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Abstract

The main purpose of this paper is the control of the hyperbolic ill-posed Cauchy problem. To do this, we adapt to the

present case the controllability method previously introduced in the stationary case (Guel and Nakoulima 2023). So

we interpret the problem as an inverse problem, and therefore a controllability problem. This point of view induces a

regularization method that makes it possible, on the one hand, to characterize the existence of a regular solution to the

problem. On the other hand, this method makes it possible to obtain a singular optimality system for the optimal control,

without using any additional assumption, such as that of non-vacuity of the interior of the sets of admissible controls, an

assumption that many analyses have had to use.

Keywords: singular distributed system, optimal control, singular optimality system, the ill-posed cauchy problem, con-

trollability method, inverse problem

1. Introduction

In this paper, we are interested in the control of an ill-posed system relating to the Cauchy problem for an hyperbolic

operator. It is a model example of a singular distributed system that occurs in several physical applications. It is the case

in gravimetry, for what concerns the stationary case. But also in questions of the transport of electrical energy (Hadamard

1923), passing through the control of enzymatic reactions (Kernevez 1980 and the bibliography of this work) and the form

of plasmas, for the evolution cases.

To introduce the problem, let Ω ⊂ Rn be a bounded and regular domain of class C2, with boundary Γ = Γ0 ∪ Γ1, where Γ0

and Γ1 are disjointed, regular and with superficial positive measures. For T ∈ R+ \ {0}, we denote by

Q = Ω×]0,T [ and Σ = Γ×]0,T [,

so that

Σ = Σ0 ∪ Σ1, with Σ0 = Γ0×]0,T [ and Σ1 = Γ1×]0,T [.

42



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 6; 2023

We consider in Q, the boundary value problem

∂2z
∂t2 − ∆z = 0 in Q,

z|t=0 = 0 =
∂z
∂t

∣∣∣∣∣
t=0

in Ω,

z = v0,
∂z
∂ν

= v1 on Σ0,

(1)

where v = (v0, v1) is given in
(
L2(Σ0)

)2
.

The problem (1) is the ill-posed Cauchy problem for the wave operator. It is well known (Lions 1983 and Hadamard

1923) that this problem is ill-posed in Hadamard’s sense, that is to say, for a given vector v = (v0, v1), the problem does

not always admits a solution, and it may lead to instability of the solution when it exists.

We therefore consider a priori pairs (v, z) such as

v = (v0, v1) ∈
(
L2(Σ0)

)2
and z ∈ L2(Q) , (2)

and satisfying (1). It is said that such pairs constitute the set of control-state pairs.

Remark 1 (see. Hadamard 1923). It is important to note that, when it exists, the solution to the ill-posed Cauchy problem

is unique.

U0
ad andU1

ad being two non-empty closed convex subsets of L2(Σ0), a control-state pair (v, z) will be said admissible if

v = (v0, v1) ∈ Uad = U0
ad ×U

1
ad, (3)

with (v, z) satisfying (1). We use the notation (v, z) ∈ A to say that A is the set of admissible control-state pairs and

assume (an example is given below)

A , ∅. (4)

Now we introduce the cost function

J(v, z) =
1
2
‖z − zd‖

2
L2(Q) +

N0

2
‖v0‖

2
L2(Σ0) +

N1

2
‖v1‖

2
L2(Σ0), (5)

where N0, N1 ∈ R+ \ {0} and zd ∈ L2(Q) are given. We are then interested in the control problem

inf{J(v, z) ; (v, z) ∈ A} . (6)

The non-vacuity assumption (4), the structure of the set of admissible control-state pairs (it is not difficult to show that

A is a closed convex subset of L2(Σ0) × L2(Σ0) × L2(Q)) and that of J easily show that the problem (6) admits a unique

solution, the optimal control-state pair (u, y).

The cost function J being differentiable, the first order Euler-Lagrange conditions make it possible to establish that the

optimal control-state pair (u, y) satisfies the optimality condition: ∀ (v, z) ∈ A,

(y − zd , z − y)L2(Q) + N0(u0 , v0 − u0)L2(Σ0) + N1(u1 , v1 − u1)L2(Σ0) ≥ 0. (7)

Remains to characterize the optimal control-state pair (u, y) through a singular optimality system.
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According to the literature on this problem, the origins of the Cauchy system control problem can be traced back to Lions

1983. Indeed in this book, presenting solutions to the main difficulties encountered in the enterprise of controlling singular

distributed systems, J. L. Lions deals with the Cauchy system for an elliptic operator, considering a desired state of the

trace on the boundary Γ1. In order to obtain a decoupled singular distributed system, J. L. Lions uses the penalization

method in the particular cases

1. U0
ad = L2(Γ0) , U1

ad ( L2(Γ0); 2. U0
ad ( L2(Γ0) , U1

ad = L2(Γ0).

