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Abstract

The finite volume element method for approximating a two-dimensional time fractional coupled Burgers’ equation is
presented. The linear finite volume element method is used for spatial discretization and the upwind technique is used for
the nonlinear convective term to get the semi-discrete scheme. Further, the time-fractional derivative term is approximated
by using L1 formula and the nonlinear convection term is treated by linearized upwind technique to get the fully discrete
scheme. We prove that the semi-discrete scheme is convergent with one-order accuracy in space and the fully discrete
scheme is convergent with one-order accuracy both in time and space in L2-norm. Numerical experiments are presented
finally to validate the theoretical analysis.

Keywords: two-dimensional time fractional coupled Burgers’ equation, finite volume element method, upwind technique,
convergence

1. Introduction

In this paper, we consider the following two-dimensional time fractional coupled Burgers’ equation:

C
0D

α
t u + (u · ∇)u − ν∆u = f(x, t), (x, t) ∈ Ω × (0,T ], (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u(x, t)|∂Ω = η(x, t), (x, t) ∈ Ω × (0,T ], (1.3)

where Ω ⊂ R2 is a bounded domain with boundary ∂Ω, ν > 0 is the viscosity. Symbols ∆, ∇ denote the Laplacian and
gradient operators, respectively. u = u(x, t) = (u(x, t), v(x, t)) is the unknown vector function which represents the velocity
of the fluid. The Caputo fractional derivative C

0D
α
t is defined as

C
0D

α
t u(x, t) =

1
Γ(1 − α)

∫ t

0

∂u(x, s)
∂s

1
(t − s)α

ds, 0 < α < 1.

Fractional differential operators, different from integer differential operators, are non-local and very suitable for describing
materials with memory and heredity in the real world. Fractional differential equations are widely used in the fields
of anomalous diffusion, viscoelastic mechanics, fluid mechanics, boundary layer effect of pipeline, signal recognition
processing and system identification (Baleanu et al., 2012; DElia, 2020; Li, Changpin and Chen, An, 2018) etc.

Burgers’ equation is the simplest nonlinear time dependent partial differential equation which was first raised by Bateman
in (Bateman, Harry, 1915) when he mentioned it as worthy of study and gave a special solution. It exists in plenty areas of
applied mathematics, such as acoustic waves, heat conduction and modelling of dynamics (Caldwell, J et al. 1981; Cole,
Julian D, 1951). Fractional Burgers’ equation can be used to describe the physical processes of unidirectional propagation
of weakly nonlinear acoustic waves through a gas-filled pipe. The fractional derivative results from the cumulative effect
of the wall friction through the boundary layer (Sugimoto, Nobumasa, 1991; Inc, Mustafa, 2008). Therefore, fractional
Burgers’ equations have been taken more and more seriously attention and numerical methods have been developed to
provide numerical solutions for them. For example, Wang (Wang, Qi, 2006) discussed the adomian decomposition method
for time and space fractional Burgers’ equations. Esen and Tasbozan (Esen et al., 2015) proposed quadratic B-spline
Galerkin method for one-dimensional time fractional Burgers’ equation. Li et al. (Li, Dongfang et al. 2016) employed a
linear implicit finite difference scheme for solving the generalized time fractional Burgers’ equation. Cao et al. (Cao, Wen
et al., 2017) presented discontinuous Galerkin method to solve a two-dimensional time fractional Burgers’ equation with
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high and low Reynolds numbers on quasi-uniform triangular mesh. Wang et al. (Wang, Haifeng et al., 2021) proposed
the weak Galerkin finite element method for a class of one-dimensional time fractional generalized Burgers’ equation.
Hussein and Ahmed Jabbar (Hussein, Ahmed Jabbar, 2020) proposed a weak Galerkin finite element method for solving
two-dimensional time fractional coupled Burgers’ equations on uniform triangular mesh. Qiao and Tang (Qiao, Leijie et
al., 2022) introduce an accurate, robust, and efficient finite difference scheme with graded meshes for the time-fractional
Burgers’ equation. Zhang and Feng (Zhang, Yadong et al., 2023) present a local projection stabilization virtual element
method for the time-fractional Burgers’ equation with high Reynolds numbers. Kashif and Dwivedi (Mohd, Kashif etal.,
2022) use non-standard finite difference scheme and Fibonacci collocation method for fractional order Burgers equation.
AA AL-saedi and J Rashidinia (AA, AL-saedi etal., 2023) present a numerical scheme based on the Galerkin finite
element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution
of the time-fractional Burgers equation.

The finite volume element method (FVEM) (Li, Ronghua et al., 2000; Cai, Zhiqiang et al., 1991; Cai, Zhiqiang, 1990;
Ewing, Richard et al. 2000) is an important numerical method for solving partial differential equations. In some literature,
FVEM is also called the control volume method, the covolume method, and the first-order generalized difference method.
FVEM has been widely applied due to its various important features. For example, the grid is flexible and it inherits
some physical conservation laws of the original problems locally which are very preferable in practical applications.
And the computational effort is greater than in finite difference methods and less than finite element methods, while the
accuracy is higher than finite difference methods and nearly the same as finite element methods. Liang (Liang, D, 1990;
Liang, D, 1991) combined the upwind technique and the FVEM to solve the linear convection-dominated problems. Yang
(Yang, Qing, 2013) used the upwind finite volume element method for two-dimensional integer-order Burgers’ equation.
The nonlinear convective term was dealt with upwind technique in order to avoid numerical oscillation. For the study
of problem (1.1)-(1.3), there are still gaps in finite volume element method. In this paper, we will consider upwind
finite volume element method for the approximation of the two-dimensional time coupled fractional Burgers’ equation
(1.1). The upwind approximation is applied to handle the nonlinear convection term in view of its advantage to solve
the convection-dominated problems. The semi-discrete and fully discrete schemes are defined. The linear finite volume
element format is used for spatial discretization, and the upwind technique is used for the nonlinear convective term to get
the semi-discrete scheme. Then L1 formula is used to approximate the time-fractional derivative term, and the nonlinear
convection term is treated by linearized upwind technique to get the fully discrete scheme. We prove that the semi-discrete
scheme is convergent with one-order accuracy in space in L2-norm and the fully discrete scheme is convergent with one-
order accuracy both in time and space in L2-norm. Some numerical experiments show that our method is effective for
time fractional Burgers’ equation.

