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Abstract

In this paper we study the stabilization of a non-uniform Timoshenko beam with indefinite damping terms under boundary
control and prove how the damping terms can affect the decay rate asymptotically. Using the theory of perturbed problems,
we obtain the stability and establish the spectrum determined growth condition for the problem. Moreover, when the two
damping terms are indefinite, we provide a condition to obtain the exponential stability.
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1. Introduction

We study the following variable coefficients Timoshenko beam with two indefinite damping terms under boundary feed-
back controls given by:

(S ) :



m(x) ∂
2ω
∂t2 −

∂
∂x

(
K(x)

(
∂ω
∂x − ϕ

))
+ m(x)b1(x) ∂ω

∂t = 0, 0 ≤ x ≤ 1, t > 0,

Im(x) ∂
2ϕ
∂t2 −

∂
∂x

(
EI(x)

(
∂ω
∂x

))
+ K(x)

(
ϕ − ∂ω

∂x

)
+ Im(x)b2(x) ∂ϕ

∂t = 0, 0 ≤ x ≤ 1, t > 0,
ω (t, 0) = ϕ (t, 0) = 0, t > 0
EI(1) ∂ϕ

∂x (t, 1) + αϕ(t, 1) + β ∂ϕ
∂t (t, 1) = 0, t > 0

K(1)
(
ϕ (t, 1) − ∂ω

∂x (t, 1)
)

= 0. t > 0

(1)

Here α and β are positive feedback constants, ω(t, x) is a lateral displacement and ϕ(t, x) is the bending angle of the beam
at position x and time t. The length of the beam is chosen to be unity. The coefficients m(x) > 0 and K(x) > 0 are
respectively the mass density and the shear stiffness of a cross section. Furthermore, Im(x) > 0 is the rotatory inertia,
EI(x) > 0 is the flexural rigidity, b1(x) and b2(x) are continuously differentiable damping terms that are allowed to change
signs in [0, 1].

Due to indefiniteness of functions b1(x) and b2(x) on interval [0, 1], we impose the following assumptions

∫ 1

0
b1(ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ > 0 (2)

and ∫ 1

0
b2(ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ > 0, (3)

where
(

K(x)
m(x)

) 1
2

and
(

EI(x)
Im(x)

) 1
2

are wave speeds. These assumptions, as we shall see, are necessary to ensure that the high

frequencies of the system (S ) are in left half complex plane. For convenience, we always assume that:

m(x), K(x), Im(x), EI(x) ∈ C2 [0, 1] . (4)
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The same problem was investigated in (Wang, 2004) with α = 0 and β = 0. In (Feng et al, 2001) the authors study a
constant coefficients Timoshenko beam system without damping with boundary controls and obtain Riesz basis property.
The boundary stabilization and boundary control of Timoshenko beam system have been investigated by many researchers
with different boundary dampers and controllers. We may cite the work of (Akian, 2022), (Feng et al, 2001), (Liping et
al, 2019), (Nasser, 2011), (Nasser, 2013), (Wang, 2004) and (Xu & Feng, 2002).

There are two commonly used approaches to study these perturbed systems.

The first is due to (Huang, 1985), which says that if the resolvent R(λ, A + B) is uniformly bounded along the imaginary
axis, then the operator A + B generates an exponentially stable semigroup on the energy space.

The second one is due to (Renardy, 1993) and (Xu & Feng, 2002) which says that the semigroup generated by the
operator A + B with bounded linear operator B will satisfy the spectrum determined growth condition if the operator A
(not necessarily skew-adjoint) satisfies the following property:

There exists N > 0 such that the spectrum σ(A) = {λn} of A is separated and simple when |λn| ≥ N and there is a sequence
of generalized eigenfunctions of A that forms a Riesz basis in the state Hilbert space.

There is a third approach, namely the Riesz basis approach, which shows that the generalized eigenfunctions of system
form a Riesz basis, and then deduces the spectrum determined growth condition and various stability results from the
eigenvalue distribution of the system, see (Wang & Yung, 2006), (Wang et al, 2004) and (Wang, 2004).

