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Abstract

In this paper, we develop an epidemic model to analyze the spread of an infectious disease with two levels of severity
within a population of varying size. Additionally, we examine the stability of the disease-free equilibrium.

Such a model is suitable for the dynamics of COVID-19 disease spread. If the two types of infected individuals have
different recovery rates, then there is no endemic equilibrium; only the disease-free equilibrium will be the subject of
our study. We then study both the deterministic model and a stochastic version. The stochastic model is obtained by
perturbing the contact rate using white noise. For the deterministic model, we have shown that if the basic reproduction
number R0 < 1, then the equilibrium state is globally asymptotically stable by using Lyapunov function. This implies that
the disease will disappear, and the entire population will become susceptible. For the stochastic version, we demonstrate
that the system admits a unique positive global solution that exists within a positively invariant domain. Under suitable
conditions on the intensity of the white noise perturbations, we prove that the number of infectious individuals converge
almost surely exponentially to zero and the disease-free equilibrium of system is stochastically asymptotically stable in
the large provided. Finally, we give some numerical simulations to illustrate our theoretical results.

Keywords: SIaIsR epidemic model, Disease-free equilibrum, Global stability

1. Introduction

The mathematical analysis of the dynamics of disease spread within a population has consistently piqued the interest of
many researchers. These investigations primarily revolve around mathematical modeling, with the compartmental SIR
model remaining the most classical and fundamental in epidemiology due to its robustness and simplicity. Most models
are compartmental models which involve dividing the population into disjointed classes, each containing individuals with
the same clinical state regarding the disease. In 1927, some researchers (Kermack & McKendrick, 1927) pioneered the
study of the compartmental SIR model, followed by other authors (Kaddar et al., 2011; Korobeinikov & Wake, 2002) who
delved into models such as SIS, SEIR and SIRS.

With the emergence of the Covid-19 disease in 2019, researchers have become interested in two-compartment models of
infected individuals. Indeed, according to researchers (C.Waechter, 2021), there are two states of desease: symptomatic
infected individuals who exhibit signs of the disease, and asymptomatic infected individuals. The number of asymptomatic
infection cases at a given moment refers to the number of individuals affected by a disease who do not show any symptoms
at that specific time. These situations can elude detection because infected individuals do not exhibit any apparent signs
of the disease, but they still have the ability to transmit the infection to others.

We can mention the work of some researchers (Liu et al., 2020), who modeled this phenomenon and used data from three
countries to make predictions. The autors (Coulibaly & N´zi, 2021) have also worked on the same model, with a jump
perturbation.

In these models, the borders remain closed, which means that there is no recruitment. It is true that authorities have
implemented various measures to close the borders in order to slow down the spread, but some borders have remained
open with entry controls. This allows the entry of healthy and susceptible individuals into the population.

It is important to emphasize that several authors have examined models involving recruitment within the population of
susceptible individuals (Chen & Li, 2022; Lahrouz et al., 2011; Settati et al., 2021). However, in the models examined
by these authors, there is only one compartment for infected individuals, who are individuals displaying symptoms of
infection. This article is devoted to a qualitative study of an SIaIsR model that incorporates a recruitment process within
the population.

The rest of the paper is organized as follows: section 2 is dedicated to the mathematical formulation of the model. we
provide some preliminary results in Section 3, while our main results are presented in section 4. In the deterministic model,
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we establish the stability of the free equilibrium state. In the stochastic model, we justify the existence and positivity of a
solution to the system that almost surely resides in a specific domain of R4.

Subsequently, we show that, under appropriate conditions, the solution of the stochastic system converges almost surely
exponentially to the desease-free equilibrium.

Finally, under assumptions regarding the intensity of the white noise, we demonstrate that the free equilibrium state is
globally stochastically stable. In section 5, we perform some numerical simulations to compare the dynamic behaviors of
deterministic system and stochastic system.