The outline of this paper is as follows. In Section 2, we build the upwind finite volume element semi-discrete scheme and
fully discrete scheme for the coupled fractional Burgers’ equation, respectively. In section 3, we derive the L2 norm error
estimates for the semi-discrete scheme and the fully discrete scheme, respectively. In section 4, numerical experiments
are presented to show the efficiency of proposed method and confirm our theoretical analysis.

2. The Approximation Schemes

In this section, we introduce some important function spaces and give the semi-discrete scheme and the fully discrete
scheme for problem (1.1)-(1.3).

Set X = (H1
0(Ω))2, Y = (L2(Ω))2. Let Th = {K} be a quasi-uniform triangulation of domain Ω so that Ω̄ =

⋃
K∈Th

{K̄} and Nh

is the set of all nodal points of Th, where h = max hK , hK is the diameter of element K. Associated with the triangulation
Th, we introduce the velocity approximation space:

Xh =
{
vh ∈ X : vh|K ∈ (P1(K))2 , K ∈ Th

}
,

where P1(K) is the set of linear polynomials on element K.

In order to define the finite volume element method, we need a dual partition associated with the primal partition Th.
We construct the barycenter dual partition T ∗h by connecting the barycenter to the midpoints of edges of each K ∈ Th by
straight lines. Thus, for each nodal point P in Th, there exists a polygonal surrounding it, which is called the dual element
or the control volume at point P and denoted by K∗P. So we have T ∗h = {K∗P, P ∈ Nh}. The test function space is defined as

Vh =

{
vh ∈

(
L2(Ω)

)2
: vh|K∗p ∈ P0

(
K∗P

)
, ∀P ∈ Nh, vh|K∗p = 0, ∀P ∈ ∂Ω

}
,

where P0(K∗P) is the constant set on element K∗P. Clearly, the dimensions of Xh and Vh are the same.

Introduce the interpolation operators Rh: (C(Ω̄))2 → Xh and γ: Xh → Vh, respectively. Assuming that u ∈ (H2(Ω))2, we
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can easily get the following interpolation estimates:

‖u − Rhu‖s 6 h2−s‖u‖2, s = 0, 1. (2.1)

Lemma 1. (Li, Ronghua et al., 2000) (i) The mapping γ is self-adjoint with respect to the L2-inner product in Xh:

(uh, γvh) = (γuh, vh) , ∀uh, vh ∈ Xh. (2.2)

In particular, if uh(·, t) ∈ Xh, vh ∈ Xh, t ∈ [0,T ], it holds(
c
0D

α
t uh, γvh

)
=

(
γc

0D
α
t uh, vh

)
. (2.3)

(ii) The norm 9uh9 = (uh, γuh)1/2 is equivalent to the usual L2-norm in Xh, i.e.

C1 ‖uh‖ ≤ 9uh9 ≤ C2 ‖uh‖ , ∀uh ∈ Xh, (2.4)

where the positive constant C1 and C2 are independent of h.

We start by testing the Eq.(1.1) by v ∈ Xh,(
C
0D

α
t u, γv

)
+ ((u · ∇)u, γv) − ν (∆u, γv) = (f, γv). (2.5)

Using integration by parts and the fact that γv is a piecewise constant function on T ∗h , we get

−ν(∆u, γv) = −ν < ∇u · n, γv >,
((u · ∇)u, γv) =< u · n,u · γv > −(u, (∇ · u)γv),

where
< ∇u · n, γv >=

∑
Pi∈Nh

v (Pi) ·
∫
∂K∗Pi

∇u · nds,

< u · n,u · γv >=
∑

Pi∈Nh

v (Pi) ·
∫
∂K∗Pi

(u · n)uds,

(u, (∇ · u)γv) =
∑

Pi∈Nh

v (Pi) ·
∫

K∗Pi

(∇ · u)uds.

Define

A(u, v) = −ν < ∇u · n, γv >,
b1(u,w, v) = −(u, (∇ · w)γv),
b2(u,w, v) =< u · n,w · γv > .

So (2.5) can be rewritten as(
C
0D

α
t u, γv

)
+ A (u, v) + b1 (u,u, v) + b2 (u,u, v) = (f, γv), ∀v ∈ Xh. (2.6)

Lemma 2. (Li, Ronghua et al., 2000) For the bilinear form A(·, ·), we have the following conclusions.