In this paper, we use the second approach because we need the spectrum determined growth condition of system to
prove the exponential stability. Eventually, asymptotic expressions of the eigenvalues of system (S ) are obtained and the
spectrum determined growth condition of system is deduced by second approach and stability is established.

The rest of the paper is organized as follows. In section 2, we convert system (S ) into an evolution equation in an
appropriate Hilbert space framework, and then prove that the system generates a C0−semigroup.
In order to solve the eigenvalue problem, we shall use a space-scaling transformation to derive an equivalent eigenvalue
boundary problem and this leads to much simpler asymptotic expansions. In section 3, we shall apply technique in (Wang,
2004) to the fundamental solutions of the eigenvalue boundary problem, and then use results to expand the characteristic
determinant in deducing the asymptotic behavior of the eigenvalues. Furthermore, in the last section, we also obtain
conditions for the exponential stability of the system for indefinite damping terms. We shall operate under the following
conditions: 0 < β < r2(1)EI(1) and β > r2(1)EI(1).

2. State Space Setup and Eigenvalue Problem

We start our investigation by formulating the problem on some state Hilbert space. Let

H = V1
E [0, 1] × L2

ρ [0, 1] × V1
E [0, 1] × L2

Im
[0, 1] , (5)

where
Vk

E [0, 1] =
{
f ∈ Hk [0, 1] : f (0) = 0

}
, k = 1, 2, (6)

and let Hk [0, 1] (k = 1, 2) be the usual Sobolev space of order k. The inner product inH is defined by

〈Y1,Y2〉H =

∫ 1

0
K(x)

(
ϕ1 − ω

′
1
) (
ϕ2 − ω

′
2

)
dx +

∫ 1

0
m(x)z1z2dx (7)

+

∫ 1

0
EIϕ′1ϕ

′
2dx +

∫ 1

0
Imψ1ψ2dx,+αϕ1(1)ϕ2(1)

where Yk = (ωk, zk, ϕk, ψk)τ with k = 1, 2, in which the superscript τ denotes transpose of a vector or a matrix, and the
notation ’ denotes the derivative with respect to x.

In view of system (S ), we define two linear operatorsA and B in Hilbert spaceH respectively by

D (A) =

(ω, z, ϕ, ψ)τ ∈ H

∣∣∣∣∣∣∣∣
ω, ϕ ∈ V2

E [0, 1] , z, ψ ∈ V1
E [0, 1]

EI(1)ϕ′(1) = −αϕ(1) − βω(1),
ϕ(1) = ω′(1)

 , (8)

A


ω
z
ϕ
ψ

 =


z

1
m (K (ω′ − ϕ))′

ψ
1
Im

(EIϕ′)′ − K
Im

(ϕ − ω′)

 , ∀

ω
z
ϕ
ψ

 ∈ D (A) , (9)
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and

B


ω
z
ϕ
ψ

 =


0
−b1z

0
−b2ψ

 , ∀

ω
z
ϕ
ψ

 ∈ D (B) = H . (10)

If we let Yt = (ωt, zt, ϕt, ψt)τ , then the system (S ) can be rewritten into an abstract evolution equation inH as following:
d
dt Y(t) = (A + B) Y(t), t > 0,
D (A + B) = D (A) ,

Y(0) = (ω (0) , ωt (0) , ϕ (0) , ϕt (0))τ .
(11)

We have the following results.

Lemma 1. The operatorA given by (8) and (9) is skew-adjoint operator. See (Wang, 2004, Chapter 9)

Theorem 1 LetA and B be given by (9) and (10) , thenA + B have compact resolvent and 0 ∈ ρ (A + B) .

Proof. We first prove that 0 ∈ ρ (A + B) , which is equivalent to show that (A + B)−1 exists.
for any G = (g1, g2, g3, g4)τ ∈ H , we must found a unique unique F = ( f1, f2, f3, f4)τ ∈ D (A + B) so that

(A + B) F = G, (12)
f2(x) = g1(x), (13)
f4(x) = g3(x), (14)(

K(x)
(
f ′1(x) − f3(x)

))′
= m(x) (b1(x) f2(x) + g2(x)) , (15)(

EI(x) f ′3(x)
)′
− K(x)

(
f3(x) − f ′1(x)

)
= Im(x) (b2(x) f4(x) + g4(x)) . (16)