2. Model Formulation

2.1 Deterministic Model

The model that we present is governed by the following system:

dS (t)
dt = λ − µS (t) − τS (t)[Ia(t) + Is(t)]

dIa(t)
dt = τS (t)Ia(t) − (µ + γ1)Ia(t)

dIs(t)
dt = τS (t)Is(t) − (µ + γ2)Is(t)

dR(t)
dt = γ1Ia(t) + γ2Is(t) − µR(t)

(1)

where

• S (t) is the number of susceptible individuals at time t, i.e people who are not infected yet but might become
infectious individuals in the future.

• Ia(t) is the number of asymptomatic infectious individuals at time t, i.e people who have contracted the disease but
have not yet developed it at time t.

• Is(t) is the number of symptomatic infectious individuals with mild symptoms at time t.

• R(t) is the number of recovered individuals at time t.

• λ represents the recruitment rate, corresponds to the number of individuals joining the population per unit of time.

• µ is the death rate.

• τ is the transmission rate.

• γ1 and γ2 are the recovered rate respectively of asymptomatic infectious individuals and symptomatic infectious
individuals.

All the parameters are positive.

An equilibrium state (S , Ia, Is,R) of the system (1) satisfies the following equations:

λ − µS − τS [Ia + Is] = 0

τS Ia − (µ + γ1)Ia = 0

τS Is − (µ + γ2)Is = 0

γ1Ia + γ2Is − µR = 0

(2)

A disease-free equilibrium (DFE) is an equilibrium state where Ia = Is = 0 in system (2) . Its stability implies the
disappearance of the disease. System (1) admits only one disease-free equilibrium E0 = ( λ

µ
, 0, 0, 0).

An endemic equilibrium is an equilibrium state where the compartments of infected individuals (Ia and Is) are non-zero.
Its stability implies the persistence of the disease.

If the recovery rates of both groups of infected individuals are identical, then we have a classical SIR model.
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If the recovery rates are different, then there is no endemic equilibrium state with the simultaneous presence of both types
of infected individuals (I∗a , 0 and I∗s , 0).

Indeed, the existence of such a state, denoted as

(S ∗, I∗a , I
∗
s ,R

∗), would lead to S ∗ =
µ+γ1
τ

=
µ+γ2
τ

. That is contradictory. However, we can have a single endemic equilibrium
where only one of the compartments of infected individuals is non-zero.

The basic reproduction number R0 representing how many secondary infectious result from the introduction of one in-
fected individual into a population of susceptible. Using the (Van den Driessche & Watmough, 2002) method, we obtain:

R0 = max
{

τλ

µ(µ + γ1)
;

τλ

µ(µ + γ2)

}
(3)

We consider different recovery rates and study the stability of the disease-free equilibrium.

2.2 Stochastic Model

The system (1) is obviously a deterministic model that abstracts from any randomness in the parameter values. This
assumption often deviates from reality.

Indeed, random fluctuations can influence the parameters or variables of the model. Stochastic perturbations can be intro-
duced to account for the inherent uncertainty in epidemiological processes. According to the literature, these perturbations
come in two types. Some authors consider perturbations of the numbers of individuals in compartments through indepen-
dent Brownian motions. The works of (Cai et al., 2017; Zhang & Wang, 2014; Ikram et al., 2022) can be mentioned in this
context. On the other hand, others consider a perturbation of the contact rate, denoted as τ. The works of (Lahrouz et al.,
2011; N´zi & Kanga, 2016; N´zi & Tano, 2017) can be cited in this regard. The rate of contact between healthy individuals
and infected individuals is subject to random phenomena. The reception of the measures taken by the authorities by the
populations often leads to a disruption of the contact rate. To account for this aspect, we have formulated a stochastic
version of the model by adding white noise to the contact rate.

Moreover, to account for the stochastic nature of the contact rate, we have added white noise σ dB(t)
dt to it. Where (B(t))t≥0

is standard Brownian motion.