If the strong convergence of the process is then obtained in the first case, the second requires recourse to the additional

Slater type assumption that

the interior ofU0
ad is non-empty in L2(Γ0) . (8)

However, J. L. Lions conjectures that one should be able to solve the problem only with the usual assumptions of non-

vacuity, convexity and closure of the control setsU0
ad andU1

ad, without resorting to the Slater type assumption (8).

Many authors have studied the control of the ill-posed Cauchy problem. One of the first to take an interest in it was O.

Nakoulima who, in Nakoulima 1994, showed that one could indeed do without the Slater type assumption. In this article

quoted above, considering the distributed observation problem (as it is the case in the present paper) in the elliptic case,

O. Nakoulima effectively manages well, via a regularization-penalization method, to do without that assumption, the sets

of controls

U0
ad = U1

ad =
(
L2(Γ0)

)+
(9)

then considered being of empty interior. The approach adopted considers the control problem as a "singular" limit of a

sequence of well-posed control problems. These results did not, however, exhaust the problem, since they only concerned

a particular case of constraints on controls.

A little later, G. Mophou and O. Nakoulima propose a new approach in Mophou and Nakoulima 2009. The authors

use a regularization method (without penalization), called elliptic-elliptic regularization, and managed to obtain strong

convergence of the process, but resort for that to the Slater type assumption.

Still in the elliptic case, one of the latest results to our knowledge concerns the work of A. Berhail and A. Omrane

(cf. Berhail and Omrane 2015). Thanks to which, using the low and no-regret control notion, the authors managed to

characterize the optimal solution through a strong and decoupled singular optimality system, but this in the particular

unconstrained caseU0
ad = U1

ad = L2(Γ0).

In the evolution cases, the bibliography refers to Barry and Ndiaye 2013 and Barry and Ndiaye 2014, in which the authors,

M. Barry, G. B. Ndiaye and O. Nakoulima take up the idea of penalization method proposed in the elliptic case by J. L.

Lions. The authors then obtained results similar to those obtained in the stationary case.

Nevertheless, in general, the problem remains open. Indeed, as shown by the literature review above, almost all of the

work carried out concerns only specific cases of controls (v0, v1), such as the following:

• U0
ad = U1

ad = L2(Σ0), the "unconstrained" case;

• U0
ad = U1

ad =
(
L2(Σ1)

)+
,

• or with the additional Slater type assumption that

the interiors ofU0
ad and/orU1

ad are non-empty in L2(Γ0) . (10)
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In this paper, we adapt to the hyperbolic case, an original method recently proposed in Guel and Nakoulima 2023. The

point of view adopted consists in interpreting the initial problem (1) as an inverse problem, and therefore a controllability

problem. This approach induces a regularization method that makes it possible, on the one hand, to characterize the

existence of a regular solution to the problem. On the other hand, this method makes it possible to obtain a strong and

decoupled singular optimality system for the optimal control, without using any additional assumption, such as that of

non-vacuity of the interior of the sets of admissible controls, an assumption that many analyses have had to use.

The rest of the paper is organized as follows. Section 2 is devoted to interpreting the initial problem as an inverse problem.

In Section 3, we return to the control problem, starting by regularizing it via the controllability results previously obtained.

After establishing the convergence of the process in Section 3.2, then the approached optimality system in Section 3.3, we

end in Section 3.4 with the singular optimality system for the initial problem.

Example 1 (Non-vacuity of the set of admissible control-state pairs). Suppose that

U0
ad = L2(Σ0) ,

U1
ad

(
⊂ L2(Σ0)

)
is convex closed and containing at least

one function v1 ∈ H1
(
0,T ; H1/2(Γ0)

)
∩ H3/2

(
0,T ; L2(Γ0)

)
.