Using (13) and (14) one obtains f1 and f3. From (15), (16) and the boundary conditions f ′1(1) − f3(1) = 0, we get

−
(
f ′1(x) − f3(x)

)
=

1
K(x)

∫ 1

x
m(s) (b1(s)g1(s) + g2(s)) ds. (17)

Substituting this into (13) and using (14), (16), (17) and the boundary condition f ′3(1) = −α f3(1) − β f4(1), we get

−α f3(1) − β f4(1) − EI(x) f ′3(x) =

∫ 1

x
Im(r) (b2(r)g3(r) + g4(r)) dr

+

∫ 1

x

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdr,

−α f3(1) − EI(x) f ′3(x) =

∫ 1

x
Im(r) (b2(r)g3(r) + g4(r)) dr

+

∫ 1

x

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdr + βg3(1),

−α f3(1)
EI(x)

− f ′3(x) =
1

EI(x)

∫ 1

x
Im(r) (b2(r)g3(r) + g4(r)) dr

+
1

EI(x)

∫ 1

x

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdr

+
β

EI(x)
g3(1)

−α f3(1)
∫ x

0

1
EI(θ)

dθ −
∫ 1

0
f ′3(θ)dθ =

∫ x

0

1
EI(θ)

∫ 1

θ

Im(r) (b2(r)g3(r) + g4(r)) drdθ

+

∫ x

0

1
EI(θ)

∫ 1

θ

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdrdθ

+

∫ x

0

β

EI(θ)
g3(1)dθ.
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Using the boundary conditions f3(0) = 0 we obtain:

−α f3(1)
∫ x

0

1
EI(θ)

dθ − f3(x) =

∫ x

0

1
EI(θ)

∫ 1

θ

Im(r) (b2(r)g3(r) + g4(r)) drdθ

+

∫ x

0

1
EI(θ)

∫ 1

θ

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdrdθ

+

∫ x

0

β

EI(θ)
g3(1)dθ.

For x = 1, we get

−α f3(1)
∫ 1

0

1
EI(θ)

dθ − f3(1) = χ

where

χ =

∫ 1

0

1
EI(θ)

∫ 1

θ

Im(r) (b2(r)g3(r) + g4(r)) drdθ

+

∫ 1

0

1
EI(θ)

∫ 1

θ

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdrdθ

+

∫ 1

0

β

EI(θ)
g3(1)dθ

hence

f3(1) = −
χ

1 + α
∫ 1

0
dθ

EI(θ)

.

Thus we obtain:

∀ 0 < x < 1 f3(x) = −

∫ x

0

1
EI(θ)

∫ 1

θ

Im(r) (b2(r)g3(r) + g4(r)) drdθ

−

∫ x

0

1
EI(θ)

∫ 1

θ

∫ 1

r
m(s) (b1(s)g1(s) + g2(s)) dsdrdθ

−

∫ x

0

β

EI(θ)
g3(1)dθ − α f3(1)

∫ x

0

1
EI(θ)

dθ.

Moreover f1 can also be obtained by substituting the above expression of f3(x) into (17) and using the boundary condition
f1(0) = 0 to yield

f1(x) = −

∫ x

0

1
K(t)

∫ 1

t
m(s) (b1(s)g1(s) + g2(s)) dsdt +

∫ x

0
f3(t)dt.

Thus (A+B)−1 exists and since F = ( f1, f2, f3, f4)τ ∈ D (A + B) so (A+B)−1 is compact onH according to the Sobolev’s
Embedding Theorem.

Theorem 2 Let A and B be given by (9) and (10), then A generates a C0-semigroup on H . Furthermore, since B is
bounded,A + B also generates a C0-group onH .

Proof. See (Wang, 2004, Chapter 9, p. 167) for the detail of the demonstration.

Since the spectrum determined growth condition will later be shown to be true for A + B, the stability of (S ) and (11)
hinge on the behavior of the eigenvalues ofA + B, and we are now in a position to study the eigenvalues problem.

Let λ ∈ σ (A + B) and Yλ = (ω, z, ϕ, ψ)τ , be an eigenfunction ofA + B corresponding to λ.