(i) For uh, vh ∈ Xh, one has
A (uh, vh) = A (vh,uh) . (2.7)

(ii) There exists a positive constant C such that

|A (u − Rhu, vh)| ≤ Ch ‖u‖2 ‖vh‖1 , ∀u ∈ (H2(Ω))2, vh ∈ Xh. (2.8)

(iii) There exists a positive constant µ such that

|A (uh,uh)| ≥ µ ‖uh‖
2
1 , ∀uh ∈ Xh. (2.9)

Lemma 3. Let uh(·, t) ∈ Xh, then (
c
0D

α
t uh, γuh

)
=

1
2

C
0D

α
t 9 uh 92 . (2.10)
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Proof. It is known by the definition of the fractional derivative that(
c
0D

α
t uh, γuh

)
=

∫
Ω

C
0D

α
t uh · γuhdx =

∫
Ω

1
Γ(1 − α)

∫ t

0

uh,τ

(t − τ)α
dτ · γuhdx

=
1

Γ(1 − α)

∫ t

0

1
(t − τ)α

∫
Ω

uh,τ · γuhdxdτ

=
1

2Γ(1 − α)

∫ t

0

1
(t − τ)α

d
dτ

∫
Ω

uh · γuhdxdτ

=
1

2Γ(1 − α)

∫ t

0

1
(t − τ)α

d
dτ

(uh, γuh) dτ

=
1

2Γ(1 − α)

∫ t

0

1
(t − τ)α

d
dτ

9 uh 92 dτ

=
1
2

C
0D

α
t 9 uh 92 .

�

We will approximate b2(u, v,w) by using the upwind technique. Let Λi =
{
j : P j is adjoint with Pi}. Assuming that

j ∈ Λi, let Γi j = ∂K∗Pi
∩ ∂K∗P j

and γi j is the length of Γi j. Denote by ni j the unit outward normal vector of Γi j when Γi j is
regarded as the boundary of K∗Pi

. Define

βi j(u) =

∫
Γi j

u · ni jds.

Let
β+

i j(u) = max
{
βi j(u), 0

}
, β−i j(u) = max

{
−βi j(u), 0

}
,∫

∂K∗Pi

(u · n)vds ≈
∑
j∈Λi

{
β+

i j(u)v (Pi) − β−i j(u)v
(
P j

)}
.

The upwind approximation form of the nonlinear term b2(u, v,w) is defined by the form

b2h(u, v,w) =
∑

Pi∈Nh

∑
j∈Λi

{
β+

i j(u)v (Pi) − β−i j(u)v
(
P j

)}
· w (Pi) .

Using the Heaviside function

H(r) =

1, r ≥ 0,
0, r < 0,

we can write b2h(u, v,w) as

b2h(u, v,w) =
∑

Pi∈Nh

∑
j∈Λi

βi j(u)
{
H

(
βi j(u)

)
v (Pi) +

(
1 − H

(
βi j(u)

))
v
(
P j

)}
· w (Pi) . (2.11)

Lemma 4. (Yang, Qing, 2016) For u ∈
(
W0,∞(Ω)

)2
, v ∈

(
H1

0(Ω)
)2
,uh ∈ Xh and wh ∈ Xh, one has

|b2 (u, v,wh) − b2h (uh,Rhv,wh)|
≤ |wh|1 {h‖u‖∞|v|1 + ‖v‖∞ (‖u − uh‖ + h |u − uh|1)} .

(2.12)

Then, the semi-discrete finite volume element scheme of problem (1.1)-(1.3) is as follows: seek uh(·, t) ∈ Xh for t ∈ [0,T ]
such that (

C
0D

α
t uh, γvh

)
+ A (uh, vh) + b1 (uh,uh, vh) + b2h (uh,uh, vh) = (f, γvh), ∀vh ∈ Xh, (2.13)

uh(x, 0) = Rhu0(x). (2.14)

Let Tτ = {tn|tn = nτ, 0 ≤ n ≤ N} be a uniform partition of [0,T ] with the time step τ = T/N. Based on a piecewise linear
interpolation, the L1-approximation to the Caputo fractional derivative is given by

C
0D

α
t u|t=tn =

1
Γ(1 − α)

n∑
j=1

u
(
x, t j

)
− u

(
x, t j−1

)
τ

∫ t j

t j−1

1
(tn − s)α

ds + Qn

=
τ−α

Γ(2 − α)

n∑
j=1

an− j

(
u
(
x, t j

)
− u

(
x, t j−1

))
+ Qn,
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where
ai = (i + 1)1−α − i1−α.

If u ∈ C2([0,T ]; L2(Ω)), the truncation error Qn satisfies (Sayevand, 2016)

‖Qn‖ = O(τ2−α).

For a sequence {ωn}Nn=0, we define

Dα
τω

n :=
τ−α

Γ(2 − α)

n∑
j=1

an− jδtω
j =

τ−α

Γ(2 − α)

n∑
j=0

bn− jω
j, n = 1, · · · ,N, (2.15)

where δtω
n = ωn − ωn−1 and

b0 = a0, bn = −an−1, bn− j = an− j − an− j−1, j = 1, · · · , n − 1.

With the above notations, the fully discrete finite volume element scheme for (1.1)−(1.3) seeks un
h ∈ Xh such that(

Dα
τun

h, γvh

)
+ A

(
un

h, vh

)
+ b1

(
un−1

h ,un
h, vh

)
+ b2h

(
un−1

h ,un
h, vh

)
= (fn, γvh), n ≥ 1,∀vh ∈ Xh, (2.16)

u0
h = Rhu0. (2.17)

3. Error Analysis

In this section, we present the error estimates for the semi-discrete scheme (2.13)-(2.14) and the fully discrete scheme
(2.16)-(2.17) in L2-norm.