We have taken this type of perturbation into account in our model. We get the following system:

dS (t) =
[
λ − µS (t) − τS (t)(Ia(t) + Is(t))

]
dt

−σS (t)(Ia(t) + Is(t))dB(t)

dIa(t) =
[
τS (t)Ia(t) − (µ + γ1)Ia(t)

]
dt + σIa(t)S (t)dB(t)

dIs(t) =
[
τS (t)Is(t) − (µ + γ2)Is(t)

]
dt + σIs(t)S (t)dB(t)

dR(t) =
[
γ1Ia(t) + γ2Is(t) − µR(t)

]
dt

(4)

3. Preliminaries

Let

∆ =

{
x ∈ (R∗+)4; x1 + x2 + x3 + x4 <

λ

µ

}
. (5)

Its easy to prove that domain ∆ is invariant. In effect, the total population in system (1) verifies the equation

dN(t)
dt

= λ − µN(t)

N(t) =

(
N(0) −

λ

µ

)
e−µt +

λ

µ
<
λ

µ

Theorem 2.1 (A.M. Lyapunov:1992)

If there exists a continuously differentiable function” V : Rn → R such that:

• V(xe) = 0,
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• V(x) > 0 ∀x , xe,

• f T (x) ∂V
∂x (x) < 0 ∀x , xe,

• f T (x) ∂V
∂x (x)→ ∞ lorsque ‖x‖ → ∞.

Therefore, the equilibrium state xe is globally asymptotically stable.

Theorem 2.2 The unidimensional Itô’s formula(Seidler, 1991) (I. Karatzas and S.E Shere)

Let (t, x) 7→ f (t, x) be a real function that is twice differentiable in x and once differentiable in t, and let X be an Itô
process. Then we have:

f (t, Xt) = f (0, X0) +

∫ t

0
f
′

s (s, Xs)ds +

∫ t

0
f
′

x(s, Xs)dXs

+
1
2

∫ t

0
f
′′

xx(s, Xs)d〈X, X〉s.

Theorem 2.3 Comparison Theorem (Ikeda:1976)

Let σ, b1, and b2 be three continuous functions defined on [0 : +∞[×R with values in R, such that b1(t, x) ≤ b2(t, x) for
all t ≥ 0 and for all x ∈ R. We consider the following stochastic differential equations:

dXt = b1(t, Xt)dt + σ(t, Xt)dBt (6)

dXt = b2(t, Xt)dt + σ(t, Xt)dBt (7)

If (X1
t )t≥0 and (X2

t )t≥0 are respective solutions of equations (6) and (7) such that X1
0 ≤ X2

0 , then P − p.s X1
t ≤ X2

t for all
t ≥ 0.

4. Main Results

4.1 Deterministic Model

Theorem 3.1 If R0 < 1 then the desease-free equilibrium ( λ
µ
, 0, 0, 0) is globally asymptotically stable in ∆.

Proof Let S̃ =
λ

µ
− S . Then system (1) becomes as follows



dS̃ (t) =
[
−µS̃ (t) + τλ

µ
(Ia(t) + Is(t)) − τS̃ (t)(Ia(t) + Is(t))

]
dt

dIa(t) =
[
−τS̃ (t)Ia(t) + (µ + γ1)(R(1)

0 − 1)Ia(t)
]

dt

dIa(t) =
[
−τS̃ (t)Is(t) + (µ + γ2)(R(2)

0 − 1)Is(t)
]

dt

dR(t) =
[
γ1Ia(t) + γ2Is(t) − µR(t)

]
dt

where R(i)
0 =

τλ

µ(µ + γi)
, i=1, 2.

Let ε and C positive constants such that,

0 < ε < min
{
µ2

τλ
;

2µ
γ1 + γ2

}
(8)

0 < C < min

 εµ(µ + γ1)(1 − R(1)
0 )

τλ + µγ1
;
εµ(µ + γ2)(1 − R(2)

0 )
τλ + µγ2

 (9)

Consider function

V1(S̃ , Ia, Is,R) = CS̃ 2 +
1
2

I2
a +

1
2

I2
s + CR2
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dV1(t) = −2CµS̃ 2 − 2CµR2 − (µ + γ1)(1 − R(1)
0 )I2

a − (µ + γ2)(1 − R(2)
0 )I2

s

+
2Cλτ
µ

S̃ Ia +
2Cλτ
µ

S̃ Is + 2Cγ1RIa + 2Cγ2RIs

− 2τCS̃ 2(Ia + Is) − τS̃ I2
a − τS̃ I2

s

(10)