Then (A + B) Yλ = λYλ implies

z = λω, ψ = λϕ

and that ω and ϕ must satisfy the following characteristic equations{
m (x) λ2ω − (K (x)ω′)′ + (K(x)ϕ)′ + m(x)b1(x)λω = 0, 0 ≤ x ≤ 1
Im(x)λ2ϕ − (EI (x)ϕ′)′ − K(x) (ω′ − ϕ) + Im (x) b2 (x) λϕ = 0, 0 ≤ x ≤ 1 (18)
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with boundary conditions {
ω (0) = 0, ϕ (0) = 0,
ϕ′ (1) = 0, ϕ (1) − ω′ (1) = 0. (19)

For convenience, we let 
a1 (x) =

K′(x)
K(x) , r1(x) =

√
m(x)
K(x) ,

a2 (x) =
EI′(x)
EI(x) , a3 (x) =

K(x)
EI(x) , r2(x) =

√
Im(x)
EI(x) .

(20)

which has been stated in (Wang, 2004). Here 1
r1(x) and 1

r2(x) are usually called wave of the system (S ) and not equal in
general. Now (18) becomes {

ω′′ − ϕ′ + a1(ω′ − ϕ) − b1r2
1λω − r2

1λ
2ω = 0, 0 < x < 1,

ϕ′′ − a2ϕ
′ + a3(ω′ − ϕ) − b2r2

2λϕ − r2
2λ

2ϕ = 0, 0 < x < 1. (21)

And if we let
ω1 (x) = ω (x) , ω2 (x) = ω′ (x) , ϕ1 (x) = ϕ (x) , ϕ2 (x) = ϕ′ (x) , (22)

Φ (x) = (ω1 (x) , ω2 (x) , ϕ1 (x) , ϕ2 (x))τ , (23)

then (22) becomes
T D(x, λ)Φ (x) = 0, (24)

where

T D(x, λ)Φ (x) = Φ′ (x) + A(x, λ)Φ (x)

= Φ′ (x) + A0(x)Φ (x) − λA1(x)Φ (x) − λ2A2(x)Φ (x) , (25)

A(x, λ) = A0(x)Φ (x) − λA1(x)Φ (x) − λ2A2(x)Φ (x) (26)

and A0(x), A1(x) and A2(x) are three matrix functions see (Wang, 2004)

A0(x) =


0 −1 0 0
0 a1 (x) −a1 (x) −1
0 0 0 −1
0 a3 (x) −a3 (x) a2 (x)

 ,

A1(x) =


0 0 0 0

b1 (x) r2
1 (x) 0 0 0

0 0 0 0
0 0 b2 (x) r2

2 (x) 0

 ,

A2(x) =


0 0 0 0

r2
1 (x) 0 0 0
0 0 0 0
0 0 r2

2 (x) 0

 .
Under the same procedure, the boundary conditions (19) can be written as follows:

T RΦ (x) = W0Φ (0) + W1Φ (1) = 0, (27)

with

W0 (λ) =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , W1 (λ) =


0 0 0 0
0 0 0 0
0 0 α+λβ

EI(1) 1
0 −1 1 0

 . (28)

We get the following result:

Theorem 3 The characteristics equations (18) together with boundary conditions (19) are equivalent to the first order
linear system (25) with boundary conditions (27) .

Proof. See (Wang, 2004, Chapter 2, pp. 24-25)
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3. Asymptotic Behavior of Eigenfrequencies of System (S)

We want to find an asymptotic expression for eigenvalues of A + B. It is accomplished by expanding the characteristic
determinant with asymptotic expressions of the fundamental matrix solutions of (25). A crucial step is an invertible matrix
transformation which is very powerful in the sense that it can be applied to a lot other coupled problems as well, see (Wang
& Yung, 2006), (Wang, 2004) and (Xu & Feng, 2002)

Theorem 4 For λ ∈ C with |λ| large enough. the first order linear system (25) has fundamental matrix of solutions given
by:

Φ̂ (., λ) = P (., λ) Ψ̂ (., λ) , (29)

where P (., λ) is invertible matrix defined by

P(x, λ) =


r1 (x) λ r1 (x) λ 0 0
r2

1 (x) λ2 −r2
1 (x) λ2 0 0

0 0 r2 (x) λ r2 (x) λ
0 0 r2

2 (x) λ2 −r2
2 (x) λ2

 , (30)

and Ψ̂ (., λ) can be given by:
Ψ̂ (x, λ) =

(
Ψ̂0 (x) + O

(
λ−1

))
E (x, λ) , (31)

with

E (x, λ) =


exp (λR1 (x)) 0 0 0

0 exp (−λR1 (x)) 0 0
0 0 exp (λR2 (x)) 0
0 0 0 exp (−λR2 (x))

 (32)

R1 (x) =

∫ x

0
r1 (ξ) dξ, R2 (x) =

∫ x

0
r2 (ξ) dξ, (33)

Ψ̂0 (x) = diag (C1 (x) ,C2 (x) ,C3 (x) ,C4 (x)) , (34)
c1 (x) =

∫ x
0 (a1 (ξ) − b1 (ξ) r1 (ξ) + 3a4 (ξ)) dξ,

c2 (x) =
∫ x

0 (a1 (ξ) + b1 (ξ) r1 (ξ) + 3a4 (ξ)) dξ,
c3 (x) =

∫ x
0 (a2 (ξ) − b2 (ξ) r2 (ξ) + 3a5 (ξ)) dξ,

c4 (x) =
∫ x

0 (a2 (ξ) + b2 (ξ) r2 (ξ) + 3a5 (ξ)) dξ,


C1 (x) = exp

(
− 1

2 c1 (x)
)
,

C2 (x) = exp
(
− 1

2 c2 (x)
)
,

C3 (x) = exp
(
− 1

2 c3 (x)
)
,

C4 (x) = exp
(
− 1

2 c4 (x)
)
.

(35)

Proof. for the details of the proof, See (Wang, 2004, Chapter 2, pp. 24-32).

Theorem 5 Let ∆ (λ) the characteristic determinant of the first order linear system (25) with boundary conditions expres-
sion of (27) , then an asymptotic of ∆ (λ) is given by

∆ (λ) = µλ6
(
C2 (1) [1]1 e−λR1(1) + C1 (1) [1]1 eλR1(1)

)
(36)

×

(
C3 (1) [1]1

(
β

EI(1)r2(1)
+ 1

)
eλR2(1) + C4 (1) [1]1

(
−β

EI(1)r2(1)
+ 1

)
e−λR2(1)

)
,

where
µ = −r1 (0) r2 (0) r2

1 (1) r2
2 (1) . (37)

Thus, (25) and (27) are strongly regular, and so asymptotically, the eigenvalues of determinant characteristic ∆ (λ) (36)
are simple and separated.

Proof. The eigenvalues of the first order linear system (25) and (27) are given by the zeros of the characteristic determinant

∆ (λ) = det
(
T RΦ (., λ)

)
, λ ∈ C, (38)

where T R is given by (27) and Φ (., λ) is any fundamental matrix solutions of the equation T D (x, λ) Φ (x) = 0. So, by sub-
stituting (29)-(35) into (38) together with the boundary conditions (27) , we can obtain the asymptotic eigenfrequencies.
Note that:

T RΦ (x, λ) = W0P (0, λ) Ψ (0, λ) + W1P (1, λ) Ψ (1, λ) . (39)
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A computation using (28) (30) give us

W0P (0, λ) =


r1 (0) λ r1 (0) λ 0 0

0 0 r2 (0) λ r2 (0) λ
0 0 0 0
0 0 0 0

 ,

W1P (1, λ) =


0 0 0 0
0 0 0 0
0 0 r2(1)λ(α+λβ)

EI(1) + r2
2 (1) λ2 r2(1)λ(α+λβ)

EI(1) − r2
2 (1) λ2

−r2
1 (1) λ2 r2

1 (1) λ2 r2 (1) λ r2 (1) λ

 .
Denote

[a]1 = a + O
(
λ−1

)
.