3.1 Error Estimates for the Semi-Discrete Scheme

Lemma 5. (Zhu, Tao, 2018) Let 0 < T < ∞, β ∈ (0, 1), a(t), l(t) and u(t) are continuous, nonnegative functions on [0,T )
with

u(t) ≤ a(t) +
1

Γ(β)

∫ t

0
(t − s)β−1l(s)u(s)ds. (3.1)

Then

u(t) ≤
(
A(t) +

∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ)dτ

)
ds

)α
, t ∈ [0,T ). (3.2)

If a(t) is nondecreasing on [0,T ), then the above inequality is reduced to

u(t) ≤
(
A(t) exp

(∫ t

0
L(s)ds

))α
, (3.3)

where A(t) = 2
1
α−1a

1
α (t), L(t) = 2

1
α −1

Γ
1
α (β)

(
Γ
(
β−α
1−α

)
Γ
(

1−β
1−α

)) 1−α
α t

β−α
α l

1
α (t) and 0 < α < β < 1. If a(t) ≡ 0 on [0,T ), then

u(t) ≡ 0. (3.4)

Theorem 6. Let u and uh be the solutions of (1.1)-(1.3) and (2.13)-(2.14), respectively. Also assume that u satisfies the
necessary regularities. Then, for t ∈ [0,T ] and sufficiently small h > 0,

‖u(t) − uh(t)‖ ≤ Ch, (3.5)

where C is a constant independent of h and dependent on principally ‖u0‖2, ‖u‖L∞((H2(Ω))2), max
0≤t≤T

C
0D

α
t ‖u‖2 and ‖u‖L∞((W1,∞(Ω))2).

Proof. Subtract (2.13) from (2.6) to obtain that(
C
0D

α
t u − C

0D
α
t uh, γvh

)
+ A (u − uh, vh) + b1 (u,u, vh) − b1 (uh,uh, vh)

+b2 (u,u, vh) − b2h (uh,uh, vh) = 0.
(3.6)

Letting u − uh = (u − Rhu) + (Rhu − uh) = E + e, we rewrite (3.6) as(
C
0D

α
t e, γvh

)
+ A (e, vh) + b1 (u,u, vh) − b1 (uh,uh, vh) + b2 (u,u, vh)

− b2h (uh,uh, vh) = −
(
C
0D

α
t E, γvh

)
− A (E, vh) .

(3.7)
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We choose vh = e in (3.7) to get(
C
0D

α
t e, γe

)
+ A (e, e) = −

(
C
0D

α
t E, γe

)
− A (E, e)

− [b1 (u,u, e) − b1 (uh,uh, e)] − [b2 (u,u, e) − b2h (uh,uh, e)] .
(3.8)

Using Lemmas 2 and 3 for the left two terms in (3.8), we have

1
2

C
0D

α
t 9 e92 + µ‖e‖21 ≤ −

(
C
0D

α
t E, γe

)
− A (E, e)

− [b1 (u,u, e) − b1 (uh,uh, e)] − [b2 (u,u, e) − b2h (uh,uh, e)] .
(3.9)

For the first term on the right-hand side of (3.9), using Young’s inequality, we get∣∣∣∣(C
0D

α
t E, γe

)∣∣∣∣ ≤ C(‖C0D
α
t E‖2 + ‖e‖2), (3.10)

For the second term, applying Lemma 2, we obtain

|A (E, e)| ≤ Ch‖u‖2‖e‖1 ≤ Ch2‖u‖22 + ε‖e‖21. (3.11)

For
∥∥∥C

0D
α
t E

∥∥∥ in (3.10), we have

∥∥∥C
0D

α
t E

∥∥∥ =

∥∥∥∥∥∥ 1
Γ(1 − α)

∫ t

0

(u − Rhu)τ
(t − τ)α

dτ

∥∥∥∥∥∥ ≤ 1
Γ(1 − α)

∫ t

0

‖(u − Rhu)τ‖
(t − τ)α

dτ

≤
h2

Γ(1 − α)

∫ t

0

‖uτ‖2
(t − τ)α

dτ ≤ Ch2C
0D

α
t ‖u‖2 .

(3.12)

Now we bound the last two terms on the right-hand side of (3.9). We need the following induction hypothesis:(
log

1
h

)1/2

‖e(s)‖ → 0, h→ 0, 0 ≤ s ≤ t, 0 < t ≤ T. (3.13)

Also we have the following norm inequalities

‖w‖∞ ≤ C
(
log

1
h

)1/2

‖w‖1 , ∀w ∈ Xh, (3.14)

‖w‖1 ≤ Ch−1 ‖w‖ , ∀w ∈ Xh. (3.15)

Using hypothesis (3.13), (3.14) and Young’s inequality, we have

|b1 (u,u, e) − b1 (uh,uh, e)|
= |(u, (∇ · u)γe) − (uh, (∇ · uh) γe)|
= |(u, (∇ · u)γe) − (uh, (∇ · u)γe) + (uh, (∇ · u)γe) − (uh, (∇ · uh) γe)|
≤ C (‖∇ · u‖∞ ‖u − uh‖ + ‖∇ · (u − uh)‖ (‖e‖∞ + ‖Rhu‖∞)) ‖e‖

≤ C
(
‖E‖1 + ‖e‖1 + (‖E‖1 + ‖e‖1)

(
(log

1
h

)1/2‖e‖1 + ‖u‖∞
))
‖e‖

≤ C
(
‖e‖1 + ‖E‖1 + (log

1
h

)1/2‖e‖1 (‖e‖1 + ‖E‖1)
)
‖e‖

≤ C
(
‖E‖21 + ‖e‖2

)
+ ε‖e‖21 + C(log

1
h

)1/2‖e‖‖e‖21

≤ Ch2‖u‖22 + 2ε‖e‖21 + C‖e‖2.