Then, the set of admissible control-state pairs is non-empty. Indeed, given

v1 ∈ U
1
ad ∩ H1

(
0,T ; H1/2(Γ0)

)
∩ H3/2

(
0,T ; L2(Γ0)

)
,

we build a solution ξ of 

∂2ξ

∂t2 − ∆ξ = 0 in Q,

ξ|t=0 = 0 =
∂ξ

∂t

∣∣∣∣∣
t=0

in Ω,

ξ = 0 on Σ0,
∂ξ

∂ν
= v1 on Σ1.

What defines, and that in a unique way

ξ ∈ H2,2(Q) = H0
(
0,T ; H2(Ω)

)
∩ H2

(
0,T ; H0(Ω)

)
with ξ|Σ ∈ H3/2,3/2(Σ) ⊂ L2(Σ) .

Thus, the control-state pair
(
ξ|Σ0

, v1, ξ
)

is admissible.

2. Controllability for the Hyperbolic Ill-posed Cauchy Problem

We adapt here to the hyperbolic case the idea of controllability, previously introduced in Guel and Nakoulima 2023.

Which consists in interpreting the ill-posed Cauchy problem (1) as a system of inverse problems.

We establish, as in the stationary case, that when it exists, the solution of the hyperbolic ill-posed Cauchy problem coin-

cides with the common solution of the system of inverse problems mentioned above and we also manage to characterize

the existence of a regular solution to the hyperbolic Cauchy system.

Starting by the initial problem (1), we consider the systems
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∂2y1

∂t2 − ∆y1 = 0 in Q,

y1|t=0 = 0 =
∂y1

∂t

∣∣∣∣∣
t=0

in Ω,

y1 = v0 on Σ0,

(11)

and 

∂2y2

∂t2 − ∆y2 = 0 in Q,

y2|t=0 = 0 =
∂y2

∂t

∣∣∣∣∣
t=0

in Ω,

∂y2

∂ν
= v1 on Σ0,

(12)

for which we set ourselves the objective of observing

∂y1

∂ν
= v1 and y2 = v0 on Σ0. (13)

Having, for each of the problems (11) and (12), a datum and an "observation" on the border Σ0 and no information on the

border Σ1, we look at the whole (11)(12)(13) as a system of inverse problems, setting ourselves the problem of knowing

how to complete (11) and (12) on the border Σ1, with "dummy controls" w1 and w2, respectively, which can guarantee to

make the observations (13).

More precisely, we consider the following problem, said inverse problem (also said exact controllability problem): given

(v0, v1) ∈
(
L2(Σ0)

)2
, find (w1,w2) ∈

(
L2(Σ1)

)2
such that, if y1 and y2 are respective solutions of



∂2y1

∂t2 − ∆y1 = 0 in Q,

y1|t=0 = 0 =
∂y1

∂t

∣∣∣∣∣
t=0

in Ω,

y1 = v0 on Σ0,
∂y1

∂ν
= w1 on Σ1,

(14)

and 

∂2y2

∂t2 − ∆y2 = 0 in Q,

y2|t=0 = 0 =
∂y2

∂t

∣∣∣∣∣
t=0

in Ω,

∂y2

∂ν
= v1 on Σ0, y2 = w2 on Σ1,

(15)

then y1 and y2 further satisfy the conditions (13).

Remark 2. The symmetric character of the roles played by y1 and y2 in the formulation of the controllability problem

is obvious. Consequently, one could very well be satisfied with only one of these states in the definition of the problem,
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thus considering one or the other of problems (14) and (15) with the corresponding observation objective in (13). This is

evidenced by the first part of the proof of Theorem 1.

As far as the present analysis is concerned, it is precisely this symmetric nature of the roles of y1 and y2 that motivates

their simultaneous use (which facilitates, perhaps for a short time, the continuation of the analysis), but also the wish to

remain faithful to the framework of Cauchy’s problem.

Remark 3 (Well-defined nature of the controllability problem, see for instance Lions and Magenes 1968). For z ∈ L2(Q)

with
∂2z
∂t2 − ∆z = 0,

we know that

z(t)|Σ ∈ H−1/2(Γ) ,
∂z
∂ν

(t)
∣∣∣∣∣
Σ

∈ H−3/2(Γ) , a.e. t ∈ (0,T ),

z(0), z(T ) ∈ H−1(Ω) and
∂z
∂t

(0),
∂z
∂t

(T ) ∈ H−2(Ω) .