Since, Ψ̂0 (0) = I and E(0, λ) = I, so a direct computation gives us

W1P (1, λ) Ψ (1, λ) =


0 0
0 0

λ2 [0]1 eλR1(1) λ2 [0]1 e−λR1(1)

−r2
1 (1) C1 (1) [1]1 λ

2eλR1(1) r2
1 (1) C2 (1) [1]1 λ

2e−λR1(1)

0 0
0 0(

βr2(1)
EI(1) + r2

2 (1)
)
C3 (1) λ2 [1]1 eλR2(1)

(
βr2(1)
EI(1) − r2

2 (1)
)
C4 (1) λ2 [1]1 e−λR2(1)

r2 (1) C3 (1) λ [1]1 eλR2(1) r2 (1) C4 (1) λ [1]1 e−λR2(1)

 ,

W0P (0, λ) Ψ (0, λ) =


r1 (0) λ [0]1 r1 (0) λ [0]1 λ [0]1 λ [0]1
λ [0]1 λ [0]1 r2 (0) λ [0]1 r2 (0) λ [0]1

0 0 0 0
0 0 0 0

 ,
and hence,

T RΦ (., λ) =


r1 (0) λ [0]1 r1 (0) λ [0]1
λ [0]1 λ [0]1

λ2 [0]1 eλR1(1) λ2 [0]1 e−λR1(1)

−r2
1 (1) C1 (1) [1]1 λ

2eλR1(1) r2
1 (1) C2 (1) [1]1 λ

2e−λR1(1)

λ [0]1 λ [0]1
r2 (0) λ [0]1 r2 (0) λ [0]1(

βr2(1)
EI(1) + r2

2 (1)
)
C3 (1) λ2 [1]1 eλR2(1)

(
βr2(1)
EI(1) − r2

2 (1)
)
C4 (1) λ2 [1]1 e−λR2(1)

r2 (1) C3 (1) λ [1]1 eλR2(1) r2 (1) C4 (1) λ [1]1 e−λR2(1)

 .
thus, we get

∆ (λ) = det
(
T RΦ (., λ)

)
= λ6 det


r1 (0) [0]1 r1 (0) [0]1

[0]1 [0]1
[0]1 eλR1(1) [0]1 e−λR1(1)

−r2
1 (1) C1 (1) [1]1 eλR1(1) r2

1 (1) C2 (1) [1]1 e−λR1(1)

[0]1 [0]1
r2 (0) [0]1 r2 (0) [0]1(

βr2(1)
EI(1) + r2

2 (1)
)
C3 (1) [1]1 eλR2(1)

(
βr2(1)
EI(1) − r2

2 (1)
)
C4 (1) [1]1 e−λR2(1)

r2 (1) C3 (1) [1]1 eλR2(1) r2 (1) C4 (1) [1]1 e−λR2(1)

 .
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and so,

∆ (λ) = λ6 det
[

r1 (0) [0]1 r1 (0) [0]1
−r2

1 (1) C1 (1) [1]1 eλR1(1) r2
1 (1) C2 (1) [1]1 e−λR1(1)

]
× det

[
r2 (0) [0]1 r2 (0) [0]1(

βr2(1)
EI(1) + r2

2 (1)
)
C3 (1) [1]1 eλR2(1)

(
βr2(1)
EI(1) − r2

2 (1)
)
C4 (1) [1]1 e−λR2(1)

]
= −λ6r1 (0) r2 (0) r2

1 (1) r2
2 (1)

(
C2 (1) [1]1 e−λR1(1) + C1 (1) [1]1 eλR1(1)

)
×

(
C3 (1) [1]1

(
β

EI(1)r2(1)
+ 1

)
eλR2(1) + C4 (1) [1]1

(
−β

EI(1)r2(1)
+ 1

)
e−λR2(1)

)
.

Thus, (25) and (27) are strongly regular, and so asymptotically, the eigenvalues of determinant characteristic ∆ (λ) (36)
are simple and separated.

We have the following result on the spectrum ofA + B.