(3.16)

Next, we write
|b2 (u,u, e) − b2h (uh,uh, e)|
≤ |b2 (u,u, e) − b2h (uh,Rhu, e)| + |b2h (uh, e, e)|
= D1 + D2,

(3.17)
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where D1 = |b2 (u,u, e) − b2h (uh,Rhu, e)| and D2 = |b2h (uh, e, e)|. By choosing v = u, vh = uh and wh = e in Lemma 4,
using (3.15) and Young’s inequality, we can obtain

D1 ≤ |e|1 {h‖u‖∞|u|1 + ‖u‖∞ (‖u − uh‖ + h |u − uh|1)}

≤ C
(
h2|u|21 + ‖E‖21 + ‖e‖2

)
+ ε‖e‖21.

(3.18)

By the definition of b2h(·, ·, ·) and then by (3.13)-(3.15), we have

D2 = |
∑

Pi∈Nh

e (Pi) ·
∑
j∈Λi

∫
Γi j

(
uh · ni j

)
ds ×

[
H

(
βi j

)
e (Pi) +

(
1 − H

(
βi j

))
e
(
P j

)]
|

≤
1
2

∑
K∈Th

∑
i, j∈ΛK

∣∣∣∣e (Pi) − e
(
P j

)∣∣∣∣ × ∣∣∣∣H (
βi j

)
e (Pi) +

(
1 − H

(
βi j

))
e
(
P j

)∣∣∣∣
×

∫
Γi j∩K

∣∣∣e · ni j

∣∣∣ ds

+
1
2

∑
K∈Th

∑
i, j∈ΛK

∣∣∣∣e (Pi) − e
(
P j

)∣∣∣∣
×

∣∣∣∣H (
βi j

)
e (Pi) +

(
1 − H

(
βi j

))
e
(
P j

)∣∣∣∣ × ∫
Γi j∩K

∣∣∣Rhu · ni j

∣∣∣ ds

≤ C (‖e‖1 (‖e‖ + h|e|1) ‖e‖∞ + ‖Rhu‖∞ ‖e‖1‖e‖)

≤ C
(
‖e‖2 + ‖e‖(log

1
h

)1/2‖e‖21

)
+ ε‖e‖21

≤ C‖e‖2 + 2ε‖e‖21.

(3.19)

Now, substituting (3.10)-(3.19) into (3.9), using Lemma 3, we find

1
2

C
0D

α
t 9 e 92 +µ ‖e‖21 ≤ Ch2

(
h2(C

0D
α
t ‖u‖2)2 + ‖u‖22

)
+ C ‖e‖2 + 6ε ‖e‖21 . (3.20)

Taking ε =
µ
6 , we have

C
0D

α
t 9 e92 ≤ Ch2

(
h2(C

0D
α
t ‖u‖2)2 + ‖u‖22

)
+ C ‖e‖2 . (3.21)

Therefore, making a fractional integral of order α on both sides of (4.21), noting that e(0) = 0, so

9e(t)92 ≤
Ch4

Γ(α)

∫ t

0
(t − τ)α−1(C

0D
α
t ‖u(τ)‖2)2dτ +

Ch2

Γ(α)

∫ t

0
(t − τ)α−1‖u(τ)‖22dτ

+
C

Γ(α)

∫ t

0
(t − τ)α−1‖e(τ)‖2dτ

≤ Ch2 +
C

Γ(α)

∫ t

0
(t − τ)α−1‖e(τ)‖2dτ.

(3.22)

Noting Lemma 1, we have

‖e(t)‖2 ≤ Ch2 +
C

Γ(α)

∫ t

0
(t − τ)α−1‖e(τ)‖2dτ. (3.23)

Using Lemma 5 in (3.23), we get
‖e(t)‖ ≤ Ch. (3.24)

By Lemma 2, we know

‖E(t)‖ ≤ Ch2‖u(t)‖2 ≤ Ch2(‖u0‖2 +

∫ t

0
‖u(τ)‖2dτ). (3.25)

Combining (3.24) with (3.25) and using triangle inequality, we obtain

‖u(t) − uh(t)‖ ≤ Ch, (3.26)

where C depends on ‖u0‖2, ‖u‖L∞((H2(Ω))2), max
0≤t≤T

C
0D

α
t ‖u‖2 and ‖u‖L∞((W1,∞(Ω))2).

37



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 16, No. 1; 2024

We now prove the hypothesis (3.13). Noting that ‖e(0)‖ = 0, so it holds when s = 0 clearly. Suppose it holds when
0 ≤ s < t, we know from (3.24) that

(log
1
h

)1/2‖e(t)‖ ≤ C(log
1
h

)1/2h→ 0, h→ 0, (3.27)

i.e. (3.13) is true for s = t. Thus, the hypothesis (3.13) holds for any t ∈ [0,T ]. �

3.2 Error Estimates for the Fully Discrete Scheme

Lemma 7. (Li, Dongfang, 2018) Suppose that the nonnegative sequence {ωn}Nn=0 and {gn}Nn=0 satisfy

Dα
τω

n ≤ λ1ω
n + λ2ω

n−1 + gn, n ≥ 1, (3.28)

where λ1 and λ2 are both positive constants independent of the time step τ. Then, there exists a positive constant τ∗ such
that, when τ ≤ τ∗,

ωn ≤ 2
(
ω0 +

tαn
Γ(1 + α)

max
0≤ j≤n

g j
)

Eα
(
2λtαn

)
, 1 ≤ n ≤ N, (3.29)

here, Eα(z) =
∑∞

k=0
zk

Γ(1+kα) is the Mittag-Leffler function and λ = λ1 + λ2
2−21−α .