Thus, seeking, within the framework of controllability problems, functions of L2(Σ1) making it possible to reach, or if not,

approaching, the targets fixed still in L2(Σ0), it is necessary that the accessible states y1 and y2 are in H2,2(Q).

Hence the necessity, within the framework of the problem of optimal control, to consider that it is, beyond the non-vacuity

assumption ofA , ∅, the set {
(v, z) ∈ A : z ∈ H2,2(Q)

}
which is non-empty.

Remark 4. If the system (11)(12)(13) admits a solution, then this last one verifies

y1 = z = y2,

where (v = (v0, v1) , z) constitutes a control-state pair for the Cauchy problem.

Remark 5. Problems (14) and (15), mixed Dirichlet-Neumann problems for the wave operator are then two well-posed

problems in the sense of Hadamard.

With these notations, conditions (13) become
∂y1

∂ν
(v0,w1)

∣∣∣∣∣
Σ0

= v1 and y2(v1,w2)|Σ0
= v0. (16)

Finally, and to fix the vocabulary, we will say that the problem (14)(15)(16) constitutes a problem of exact controllability

and that, system (14)(15) is exactly controllable in (v1, v0) if there exist w1,w2 ∈ L2(Σ1) satisfying (16).

Remark 6. By linearity of mappings

(v0,w1) 7−→ y1(v0,w1) = y1(v0, 0) + y1(0,w1)

and

(v1,w2) 7−→ y2(v1,w2) = y2(v1, 0) + y2(0,w2) ,

the exact controllability problem (14)(15)(16) is equivalent to the following:

Find w1,w2 ∈ L2(Σ1) such that the solutions

y1(0,w1) and y2(0,w2) verify

∂y1

∂ν
(0,w1) = 0 , y2(0,w2) = 0 on Σ0,

(17)
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which translates the controllability of the system (y1(0,w1) , y2(0,w2)) in (0, 0).

Then, we approach the problem (17) by density, establishing for this purpose the following proposition.

Proposition 1. Let us denote by

E1 =

{
∂y1

∂ν
(0,w1)

∣∣∣∣∣
Σ0

; w1 ∈ L2(Σ1)
}

and E2 =
{
y2(0,w2)|Σ0

; w2 ∈ L2(Σ1)
}

(18)

the sets of zero and one orders traces, on Σ0, of the reachable states y1 and y2, respectively.

Then, we have that

sets E1 and E2 are dense in L2(Σ0) , (19)

and then we speak of the approached controllability of the system (y1(0,w1) , y2 (0,w2)).

Proof. It is clear that E1 and E2 constitute vector subspaces of L2(Σ0). Hence, by the Hahn-Banach Theorem, E1 and E2

are dense in L2(Σ0) if and only if their orthogonal E⊥1 and E⊥2 are reduced to {0}.

Let k1 ∈ E⊥1 ; so we have

∀w1 ∈ L2(Σ1) ,
(
k1 ,

∂y1

∂ν
(0,w1)

)
L2(Σ0)

= 0.

But, by definition of y1(0,w1), we have

∂2y1

∂t2 (0,w1) − ∆y1(0,w1) = 0 in Q,

y1(0,w1)|t=0 = 0,
∂y1

∂t
(0,w1)

∣∣∣∣∣
t=0

= 0 in Ω,

y1(0,w1) = 0 on Σ0,
∂y1

∂ν
(0,w1) = w1 on Σ1.

So that, taking ϕ ∈ C∞
(
Q
)
, such that 

∂2ϕ

∂t2 − ∆ϕ = 0 in Q,

ϕ|t=T = 0,
∂ϕ

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

ϕ = k1 on Σ0,
∂ϕ

∂ν
= 0 on Σ1,

(20)

it comes that (
∂2y1

∂t2 − ∆y1 , ϕ

)
L2(Q)

=

(
∂2y1

∂t2 , ϕ

)
L2(Q)

− (∆y1 , ϕ)L2(Q) = 0

which is equivalent to(
∂y1

∂t
(T ) , ϕ(T )

)
L2(Ω)

−

(
∂y1

∂t
(0) , ϕ(0)

)
L2(Ω)

−

(
y1(T ) ,

∂ϕ

∂t
(T )

)
L2(Ω)

+

(
y1(0) ,

∂ϕ

∂t
(0)

)
L2(Ω)