The last term in (10) is negative and using Young inequality we have:

S̃ Ia ≤
1
2ε

I2
a +

ε

2
S̃ 2

S̃ Is ≤
1
2ε

I2
s +

ε

2
S̃ 2

RIa ≤
1
2ε

I2
a +

ε

2
R2

RIs ≤
1
2ε

I2
s +

ε

2
R2

where ε is the constant in (8). Those inequalities injincting in (10), we obtain:

dV1(t) ≤ −2CµS̃ 2 − 2CµR2 − (µ + γ1)(1 − R(1)
0 )I2

a

− (µ + γ2)(1 − R(2)
0 )I2

s +
2Cλτ
µ

[
1
2ε

I2
a +

ε

2
S̃ 2

]
+

2Cλτ
µ

[
1
2ε

I2
s +

ε

2
S̃ 2

]
+ 2Cγ1

[
1
2ε

I2
a +

ε

2
R2

]
+ 2Cγ2

[
1
2ε

I2
s +

ε

2
R2

]
≤ K1S̃ 2 + K2I2

a + K3I2
s + K4R2

where

K1 = 2C
(
−µ +

τλ

µ
ε

)
< 0

K2 = −(µ + γ1)(1 − R(1)
0 ) +

C
ε

(
τλ + µγ1

µ

)
K3 = −(µ + γ2)(1 − R(2)

0 ) +
C
ε

(
τλ + µγ2

µ

)
Using the fact that R0 < 1 and (9) it esay to verify that K2 < 0 and K3 < 0.

K4 = C (−2µ + (γ1 + γ2)ε) < 0 see (14)

According to the theorem, the free equilibrium state is globally asymptotically stable.

4.2 Stochastic Model

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions. We consider the
system (4) and the domain ∆ (see (5)).

Theorem 3.2 If (S (0), Ia(0), Is(0),R(0)) ∈ ∆, then the system admits a unique solution (S (t), Ia(t), Is(t),R(t)) on t ≥ 0 and
this solution remains in ∆ with probability one.

Proof Suppose that (S (0), Ia(0), Is(0),R(0)) ∈ ∆. The total population verifies the equation

dN(t)
dt

= λ − µN(t).

Then if (S (t), Ia(t), Is(t),R(t)) ∈ R4
+ for all 0 ≤ t ≤ T a.s.
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We get

dN(t) ≤ (λ − µN(t))dt a.s.

Hence by comparison Theorem we have,

dN(t) ≤
λ

µ
+

(
N(0) −

λ

µ

)
e−µt,

for all t ∈ [0,T ] a.s. Then N(t) ≤ λ
µ
, so we have

(S (t), Ia(t), Is(t),R(t)) ∈ ∆ (11)

for all t ∈ [0,T ] a.s.

The coefficients of the system (4) are locally Lipschitz continuous, so for any given initial value (S (0), Ia(0), Is(0),R(0))
there is a unique local solution on [0, τe] where τe is the explosion time.

To prove that this solution is global we need to show that P(τe = ∞) = 1

Let ε0 > 0 be such that S (0), Ia(0), Is(0),R(0) > ε0. For ε ≤ ε0 considering the stopping times

τε = in f {t ∈ [0, τe], S (t) ≤ ε or Ia(t) ≤ ε or Is(t) ≤ ε or R(t) ≤ ε}

and

τ = lim
ε→0

τε

= in f {t ∈ [0, τe], S (t) ≤ 0 or Ia(0) ≤ 0 or Is(0) ≤ 0 or R(t) ≤ 0} .