Theorem 8. Let u and {un
h}

N
n=0 be the solutions of (1.1)-(1.3) and (2.16)-(2.17), respectively. Also assume that u satisfies

the necessary regularities and the discretization parameters obey the relation τ = O(h). Then

max
0≤n≤N

‖un − un
h‖ ≤ C(h + τ), (3.30)

where C depends on ‖u0‖2, ‖u‖L∞((H2(Ω))2), ‖u‖L∞((H1(Ω))2) and ‖u‖L∞((W1,∞(Ω))2).

Proof. Subtract (2.16) from (2.6) to obtain that(
C
0D

α
t un − Dα

τun
h, γvh

)
+ A

(
un − un

h, vh

)
+ b1 (un,un, vh) − b1

(
un−1

h ,un
h, vh

)
+ b2 (un,un, vh) − b2h

(
un−1

h ,un
h, vh

)
= 0.

(3.31)

Taking vh = en, we have(
Dα
τ en, γen) + A (en, en) = −

(
C
0D

α
t un − Dα

τun, γen
)
−

(
Dα
τEn, γen) − A (En, en)

− [b1 (un,un, en) − b1

(
un−1

h ,un
h, e

n
)
]

− [b2 (un,un, en) − b2h

(
un−1

h ,un
h, e

n
)
].

(3.32)

For the left two terms of (4.32), from Lemma 3, we have

(
Dα
τ en, γen) =

τ−α

Γ(2 − α)

a0en −

n−1∑
j=1

(
an− j−1 − an− j

)
e j − an−1e0, γen


≥

τ−α

Γ(2 − α)

a0 9 en 92 −

n−1∑
j=1

(
an− j−1 − an− j

) 9e j 92 + 9 en92

2
− an−1

9e0 92 + 9 en92

2


=

τ−α

2Γ(2 − α)

a0 9 en 92 −

n−1∑
j=1

(
an− j−1 − an− j

)
9 e j 92 −an−1 9 e092


=

τ−α

2Γ(2 − α)

n∑
j=0

bn− j 9 e j92

=
1
2

Dα
τ 9 en92,

(3.33)

and
|A (en, en)| ≥ µ ‖en‖

2
1 . (3.34)
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The five terms on the right-hand side of (3.32) are represented by T1, T2, ..., T5, respectively. So, (3.32) can be rewritten
as

1
2

Dα
τ 9 en 92 +µ ‖en‖

2
1 ≤ T1 + T2 + · · · + T5. (3.35)

Now, let’s estimate the terms T1,T2, ...,T5 one by one. Using the property of L1-approximation we have

|T1| ≤ C
∥∥∥C

0D
α
t un − Dα

τun
∥∥∥ ‖en‖ ≤ C

∥∥∥Qn

∥∥∥ ‖en‖ ≤ C(
∥∥∥Qn

∥∥∥2
+ ‖en‖

2). (3.36)

For T2, we first have

|Dα
τEn| =

∣∣∣∣∣∣∣∣ τ−α

Γ(2 − α)

n∑
j=1

an− jδtE j

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ τ−α

Γ(2 − α)

n∑
j=1

an− j

∫ t j

t j−1

(Rh − I)utdt

∣∣∣∣∣∣∣∣
≤

τ−α

Γ(2 − α)

n∑
j=1

an− jτ max
t0≤t≤tn

|(Rh − I)ut |

≤
(nτ)1−α

Γ(2 − α)
max

t0≤t≤tn
|(Rh − I)ut |.

(3.37)

Then using Young’s inequality we get

|T2| ≤ ‖Dα
τEn‖‖en‖ ≤ C

(nτ)1−α

Γ(2 − α)
max

t0≤t≤tn
‖(Rh − I)ut‖ ‖en‖ ≤ CT 1−αh2 max

t0≤t≤tn
‖ut‖2 ‖en‖

≤ C(h4 max
t0≤t≤tn

‖ut‖
2
2 + ‖en‖

2).
(3.38)

For the next term, by applying Lemma 2, we have

|T3| ≤ |A (un − Rhun, en) | ≤ Ch ‖un‖2 ‖en‖1 ≤ Ch2 ‖un‖
2
2 + ε ‖en‖

2
1 . (3.39)

Next, we make the following induction hypothesis:

‖es‖ (log
1
h

)1/2 → 0, h→ 0, 0 ≤ s ≤ n − 1, n ≤ N. (3.40)

For T4, using the similar argument as (3.15) and noting (3.40), we deduce that

|T4| ≤ C
{
‖∇ · un‖∞‖un − un−1

h ‖‖e
n‖ + ‖∇ · (un − un

h)‖(‖en‖∞‖en−1‖ + ‖Rhun−1‖∞‖en‖)
}

≤ C

(τ∫ tn

tn−1

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

dt
)1/2

+ ‖En−1‖ + ‖en−1‖

 ‖∇ · un‖∞‖en‖

+ C (‖En‖1 + ‖en‖1)
(
(log

1
h

)1/2‖en−1‖‖en‖1 + ‖un−1‖∞‖en‖

)
≤ C

(
τ2 max

t0≤t≤tn
‖ut‖

2 + ‖En−1‖2 + ‖En‖21 + ‖en−1‖2 + ‖en‖2
)

+ 2ε‖en‖21.