+

(
y1 ,

∂2ϕ

∂t2

)
L2(Q)

− (y1 , ∆ϕ)L2(Q)

−

(
∂y1

∂ν
, ϕ

)
L2(Σ)

+

(
y1 ,

∂ϕ

∂ν

)
L2(Σ)

= 0,
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that is to say (
y1 ,

∂2ϕ

∂t2

)
L2(Q)

− (y1 , ∆ϕ)L2(Q) −

(
∂y1

∂ν
, ϕ

)
L2(Σ0)

− (w1 , ϕ)L2(Σ1) +

(
y1 ,

∂ϕ

∂ν

)
L2(Σ1)

= 0,

either again

−

(
∂y1

∂ν
, k1

)
L2(Σ0)

− (w1 , ϕ)L2(Σ1) = 0. (21)

As

k1 ∈ E⊥1 ⇐⇒
(
∂y1

∂ν
, k1

)
L2(Σ0)

= 0,

then (21) becomes

∀w1 ∈ L2(Σ1) , (w1 , ϕ)L2(Σ1) = 0, (22)

taking w1 = ϕ on Σ1, we have

‖ϕ‖2L2(Σ1) = 0 i.e. ϕ = 0 on Σ1.

So therefore, it comes from (20), that ϕ satisfies the ill-posed Cauchy problem

∂2ϕ

∂t2 − ∆ϕ = 0 in Q,

ϕ|t=T = 0,
∂ϕ

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

ϕ = 0,
∂ϕ

∂ν
= 0 on Σ1.

(23)

But then, due to the uniqueness, when it exists, of the solution of such problem, we obtain that ϕ ≡ 0, and consequently,

that

ϕ|Σ0
= 0 i.e. k1 = 0.

This last equality being valid for all w1 ∈ L2(Σ1), we deduce that:

∀ k1 ∈ E⊥1 , k1 = 0.

Which means E⊥1 = {0}, so that E1 is well dense in L2(Σ0).

Analogeously, one conclude at the same result for E2. �

Remark 7. The approximate controllability problem (19) expresses the following idea: failing to find w1,w2 ∈ L2(Σ1)

making it possible to reach the targets
∂y1

∂ν

∣∣∣∣∣
Σ0

= 0 and y2|Σ0
= 0

fixed by the exact controllability problem (17), one can obtain sequences

(w1ε)ε, (w2ε)ε ⊂ L2(Σ1) ,

by the through which the fixed targets can be approached to ε close, and this, for all ε > 0.

The two corollaries which follow specify this result, first for the exact controllability problem (17) then, by linearity of the

problem (cf. Remark (6)), for the exact controllability problem (14)(15)(16).
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Corollary 1. For all ε > 0, it exists w1ε, w2ε ∈ L2(Σ1) such that

y1ε = y1(0,w1ε) , y2ε = y2(0,w2ε) ∈ H2,2(Q)

are unique solutions of 

∂2y1ε

∂t2 − ∆y1ε = 0, in Q,

y1ε

∣∣∣
t=0 = 0,

∂y1ε

∂t

∣∣∣∣∣
t=0

= 0 in Ω,

y1ε = 0 on Σ0,
∂y1ε

∂ν
= w1ε on Σ1,

(24)



∂2y2ε

∂t2 − ∆y2ε = 0 in Q,

y2ε

∣∣∣
t=0 = 0,

∂y2ε

∂t

∣∣∣∣∣
t=0

= 0 in Ω,

∂y2ε

∂ν
= 0 on Σ0, y2ε = w2ε on Σ1,

(25)

∥∥∥∥∥∂y1ε

∂ν

∥∥∥∥∥
L2(Σ0)

< ε and
∥∥∥y2ε

∥∥∥
L2(Σ0) < ε. (26)

Corollary 2. For all v0, v1 ∈ L2(Σ0) and ε > 0, it exists w1ε, w2ε ∈ L2(Σ1) such that

y1(v0,w1ε) , y2(v1,w2ε) ∈ H2,2(Q)

are unique solutions of

∂2y1

∂t2 (v0,w1ε) − ∆y1(v0,w1ε) = 0 in Q,

y1(v0,w1ε)|t=0 = 0,
∂y1

∂t
(v0,w1ε)

∣∣∣∣∣
t=0

= 0 in Ω,

y1(v0,w1ε) = v0 on Σ0,
∂y1

∂ν
(v0,w1ε) = w1ε on Σ1,

(27)