Theorem 6 Let A + B be given by (8)-(10), then each λ ∈ σ (A + B) is algebraically simple when |λ| is large enough,
and has asymptotic expression given by

λ1k =
1

2R1 (1)

−∫ 1

0
b1 (ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ + (1 + 2k) πi

 + O
(
k−1

)
, |k| ≥ N1, k ∈ Z, (40)

where, for 0 < β < r2(1)EI(1)

λ2k =
γ1

2R2 (1)

−∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ + (1 + 2k) πi

 + O
(
k−1

)
, |k| ≥ N2, k ∈ Z, , (41)

and for β > r2(1)EI(1)

λ2k =
γ2

2R2 (1)

−∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ + (2k) πi

 + O
(
k−1

)
, |k| ≥ N3, k ∈ Z, , (42)

where N1, N2 and N3 are large enough positive integers, R1 (1) and R2 (1) of (33), given by

R1 (1) =

∫ 1

0
r1 (ξ) dξ =

∫ 1

0

(
m (ξ)
K (ξ)

) 1
2

dξ

or

R2 (1) =

∫ 1

0
r2 (ξ) dξ =

∫ 1

0

(
Im (ξ)
EI (ξ)

) 1
2

dξ.

Furthermore, the assumptions (2) and (3) respectively imply that

Reλ1k → −
1

2R1 (1)

∫ 1

0
b1 (ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ < 0, when k → ∞, (43)

and for 0 < β < r2(1)EI(1) and β > r2(1)EI(1):

Reλ2k → −
γi

2R2 (1)

∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ < 0, when k → ∞ f or i = 1; 2. (44)

Proof. If the characteristic determinant ∆ (λ) = 0, we get(
C2 (1) [1]1 e−λR1(1) + C1 (1) [1]1 eλR1(1)

)
×(

C3 (1) [1]1

(
β

EI(1)r2(1)
+ 1

)
eλR2(1) + C4 (1) [1]1

(
−β

EI(1)r2(1)
+ 1

)
e−λR2(1)

)
= 0

which is equivalent to
C2 (1) [1]1 e−λR1(1) + C1 (1) [1]1 eλR1(1) = 0 (45)
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where

C3 (1) [1]1

(
β

EI(1)r2(1)
+ 1

)
eλR2(1) + C4 (1) [1]1

(
−β

EI(1)r2(1)
+ 1

)
e−λR2(1) = 0. (46)

Equation (45), can be written as
C2 (1) e−λR1(1) + C1 (1) eλR1(1) + O

(
λ−1

)
= 0. (47)

By Rouch?’s Theorem, the roots of (47) can be estimated by those of

C2 (1) e−λR1(1) + C1 (1) eλR1(1) = 0,

which, using (35) , yields

e2λR1(1) = −
C2 (1)
C1 (1)

= − exp
(
−

1
2

(c2 (x) − c1 (x))
)

which roots are given by

λ1k =
1

2R1 (1)

(
−

1
2

(c2 (x) − c1 (x)) + πi + 2kπi
)
, k ∈ Z, (48)

with c1 (x) , c2 (x) defined by (35) . Thus, the roots of (47) satisfy

λ1k =
1

2R1 (1)

(
−

1
2

(c2 (x) − c1 (x)) + (1 + 2k) πi
)

+ O
(
k−1

)
, |k| ≥ N1, k ∈ Z, (49)

where N1 is a large enough positive integer. We can repeat the same arguments for equation (46) and conclude for
eigenvalues λ2k

First case: 0 < β < r2(1)EI(1)

λ2k = −
γ1

2R2 (1)

(
−

1
2

(c4 (x) − c3 (x)) + (1 + 2k) πi
)

+ O
(
k−1

)
, |k| ≥ N2, k ∈ Z, (50)

for

γ1 =
r2(1)EI(1) − β
r2(1)EI(1) + β

> 0

Second case: β > r2(1)EI(1)

λ2k =
γ2

2R2 (1)

(
−

1
2

(c4 (x) − c3 (x)) + (2k) πi
)

+ O
(
k−1

)
, |k| ≥ N3, k ∈ Z, (51)

for

γ2 =
−r2(1)EI(1) + β

r2(1)EI(1) + β
> 0

with N2 and N3 are large enough positive integers c3 (x) , c4 (x) defined by (35).