(3.41)

Next, we write
|T5| ≤

∣∣∣∣b2 (un,un, en) − b2h

(
un−1

h ,Rhun, e
)∣∣∣∣ +

∣∣∣∣b2h

(
un

h, e
n, en

)∣∣∣∣ = E1 + E2, (3.42)

where E1 =
∣∣∣∣b2 (un,un, en) − b2h

(
un−1

h ,Rhun, en
)∣∣∣∣ and E2 =

∣∣∣∣b2h

(
un

h, e
n, en

)∣∣∣∣. E1 and E2 can be handled as D1 and D2 in
Theorem 6. Thus, we have

E1 ≤ C |en|1 ‖un‖∞

{
h|un|1 +

(∥∥∥un − un−1
h

∥∥∥ + h
∣∣∣un − un−1

h

∣∣∣
1

)}
≤ C |en|1 ‖un‖∞{h|un|1 + ‖En−1‖ + ‖en−1‖ +

(
τ

∫ tn

tn−1

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

dt
)1/2

+ h

‖En−1‖1 + ‖en−1‖1 +

(
τ

∫ tn

tn−1

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

1
dt

)1/2}
≤ C

(
‖En−1‖2 + ‖en−1‖2 + τ2 max

t0≤t≤tn
‖ut‖

2
1

)
+ ε‖en‖21,

(3.43)
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and
E2 ≤

1
2

∑
K∈Th

∑
i, j∈ΛK

∣∣∣∣en (Pi) − en
(
P j

)∣∣∣∣ × ∣∣∣∣H (
βi j(un−1

h )
)

en (Pi) +
(
1 − H

(
βi j(un−1

h )
))

en
(
P j

)∣∣∣∣
×

∫
ri j∩K

∣∣∣en−1 · ni j

∣∣∣ ds +
1
2

∑
K∈Tk

∑
i, j∈ΛK

∣∣∣∣en (Pi) − en
(
P j

)∣∣∣∣
×

∣∣∣∣H (
βi j(un−1

h )
)

en (Pi) +
(
1 − H

(
βi j(un−1

h )
))

en
(
P j

)∣∣∣∣ ∫
Γi j∩K

∣∣∣Rhun−1 · ni j

∣∣∣ ds

≤ C
(
‖en‖1

(
‖en−1‖ + h|en−1|1

)
‖en‖∞ +

∥∥∥Rhun−1
∥∥∥
∞
‖en‖1‖en‖

)
≤ C

‖en‖2 + ‖en−1‖

(
log

1
h

)1/2

‖en‖21

 + ε‖en‖21

≤ C‖en‖2 + 2ε‖en‖21.

(3.44)

Substituting the previously mentioned estimates (3.36)-(3.44) into (3.35), we get

1
2

Dα
τ 9 en 92 +µ‖en‖21 ≤C(‖en−1‖2 + ‖en‖2 + τ2 max

t0≤t≤tn
‖ut‖

2
1 + h2 ‖un‖

2
2 + h4 max

t0≤t≤tn
‖ut‖

2
2

+ ‖En−1‖2 + ‖En‖21 + ‖Qn‖2) + 6ε‖en‖21.

(3.45)

Taking ε = µ/6, we have
Dα
τ 9 en92 ≤ C(‖en‖2 + ‖en−1‖2) + O(τ2 + h2). (3.46)

By Lemmas 1 and 7, there exists a positive constant τ∗ such that, when τ < τ∗,

‖en‖ ≤ C(τ + h). (3.47)

Now we prove the introduction hypothesis (3.40). Noting that u0
h = Rhu0, so it holds true when s = 0 obviously. Suppose

it holds when 0 ≤ s ≤ n − 1, from (3.47) and the assumption τ = O(h), we have

‖en‖ (log
1
h

)1/2 → 0, h→ 0. (3.48)

So it is true when 0 ≤ s ≤ n. Thus, we know that the hypothesis (3.40) holds for any 1 ≤ n ≤ N. Using triangular
inequality and the interpolation theory we get

‖un − un
h‖ ≤ C(τ + h). (3.49)

�

4. Numerical Examples

In this section, we will show the numerical performances of proposed finite volume element method on the convergence
and efficiency by several examples.

Example 1. In this example, the exact solutions of coupled Burgers’ equation are given by

u(x, y, t) = tα+1sin(πx)sin(πy), v(x, y, t) = tα+1sin(πx)cos(πy).

Then we have the source term functions

f1(x, y, t) = Γ(1 + α)t sin(πx) sin(πy) + πt2α+2 sin(πx) cos(πx)(sin(πy))2

+πt2α+2(sin(πx))2(sin(πy))2 + 2νπ2tα+1 sin(πx) sin(πy),

and
f2(x, y, t) = Γ(1 + α)t sin(πx) cos(πy) + πt2α+2 sin(πx) cos(πx) sin(πy)) cos(πy)

−πt2α+2(sin(πx))2 sin(πy) cos(πy) + 2νπ2tα+1 sin(πx) cos(πy)

by computing accordingly. We take the viscosity ν = 1, the spatial interval Ω = (0, 1) × (0, 1) and the time interval
[0,T ] = [0, 1]. In all runs, we use the uniform mesh h = τ and choose the time t = 1. Table 1 shows the numerical results
of ‖u − uh‖ and ‖v − vh‖ for α = 0.3 and α = 0.7. As seen in the table, the errors decrease by a factor of about two as
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h decreases by the factor of two. This indicates that all L2-norm error estimates are of first-order convergence, which is
consistent with our theoretical analysis. Surface plots of the exact solution u and the numerical solution uh for α = 0.3 are
given in Figure 1 and Figure 2. Figure 3 shows the error between the exact and numerical solutions. As can be seen, there
is a good agreement between the exact solution and numerical solution.