∂2y2

∂t2 (v1,w2ε) − ∆y2(v1,w2ε) = 0 in Q,

y2(v1,w2ε)|t=0 = 0,
∂y2

∂t
(v1,w2ε)

∣∣∣∣∣
t=0

= 0 in Ω,

∂y2

∂ν
(v1,w2ε) = v1 on Σ0, y2(v1,w2ε) = w2ε on Σ1,

(28)

∥∥∥∥∥∂y1

∂ν
(v0,w1ε) − v1

∥∥∥∥∥
L2(Σ0)

< ε and ‖y2(v1,w2ε) − v0‖L2(Σ0) < ε. (29)

Moreover, we establish

50



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 6; 2023

Theorem 1. Given v = (v0, v1) ∈
(
L2(Σ0)

)2
, the ill-posed Cauchy problem

∂2z
∂t2 − ∆z = 0 in Q,

z|t=0 = 0,
∂z
∂t

∣∣∣∣∣
t=0

= 0 in Ω,

z = v0,
∂z
∂ν

= v1 on Σ0,

(30)

admits a regular solution z ∈ H2,2(Q) if and only if either of the sequences (w1ε)ε or (w2ε)ε is bounded in L2(Σ1).

Proof.

1. Let ε > 0. According to Corollary 2, it exists w1ε, w2ε ∈ L2(Σ1), such that there exist

y1(v0,w1ε) , y2(v1,w2ε) ∈ H2,2(Q)

solutions of (27),(28) and (29). Then, we generate

(w1ε)ε, (w2ε)ε ⊂ L2(Σ1) and (y1(v0,w1ε))ε, (y2(v1,w2ε))ε ⊂ H2,2(Q) .

Assuming that the sequence (w1ε)ε is bounded in L2(Σ1), it follows, the mixed Dirichlet-Neumann problem (27)

being well posed in the Hadamard’s sense, that the sequence (y1(v0,w1ε))ε is bounded in H2,2(Q), and therefore

again in L2(Q), by continuity of the canonical injection of H2,2(Q) in L2(Q). Then, we deduce that we can extract,

from (w1ε)ε and (y1(v0,w1ε))ε respectively, subsequences, again denote in the same way, which converge in L2(Σ1)

and H2,2(Q), respectively. Thus, there exist

w1 ∈ L2(Σ1) and y1 ∈ H2,2(Q)

such that, when ε→ 0,
w1ε −→ w1 weakly in L2(Σ1) ,

y1(v0,w1ε) −→ y1 weakly in H2,2(Q) .

But then, we have on the one hand that, when ε→ 0,∥∥∥∥∥∂y1

∂ν
(v0,w1ε) − v1

∥∥∥∥∥
L2(Σ0)

< ε and y1(v0,w1ε) −→ y1 weakly in H2,2(Q) ,

involve, by continuity of the trace operator γ1 : L2
(
0,T,H

3
2 (Ω)

)
−→ L2(Σ) (see Lions 1968, p. 21), that

∂y1

∂ν
= v1 on Σ0. (31)

On the other hand, for all ϕ ∈ C∞
(
Q
)
, we have:

∂2y1

∂t2 (v0,w1ε) − ∆y1(v0,w1ε) = 0 in Q =⇒

(
∂2y1

∂t2 − ∆y1 , ϕ

)
L2(Q)

= 0,

so, denoting φ1ε = y1(v0,w1ε), that(
∂2φ1ε

∂t2 − ∆φ1ε , ϕ

)
L2(Q)

= 0 ⇐⇒
(
∂2φ1ε

∂t2 , ϕ

)
L2(Q)

−
(
∆φ1ε , ϕ

)
L2(Q) = 0 ;
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that is to say (
∂φ1ε

∂t
(T ) , ϕ(T )

)
L2(Ω)

−

(
φ1ε(T ) ,

∂ϕ

∂t
(T )

)
L2(Ω)

+

(
φ1ε ,

∂2ϕ

∂t2

)
L2(Q)

−
(
φ1ε , ∆ϕ

)
L2(Q)

−

(
∂φ1ε

∂ν
, ϕ

)
L2(Σ0)

−

(
∂φ1ε

∂ν
, ϕ

)
L2(Σ1)