Consider the function V defined for X(t) = (S t, It,Rt) ∈ R3
+ by

V2(S , Ia, Is,R) = − ln
(
µS
λ

)
− ln

(
µIa

λ

)
− ln

(
µIs

λ

)
− ln

(
µR
λ

)
By virtue of Itô’s Formula, we have for all T ≥ 0, and for all t ∈ [0,T ∧ τε]

dV(X(t)) =

[
4µ + γ1 + γ2 + σ2(S (t))2 + τ(Ia(t) + Is(t)) +

1
2
σ2(Ia + Is)2

]
dt

−

[
λ

S (t)
+ 2τS (t) + γ1

Ia(t)
R(t)

+ γ2
Is(t)
R(t)

]
dt + σ [Ia(t) + Is(t) − 2S (t)] dB(t) (12)

By virtue of (11), we assert that S (t), Ia(t), Is(t),R(t) ∈ [0, λ
µ
] for every t ∈ [0,T ∧ τε] a.s.

So, we have the following inequalities:

(S (t))2 ≤

(
λ

µ

)2

and,

(Ia(t) + Is(t)) ≤
(

2λ
µ

)
.

Let us, put

k = 4µ + γ1 + γ2 +

(
σλ

µ

)2

+
2τλ
µ

+ 2
(
σλ

µ

)2

.

In view of (12), we have

dV(X(t)) ≤ kdt + σ(Ia(t) + Is(t) − 2S (t))dB(t).

By using the comparison theorem,

V(X(t)) − V(X(0)) ≤ kt +

∫ t

0
(σ(Ia(u) + Is(u) − 2S (u))) dB(u) a.s
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for all t ∈ [0,T ∧ τε].

In particular at the point T ∧ τε this inequality remains true.

Now taking the expectation of both parts of the above inequality and using the fact that(∫ t

0
(σ(Ia(u) + Is(u) − 2S (u))) dBu

)
t≥0

is a mean zero process, we deduce that for all T ≥ 0

E[V(X(T ∧ τε))] ≤ V(X(0)) + E[k(T ∧ τε)] ≤ kT + V(X(0)) (13)

Furthermore, in view of (11), we have V(X(T ∧ τε) ≥ 0 thus,

E[V(X(T ∧ τε))] = E[V(X(T ∧ τε))χ{τε≤T }] + E[V(X(T ∧ τε))χ{τε>T }]
≥ E[V(X(τε))χ{τε≤T }].

By continuity there is some component of X(τε) equal to ε,
therefore V(X(τε)) ≥ −ln

(
µε
λ

)
.

So, we have

E[V(X(T ∧ τε))] ≥ −ln
(
µε

λ

)
P(τε ≤ T ). (14)

By combining (13) and (14) we obtain for all T ≥ 0

P(τε ≤ T ) ≤ −
kT + V(X(0))

ln
(
µε
λ

) .

By letting ε goes to zero, we derive that for all T ≥ 0, P(τ ≤ T ) = 0. Hence P(τ = ∞) = 1. As τe ≥ τ, we have τe = τ = ∞

a.s .

Theorem 3.3 If R0 < 1 then (Ia(t), Is(t))t≥0 converge almost surely exponentially to (0, 0).

Proof

Let (S (0), Ia(0), Is(0),R(0)) ∈ ∆. Consider function

V3 = ln
(

1
µ + γ1

Ia +
1

µ + γ2
Is

)

By Itô’s formula, we have
dV3(t) = LV3(t)dt + σS (t)2dB(t)

where,

LV3(t) =
1

1
µ+γ1

Ia + 1
µ+γ2

Is

[(
τS

µ + γ1
− 1

)
Ia +

(
τS

µ + γ2
− 1

)
Is

]

−

 σ2S 2

2
(

1
µ+γ1

Ia + 1
µ+γ2

Is

)2

(
1

µ + γ1
I2
a +

1
µ + γ2

I2
s

)
Since the last term is negative and S (t) ≤ λ

µ
,∀t ≥ 0

we have,

LV3(t) ≤
1

1
µ+γ1

Ia + 1
µ+γ2

Is
×

[(
τλ

µ(µ + γ1)
− 1

)
Ia +

(
τλ

µ(µ + γ2)
− 1

)
Is

]

