorphism of a submodule A of N then A is maximal if and only if every $t \in S = Hom_R(M, N)$ with Im(t) containing the image of presented homomorphism of A is an epimorphism.

Proof. Let $A = s(M) \subset_> Im(t)$ in N. Since A is a maximal submodule of N then Im(t) must be N, and hence t is an epimorphism. Conversely, let A = s(M) and $A \subset_> B$. Since N is a fully-M-cyclic module, there is an element $t \in Hom_R(M, N)$ such that B = t(M). By assumption, the non equality $s(M) \subset_> t(M)$ follows that t is an epimorphism, and hence B = N.

Leading directly from definition, the following properties in Lemma 2.9 are routine,

Lemma 2.9. Let N be a fully-M-cyclic module and A be a submodule of N and s its a presented homomorphism.

(1) If M is an epimorphism image of M' then N is also a fully-M'-cyclic module.

(2) If M is a fully-M'-cyclic module then N is also a fully-M'-cyclic module.

(3) A is an essential in N if and only if for any nonzero element t of $Hom_R(M, N)$, $Im(t) \cap Im(s) \neq 0$.

(4) A is uniform if and only if every $t \in Hom_{\mathbb{R}}(M, N)$ with $0 \neq Im(t) \subset_{>} Im(s)$ then Im(t) is an essential in Im(s).

(5) A is a direct summand of N if and only if there exists $t \in Hom_R(M, N)$ such that $Im(s) \cap Im(t) = 0$ and s + t is an epimorphism.

3. Quasi-fully-cyclic module

In this part, we put $S = End_R(M)$. We have known that for any right *R*-module *M*, the direct summand *A* of *M* is image of a presented homomorphism which is an idempotent of *S* but not all. Which is case of the form submodules such that every its presented homomorphisms are idempotents?. The following lemma is a clear answer:

Lemma 3.1. Let M be a quasi-fully-cyclic module. If A is a simple submodule of M with s its a presented homomorphism then s is an idempotent of $S = End_R(M)$.

Proof. Let *s* be a presented homomorphism of *A*. Because *A* is a simple submodule of *M* then $s^2(A) \neq 0$. Therefore, we have $0 \neq s^2(M) \subset_{>} s(M) = A$ and $s^2(M)$ must be equal to A = s(M), showing that *s* is an idempotent of *S*. \Box

Right now, we suppose that *M* be a quasi-fully-cyclic module. If $e^2 = e$, the one gets a direct sum decomposition $M = e(M) \oplus (1 - e)(M)$. Conversely, if $M = A \oplus B$ then we can write $1 = \pi_A + \pi_B$ with π_A (resp. π_B) being a natural projection map from *M* to *A* (resp. *B*). π_A (resp. π_B) is an idempotent element of *S* which is a presented homomorphism of *A* (resp. *B*) so that we can get the following corollary.

Corollary 3.2. In a quasi-fully-cyclic module, every simple submodule is a direct summand.

Theorem 3.3. Let *M* be a quasi-fully-cyclic module. *M* is a Noetherian (resp. Artinian) if and only if *S* is a right self Noetherian (resp. Artinian) ring.

Proof. Suppose that *M* is Noetherian. We may easily analogize our self the proof of the case Artinian. Take any ascending chain of the right ideals $s_1S \subset_> s_2S \subset_> s_3S \subset_> \dots s_nS \subset_> \dots$ of the ring *S*. Since $s_iS \subset_> s_{i+1}S$, $s_i = s_{i+1}t$ for some $t \in S$. We have $s_i(M) \subset_> s_{i+1}(M)$ for all $i \in N$. The ascending chain of the submodules $s_1(M) \subset_> s_2(M) \subset_> s_3(M) \subset_> \dots \subset_> s_n(M) \subset_> \dots$ must be stationary in the noetherian module *M* so that $s_{n_0}(M) = s_{n_0+j}(M)$ for some n_0 and all $j \ge 0$. This implies that for $i \ge n_0$ there is a permutation function $t \in S$ such that $s_{i+1} = s_i t$ for some $t \in S$. It follows that $s_{i+1}S \subset_> s_iS$, and hence $s_{i+1}S \subset_> s_iS$ for all $i \ge n_0$. It says that the ascending chain of the right ideals $s_1S \subset_> s_2S \subset_> s_3S \subset_> \dots s_nS \subset_> \dots$ must be exact stationary at n_0 . Conversely, if *S* is a right self noetherian ring. Take any ascending chain of the submodules $A_1 \subset_> A_2 \subset_> A_3 \subset_> \dots \subset_> A_n \subset_> \dots$ of *M*. Since *M* is a quasi-fully-cyclic module, for every *i* index, there is $s_i \in S$ such that $s_i(M) = A_i$. Following that $s_1S \subset_> s_2S \subset_> s_3S \subset_> \dots s_nS \subset_> \dots$ is a ascending chain of the right ideals of *S*. By assumption, this ascending chain must be stationary at some n_0 index.

Therefore, $s_i S = S_{i+1} S$ for all $i \ge n_o$. This shows that $s_i(M) = s_{i+1}(M)$ for all $i \ge n_o$. And hence the given ascending chain of the submodules $A_1 \subset A_2 \subset A_3 \subset \dots \subset A_n \subset \dots$ is stationary at n_o . The proof now is completed.