+

(
φ1ε ,

∂ϕ

∂ν

)
L2(Σ0)

+

(
φ1ε ,

∂ϕ

∂ν

)
L2(Σ1)

= 0,

and so (
∂φ1ε

∂t
(T ) , ϕ(T )

)
L2(Ω)

−

(
φ1ε(T ) ,

∂ϕ

∂t
(T )

)
L2(Ω)

+

(
φ1ε ,

∂2ϕ

∂t2

)
L2(Q)

−
(
φ1ε , ∆ϕ

)
L2(Q)

−

(
∂φ1ε

∂ν
, ϕ

)
L2(Σ0)

− (w1ε , ϕ)L2(Σ1) +

(
v0 ,

∂ϕ

∂ν

)
L2(Σ0)

+

(
φ1ε ,

∂ϕ

∂ν

)
L2(Σ1)

= 0.

By passing to the limit, it comes that(
∂y1

∂t
(T ) , ϕ(T )

)
L2(Ω)

−

(
y1(T ) ,

∂ϕ

∂t
(T )

)
L2(Ω)

+

(
y1 ,

∂2ϕ

∂t2

)
L2(Q)

− (y1 , ∆ϕ)L2(Q)

−

(
∂y1

∂ν
, ϕ

)
L2(Σ0)

− (w1 , ϕ)L2(Σ1) +

(
v0 ,

∂ϕ

∂ν

)
L2(Σ0)

+

(
y1 ,

∂ϕ

∂ν

)
L2(Σ1)

= 0,

which is equivalent to

−

(
y1(0) ,

∂ϕ

∂t
(0)

)
L2(Ω)

+

(
∂y1

∂t
(0) , ϕ(0)

)
L2(Ω)

+

(
∂2y1

∂t2 , ϕ

)
L2(Q)

− (∆y1 , ϕ)L2(Q)

+

(
v0 − y1 ,

∂ϕ

∂ν

)
L2(Σ0)

+

(
∂y1

∂ν
− w1 , ϕ

)
L2(Σ1)

= 0.

This last equality being valid for all ϕ ∈ C∞
(
Q
)
, it follows that

∂2y1

∂t2 − ∆y1 = 0 in Q,

y1|t=0 = 0,
∂y1

∂t

∣∣∣∣∣
t=0

= 0 in Ω,

y1 = v0 on Σ0,
∂y1

∂ν
= w1 on Σ1.

(32)

Then, (31) and (32) give in particular that

∂2y1

∂t2 − ∆y1 = 0 in Q,

y1|t=0 = 0,
∂y1

∂t

∣∣∣∣∣
t=0

= 0 in Ω,

y1 = v0,
∂y1

∂ν
= v1 on Σ0,
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so that y1 ∈ H2,2(Q) is solution of the ill-posed Cauchy problem (30), a regular solution, due to the well-posed

nature of (27).

Symmetrically, the above shows that, assuming that (w2ε)ε is bounded in L2(Σ1), we likewise obtain that there exist

w2 ∈ L2(Σ1) and y2 ∈ H2,2(Q) ,

such that, when ε→ 0,
w2ε −→ w2 weakly in L2(Σ1) ,

y2ε(v1,w2ε) −→ y2 weakly in H2,2(Q) ,

where y2 ∈ H2,2(Q) is also solution to the ill-posed Cauchy problem (30).

2. Now, we assume that the Cauchy problem (30) admits a solution z ∈ H2,2(Q).

Then, we have

z|Σ1
∈ L2

(
0,T ; H3/2(Γ1)

)
⊂ L2(Σ1) and

∂z
∂ν

∣∣∣∣∣
Σ1

∈ L2
(
0,T ; H1/2(Γ1)

)
⊂ L2(Σ1) .

So that, for all ε > 0, we can easily define

w1ε =
∂z
∂ν

∣∣∣∣∣
Σ1

∈ L2(Σ1) and w2ε = z|Σ1
∈ L2(Σ1)

to obtain existence of sequences

(w1ε)ε, (w2ε)ε ⊂ L2(Σ1)

bounded in L2(Σ1) since constants; from where the result. �

From Theorem 1, it follows

Corollary 3. z ∈ H2,2(Q) being a regular solution of the ill-posed Cauchy problem (30), then

y1 = z = y2.