=
1

1
µ+γ1

Ia + 1
µ+γ2

Is
×

[
−

(
1 −

τλ

µ(µ + γ1)

)
Ia −

(
1 −

τλ

µ(µ + γ2)

)
Is

]
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Let ω = min
{
(µ + γ1)

(
1 − τλ

µ(µ+γ1)

)
; (µ + γ2)

(
1 − τλ

µ(µ+γ2)

)}
Therefore,

LV3(t) ≤
1

1
µ+γ1

Ia + 1
µ+γ2

Is

[
−

ω

µ + γ1
Ia −

ω

µ + γ2
Is

]
≤ −ω

By integration we check

ln
(

1
µ + γ1

Ia(t) +
1

µ + γ2
Is(t)

)
≤ ln

(
1

µ + γ1
Ia(0) +

1
µ + γ2

Is(0)
)

− ωt + σ

∫ t

0
S 2(u)dB(u) (15)

(S (t))2 is bounded, then by the strong law of large number for local martingales we have

lim
1
t
σ

∫ t

0
S 2(u)dB(u) = 0 (16)

From (15) and (16) we have,

lim sup
1
t

ln
(

1
µ + γ1

Ia(t) +
1

µ + γ2
Is(t)

)
≤ −ω < 0.

This completes the proof.

Theorem 3.4

If R0 < 1 and

σ2 < min
{

2
(
µ

λ

)2
(1 − R0)(µ + γ1); 2

(
µ

λ

)2
(1 − R0)(µ + γ2)

}
(17)

then

lim sup
1
t
E

∫ t

0

θ (λµ − S (u)
)2

+
1
2

I2
a (u) +

1
2

I2
s (u) + θR2(u)

 du ≤ 0

Proof Choose ε as in (8) and constant θ verify:

0 < θ < min {ζ1 ; ζ2} (18)

where

ζi =
2(µ + γi)(1 − R

(i)
0 )µ2 − (σλ)2

µ(τλ + µγi) + 2ε(σλ)2 ε, i ∈ {1; 2}

Consider the same function as in the proof of the Theorem 3.1

V4(S̃ , Ia, Is,R) = θS̃ 2 +
1
2

I2
a +

1
2

I2
s + θR2

By Itô’s formula, we have
dV4(t) = LV4(t)dt + H(t)dB(t)

where H(t) = σ(2θ + 1)S (t)(Ia(t) + Is(t)) and

LV4(t) = −2θµS̃ 2 − 2θµR2 − (µ + γ1)(1 − R(1)
0 )I2

a − (µ + γ2)(1 − R(2)
0 )I2

s

+
2θλτ
µ

S̃ Ia +
2θλτ
µ

S̃ Is + 2θγ1RIa + 2θγ2RIs − 2τθS̃ 2(Ia + Is) − τS̃ I2
a − τS̃ I2

s

+

(
σλ

µ

)2 (
2θ +

1
2

)
(I2

a + I2
s )

Using the fact that 0 ≤ S ≤ λ
µ

and inegalitie

(a + b)2 ≤ 2a2 + 2b2, we have
LV4 ≤ Γ1S̃ 2 + Γ2I2

a + Γ3I2
s + Γ4R2
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where,

Γ1 = 2θ
(
−µ +

τλ

µ
ε

)
< 0 re f er to (8)

Γ2 = −(µ + γ1)(1 − R(1)
0 ) +

θ

ε

(
τλ + µγ1

µ

)
+

(
σλ

µ

)2 (
2θ +

1
2

)
< 0

Γ3 = −(µ + γ2)(1 − R(2)
0 ) +

θ

ε

(
τλ + µγ2

µ

)
+

(
σλ

µ

)2 (
2θ +

1
2

)
< 0

Γ4 = θ (−2µ + (γ1 + γ2)ε) < 0 according to (8)

Using (17) and (18) we verify that Γ2 < 0 and Γ3 < 0 This completes the proof.