Lemma 3.4. For each quasi-fully-cyclic-module, the following statements are equivalent:

- (1) *S* is artinian;
- (2) *M* is finitely co-generated;
- (3) *M* is semisimple and finitely generated;
- (4) *M* is semisimple and noetherian;
- (5) *M* is the direct sum of a finite set of simple submodules.

Proof. We refer to the ([Anderson, 1974], Proposition 10.15) for the proving of $3 \iff 4 \iff 5$. By the Theorem 3.3, we know that *S* is artinian if and only if *M* is artinian. By the Corollary 2.6, we have Rad(M) = 0. The proof is now completed by turning back to apply the ([Anderson, 1974], Proposition 10.15).

Definition 3.5. Let M be a right R-module. M is called *Hopfian* (resp. *co-Hopfian*) if every surjective (resp. injective) endomorphism of M is an automorphism.

Definition 3.6. Let *M* be a right *R*-module. *M* is called a *Fitting* module if every endomorphism *f* of *M* satisfies Fitting's lemma (i.e. there exists an integer $n \ge 1$ such that $M = Ker(f^n) \oplus Im(f^n)$).

Lemma 3.7. Let *M* be a quasi-fully-cyclic-module. If *M* is finitely cogenerated and Hopfian then for any $s \in S$ there exists an integer number *n* such that $M = Ker(s^n) \oplus Im(s^n)$.

Proof. Since *M* is both a quasi-fully-cyclic and finitely cogenerated and by the Lemma 3.4, we have *M* is artinian. Applying the ([Anderson, 1974], Lemma 11.6) to the Hopfian module *M*, we have *M* is a Fitting module. This shows that for any $s \in S$ there exists an integer number n such that $M = Ker(s^n) \oplus Im(s^n)$.

Theorem 3.8. *Let M be a quasi-fully-cyclic module.*

(1) For any $s, u \in S$, $l_S(Im(u)) + S s \subset_> l_S(Im(u) \cap Ker(s))$.

(2) If N is a maximal submodule of M then $l_S(N)$ is a minimal left ideal of S.

Proof. (1) According to the relationship $Im(u) \cap Ker(s) \subset_> Im(u)$ follows that $l_S(Im(u)) \subset_> l_S(Im(u) \cap Ker(s))$. Take any $ts \in Ss$ and $m \in Im(u) \cap Ker(s)$. We have ts(m) = 0. It implies that $ts \in l_S(Im(u) \cap Ker(s))$, and hence $Ss \subset_> l_S(Im(u) \cap Ker(s))$. Therefore, $l_S(Im(u)) + Ss \subset_> l_S(Im(u) \cap Ker(s))$.

(2) Since *M* is quasi-fully-cyclic module, there exists $s_0 \in S$ such that $s_0(M) = N$. Therefore, $l_S(N) = \{t \in S | ts_0 = 0\}$. It is easy to see that $l_S(N)$ is one of the form of left ideals of *S*. Take any $0 \neq t \in l_S(N)$ then t(N) = 0 saying that $N \subset_> Ker(t)$. By maximality of *N*, Ker(t) is *N*. Right now, if we take any $k \in l_S(N)$, k(N) = 0 shows that $Ker(t) \subset Ker(k)$. It follows that there is $s \in S$ such that k = st, and hence $k \in St$. Thus it is $l_S(N) \subset St$, and hence $l_S(N) = St$, showing minimality of $l_S(N)$.

Acknowledgment

The authors would like to thank Dr. Hong Dinh Hai for his encouragement and suggestion. This paper is supported by King Mongkut's University of Technology North Bangkok, Thailand.

References

Anderson, F. W. & Fuller, K. R. (1974). *Rings and Categories of Modules*, Graduate Texts in Math. No.13, Springer-Verlag, New York, Heidelberg, Berlin.

Camillo, V. & Yousif, M. F. (1991). Continuous rings with ACC on annihilators. Cand. Math. Bull., 34, 642-644.

Dung, N. V., Huynh, D. V., Smith, P. F. & Wisbauer, R. (1994). *Extending Modules*. Research Notes in Mathematics Series, 313, Pitman London.

Faith, C. (1966). Rings with ascending chain condition on annihilators. Nagoya Math. J., 27, 179-191.

Jain, S. K., Singh, S., & Symonds, R. G. (1976). Rings whose proper cyclic modules are quasi-injective. *Pacific J. Math*, 67, 461-472.

Kasch, F. (1977). Moduln and Ringe, Stuttgart.

Mohamed, S. H. & Müller, B.J. (1990). *Continuous and Discrete Modules*. London Math. Soc. Lecture Note Series, No. 147, Cambridge Univ. Press.

Nicholson, W. K. & Yousif.M. F. (1995). Principally injective rings. Journal of Algebra, 174, 77-93.

Sanh, N. V., Shum, K. P., Dhompongsa, S. & Wongwai, S. (1999). On quasi-principally injective modules. *Algebra Colloquium*, 6:3, 269-276.

Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, London, Tokyo, e.a.