Table 1. Numerical results for α = 0.3 and α = 0.7
α = 0.3 α = 0.3 α = 0.7 α = 0.7

h ‖u − uh‖ order ‖v − vh‖ order ‖u − uh‖ order ‖v − vh‖ order
1
16 7.1904e − 03 - 2.7828e − 03 - 6.0983e − 03 - 2.9354e − 03 -
1
32 3.1573e − 03 1.18 1.1943e − 03 1.22 2.6444e − 03 1.21 1.2921e − 03 1.18
1
64 1.4709e − 03 1.10 5.5057e − 04 1.11 1.2289e − 03 1.11 6.0639e − 04 1.09

1
128 7.0889e − 04 1.05 2.6416e − 04 1.06 5.9325e − 04 1.05 2.9432e − 04 1.04

Figure 1. The exact solution u for t = 1, ν = 1 and
α = 0.3

Figure 2. The numerical solution uh for t = 1, ν = 1,
h = 1/32 and α = 0.3

Figure 3. The error u − uh for t = 1, ν = 1, h = 1/64 and α = 0.3

Example 2. We consider the following time fractional Burgers’ equation:
C
0D

α
t u + u ∂u

∂x + v ∂u
∂y − ν∆u = 0, x = (x, y) ∈ Ω, t ∈ (0,T ]

C
0D

α
t v + u ∂v

∂x + v ∂v
∂y − ν∆v = 0, (x, t) ∈ Ω × (0,T ],

u(x, 0) = sin(πx)sin(πy), v(x, 0) = xy(x − 1)(y − 1),
u = 0, v = 0, (x, t) ∈ ∂Ω × (0,T ].
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where Ω = (0, 1) × (0, 1), T = 1 and ν = 0.01. In this example, the exact solution is not given beforehand, so we take
the numerical solution with h = 1

150 as the reference solution to calculate the error and convergence rate. In Table 2,
we present the numerical results for α = 0.2 and α = 0.8. It can be seen in the table that the format is convergent with
one-order accuracy. Surface plots of the reference solution u and numerical solution uh for α = 0.8 are given in Figure 4
and Figure 5. As can be seen from the table and figure, it is consistent with the results of our theoretical analysis.

Table 2. Numerical results for α = 0.2 and α = 0.8

α = 0.2 α = 0.2 α = 0.8 α = 0.8
h ‖u − uh‖ order ‖v − vh‖ order ‖u − uh‖ order ‖v − vh‖ order
1

25 9.1067e − 03 - 5.9229e − 04 - 8.7381e − 04 - 4.9997e − 05 -
1

30 7.5809e − 03 1.01 4.9387e − 04 0.97 7.0824e − 04 1.15 4.0657e − 05 1.13
1

50 4.1389e − 03 1.18 2.7062e − 04 1.18 3.6608e − 04 1.29 2.1167e − 05 1.28
1

75 2.1722e − 03 1.59 1.4230e − 04 1.58 1.8710e − 04 1.66 1.0862e − 05 1.65

Figure 4. The reference solution u for t = 1, ν = 0.01,
h = 1/150 and α = 0.8

Figure 5. The numerical solution uh for t = 1,
ν = 0.01, h = 1/25 and α = 0.8

Example 3. We consider the following time fractional Burgers’ equation:


C
0D

α
t u + u ∂u

∂x + v ∂u
∂y − ν∆u = 0, x = (x, y) ∈ Ω, t ∈ (0,T ]

C
0D

α
t v + u ∂v

∂x + v ∂v
∂y − ν∆v = 0, (x, t) ∈ Ω × (0,T ],

u(x, 0) = 0, v(x, 0) = 0,

where Ω = (0, 1) × (0, 1), T = 1 and ν = 0.001, and the boundary value functions t ∈ (0,T ]

u(x, y, t) =


0, y = 1, 0 < x < 0.3
1, y = 1, 0.3 ≤ x < 1
0, x = 0 or x = 1 or y = 0

, v(x, y, t) =


0, x = 0, 0 < y < 0.3
1, x = 0, 0.3 ≤ y < 1
0, x = 1 or y = 0 or y = 1

In order to show that our method keeps stable when ν is smaller, we give the the numerical solution by FVEM with and
without upwinding technique for ν = 0.001 in Figure 6 and Figure 7. We can see that our method can perform well but
the approximation without upwinding technique produces nonphysical oscillations. These are seen much more clearly in
Figure 8 and Figure 9, which shows that the oscillations will increase further when ν is smaller and smaller. In contrast,
our method still keeps stable.
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Figure 6. The numerical solution uh with upwinding
for t = 1, ν = 0.001, h = 1/32 and α = 0.3

Figure 7. The numerical solution ũh without
upwinding for t = 1, ν = 0.001, h = 1/32 and α = 0.3

Figure 8. The numerical solution uh with upwinding
for t = 1, ν = 0.0002, h = 1/32 and α = 0.3

Figure 9. The numerical solution ũh without
upwinding for t = 1, ν = 0.0002, h = 1/32 and

α = 0.3

5. Conclusions

In this article, a upwind finite volume element scheme has been derived for the two-dimensional time fractional coupled
Burgers’ equation. We discrete the equation using L1 formula in the time direction. We then discrete the resulting
equations in space domain using upwind finite volume element method. The convergence analyses of semi-discrete
scheme and fully discrete scheme are proved. Then, the numerical experiments are given to verify the effectiveness of
the proposed scheme. And our method keeps stable when ν is smaller by contrast with finite volume element method
without upwinding technique. Due to the influence of the linear scheme and the upwinding technique, the convergence
order of the scheme is O(τ + h). In future works, we will use this method to solve more nonlinear fractional partial
differential equations, such as nonlinear convection-diffusion equation and Navier-Stokes equation. And for the Caputo
fractional derivative with α ∈ (0, 1), we will try to use other approximation methods (such as L1-2, L2-1σ formulas) and
high-precision upwinding technique to improve the convergence order.
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