5. Simulation and Discussions

To illustrate the various theoretical results presented above, the systems (1) and (4) were simulated for various sets of
parameters. Figures 1 to 4 illustrate the deterministic model (1), and Figures 5 and 6 depict the stochastic model (4).

Figures 1 and 2 illustrate the dynamical behavior of the S IaIsR model described by the deterministic system (1), when
R0 < 1.
Table 1. Estimated parameters of figure 1 and 2

Parameter figure 1 figure 2
τ 0.00296 0.00009
γ1 0.7 0.7
γ2 0.9 0.9
µ 0.4 0.4
λ 50 1000
N 10000 15000

Ia0 1500 3000
Is0 2000 3000
R0 7 70

Figure 1. Deterministic trajectories of S IaIsR epidemics model

The Theorem 3.1 is confirmed by the observation of the global stability of the Disease-Free Equilibrium (DFE) in this
context. As a result, the number of symptomatic infected individuals decreases rapidly towards zero, while the number of

asymptomatic infected individuals increases slightly and then decreases to zero as well.
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Figure 2. Deterministic trajectories of S IaIsR epidemics model

We also observe the global stability of the Disease-Free Equilibrium (DFE). In this case, the recovery rates are higher
than those presented in Figure 1, leading to a rapid decrease of symptomatic and asymptomatic infections towards zero.

Figures 3 and 4 illustrate the dynamical behavior of the S IaIsR model described by the deterministic system (5), when
R0 > 1. In both cases, we observe an instability of the Disease-Free Equilibrium (DFE).

Table 2. Estimated parameters of figure 3 and 4

Parameter figure 3 figure 4
τ 0.007 0.14
γ1 0.07 0.9
γ2 0.7 0.9
µ 0.3 0.2
λ 800 800
N 10000 10000

Ia0 4500 3500
Is0 2000 2500
R0 70 70
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Figure 3. Deterministic trajectories of S IaIsR epidemics model
The recovery rates are distinct, and we observe stability of a single endemic equilibrium (I∗a , 0 and I∗s = 0).

Figure 4. Deterministic trajectories of S IaIsR epidemics model

When the recovery rates are the same, we have a classic SIR model with the stability of an endemic equilibrium state.
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Table 3. Estimated parameters of figure 5 and 6

Parameter figure 5 figure 6
τ 0.003 0.0003
γ1 0.6 0.7
γ2 0.7 0.9
µ 0.1 0.2
λ 40 540
N 7000 15000

Ia0 1500 3500
Is0 100 3000
R0 7 90

Figure 5. Stochastic trajectories of S IaIsR epidemics model
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Figure 6. Stochastic trajectories of S IaIsR epidemics model

Figures 5 and 6 illustrate the cases where the intensity of noise σ satisfies the conditions (17) of Theorem 3.4 . It is
observed that the disease-free equilibrium state is stochastically asymptotically stable.

6. Conclusion

One primary objective of mathematical epidemiology is to comprehend how to control or eradicate diseases. Mathematical
models are extensively employed in the investigation of ecological and epidemiological phenomena. One of the key
challenges in studying epidemic behavior is the analysis of the model’s steady states and their stability.

In this paper, we studied an epidemiological model with 2 compartments of infected individuals in both deterministic
and stochastic cases. This model is suitable for studying Covid-19, which involves both symptomatic and asymptomatic
infected individuals.

In the deterministic case, if the basic reproduction number is less than 1, then the disease-free equilibrium state is globally
asymptotically stable, indicating disease eradication. However, if the basic reproduction number is greater than 1, the
disease persists, as illustrated in Figures 3 and 4. In the stochastic case, we demonstrated that a small perturbation
in the contact rate ensures global asymptotic stability of the disease-free equilibrium state. At two levels, our model
extends the work of Liu et al. (Liu et al., 2020). This involves incorporating the recruitment of susceptible populations
and introducing a stochastic version of the model. Our findings stem from a qualitative study (stability of disease-free
equilibrium). Disease control conditions have been identified based on the basic reproduction number and the intensity
of the perturbation. However, such a result does not hold with high noise intensity, which could be a subject for future
investigation.
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