We can further simplify (49) and (50) by using (35) and (18) to conclude that

c2 (1) − c1 (1) =

∫ 1

0
(a1 (ξ) + b1 (ξ) r1 (ξ) + 3a4 (ξ)) dξ

−

∫ 1

0
(a1 (ξ) − b1 (ξ) r1 (ξ) + 3a4 (ξ)) dξ

= 2
∫ 1

0
b1 (ξ) r1 (ξ) dξ

= 2
∫ 1

0
b1 (ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ

and

c4 (1) − c3 (1) = 2
∫ 1

0
b2 (ξ) r2 (ξ) dξ = 2

∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ.
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Furthermore, the assumptions (2) and (3) respectively imply that

Reλ1k → −
1

2R1 (1)

∫ 1

0
b1 (ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ < 0, when k → ∞, (52)

and for 0 < β < r2(1)EI(1) and β > r2(1)EI(1):

Reλ2k → −
γi

2R2 (1)

∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ < 0, when k → ∞ f or i = 1; 2. (53)

4. Riesz Basis Property and the Exponential Stability of the System (S ) Under the Conditions 0 < β < r2(1)EI(1)
and β > r2(1)EI(1)

We now ready to investigate Riesz basis property and the exponential stability of the system (11) under the conditions
0 < β < r2(1)EI(1) and β > r2(1)EI(1).

Theorem 7 Let A + B given by (8)-(10) . Then generalized eigenfunctions of the operator A + B of system (11) are
complete inH .

Proof. See (Wang, 2004, Chapter 9, p. 174) for the details of the proof.

Theorem 8 The system (11) is Riesz-spectral system (in the sense that eigenfunctions form a Riesz basis in H) and so it
satisfies the spectrum determined growth condition.

Proof. See (Wang, 2004, Chapter 9, p. 174) for the details of the proof.

We now ready to discuss the stability of the Timoshenko beam system (S ). Under assumptions (2) and (3), the Theorems
9.3.3 and 9.4.2 imply that for each ε > 0 there are at most finitely many eigenvalues lying outside of two strips:

−
1

2R1 (1)

∫ 1

0
b1 (ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ − ε ≤ Reλ ≤ −
1

2R1 (1)

∫ 1

0
b1 (ξ)

(
m (ξ)
K (ξ)

) 1
2

dξ + ε

and for i = 1; 2

−
γi

2R2 (1)

∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ − ξ ≤ Reλ ≤ −
γi

2R2 (1)

∫ 1

0
b2 (ξ)

(
Im (ξ)
EI (ξ)

) 1
2

dξ + ξ.

We consider the important following result:

Theorem 9 Suppose that assumptions (8)-(20) hold.
1. If both b1(x) and b2(x) are non-negative and exist intervals I1 and I2 in [0; 1] such that:

b1(x)|I1 > 0 and b2(x)|I2 > 0

then the system (11) is exponentially stable.
2. If b1(x) and b2(x) are indefinite, then the system (11) is exponentially stable when conditions:

max
x∈[0,1]

{
b−1 (x), b−2 (x)

}
<

∣∣∣s (
A + B+)∣∣∣ , (54)

is satisfied.

Proof. We use the same reasoning in (Wang, 2004, Chapter 9, pp. 174-176) and (Xu & Feng, 2002) with

0 = Re 〈(A + B) Yλ,Yλ〉 = − |λ|2
∫ 1

0

(
m(x)b1(x) |ω|2 + Im(x)b2(x) |ϕ|2

)
dx.

and Yλ = (ω, λω, ϕ, λϕ)τ ∈ A + B and λ an eigenvalue ofA + B.

5. Conclusion

The boundary feedback stabilization problem of a hybrid system has been studied extensively in the last decade. Many
important results have been obtained. Among them, most of studies in the literatures are concerned with Euler-Bernoulli
and Rayleigh beams; there are a few results for Timoshenko beams, we may cite the work of Akian (2022), (Feng et al,
2001), (Liping et al, 2019), (Nasser, 2011), (Nasser, 2013), (Wang, 2004, Chapter 9) and (Xu & Feng, 2002), which are
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mainly focused on the stability of the closed-loop system. Though it is important to obtain the exponential stability of
the system, it is also very interesting to study the rate of the exponential decay of the system. In our work, we obtain the
exponential stability of the system under conditions.
In perspective, we can take an interest in condition β = r2(1)EI(1) by carrying out an asymptotic expansion to order 2 of
the eigenvalues in order to study the exponential stability of the system.
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