3. The Optimal Control problem

Let us start by recalling that we are interested here in the control of the hyperbolic ill-posed Cauchy problem. Starting by

the following problem 

∂2z
∂t2 − ∆z = 0 in Q,

z|t=0 = 0,
∂z
∂t

∣∣∣∣∣
t=0

= 0 in Ω,

z = v0,
∂z
∂ν

= v1 on Σ0,

(33)

we consider, for all control-state pair (v, z), the cost function

J(v, z) =
1
2
‖z − zd‖

2
L2(Q) +

N0

2
‖v0‖

2
L2(Σ0) +

N1

2
‖v1‖

2
L2(Σ0), (34)

being interested in the control problem

inf {J(v, z) ; (v, z) ∈ A} . (35)
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More precisely, it is here about the characterization of the optimal control-state pair (u, y), via a singular strong and

decoupled optimality system.

To do this, we propose in the rest of this section, a regularization method, called controllability method, based on the

results of the previous section. This last, recently introduced in the stationary case (cf. Guel and Nakoulima 2023),

approaches the initial control problem by a sequence of approached control problems relating to the well-posed problems

(27) and (28). The control problems then considered being regular, the classical theory of optimal control easily apply to

lead to the expected result.

3.1 The Controllability Method

Starting by the non-vacuity assumptionA , ∅ and within the framework of Remark 3, we have, for all

v = (v0, v1) ∈ Uad and ε > 0,

that there exist

w1ε, w2ε ∈ L2(Σ1) such that y1(v0,w1ε) , y2(v1,w2ε) ∈ H2,2(Q)

satisfy 

∂2y1

∂t2 (v0,w1ε) − ∆y1(v0,w1ε) = 0 in Q,

y1(v0,w1ε)|t=0 = 0,
∂y1

∂t
(v0,w1ε)

∣∣∣∣∣
t=0

= 0 in Ω,

y1(v0,w1ε) = v0 on Σ0,
∂y1

∂ν
(v0,w1ε) = w1ε on Σ1,

(36)



∂2y2

∂t2 (v1,w2ε) − ∆y2(v1,w2ε) = 0 in Q,

y2(v1,w2ε)|t=0 = 0,
∂y2

∂t
(v1,w2ε)

∣∣∣∣∣
t=0

= 0 in Ω,

∂y2

∂ν
(v1,w2ε) = v1 on Σ0, y2(v1,w2ε) = w2ε on Σ1,

(37)

∥∥∥∥∥∂y1

∂ν
(v0,w1ε) − v1

∥∥∥∥∥
L2(Σ0)

< ε and ‖y2(v1,w2ε) − v0‖L2(Σ0) < ε. (38)

Then, we consider, for θ1, θ2 ∈ R+ : θ1 + θ2 = 1, the functional

Jε(v0, v1) =
θ1

2
‖y1(v0,w1ε) − zd‖

2
L2(Q) +

θ2

2
‖y2(v1,w2ε) − zd‖

2
L2(Q)

+
N0

2
‖v0‖

2
L2(Σ0) +

N1

2
‖v1‖

2
L2(Σ0),

(39)

being interested in the approached optimal control problem

inf {Jε(v0, v1) ; v = (v0, v1) ∈ Uad} , (40)

for which we immediately have

Proposition 2. For all ε > 0, the control problem (40) admits a unique solution, the approached optimal control uε =

(u0ε, u1ε).
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Proof. The spaceUad is closed convex and the functional Jε is coercive and strictly convex. From where the result. �

Remark 8. Let us note that, choosing θ1, θ2 ∈ R+ : θ1 + θ2 = 1 in (39) ensures that, by passing to the limit, since

y1ε = y1(v0,w1ε) −→ y and y2ε = y2(v1,w2ε) −→ y,

the functional (39) converges towards the functional (34).

3.2 Convergence of the Method

Let ε > 0. Since we have existence and uniqueness of the approached optimal control uε = (u0ε, u1ε) ∈ Uad ⊂
(
L2(Σ0)

)2
,

it follows, with what precedes, that there exist

w1ε, w2ε ∈ L2(Σ1) and y1ε, y2ε ∈ H2,2(Q)

such that 

∂2y1ε

∂t2 − ∆y1ε = 0 in Q,

y1ε

∣∣∣
t=0 = 0,

∂y1ε

∂t

∣∣∣∣∣∣
t=0

= 0 in Ω,

y1ε = u0ε on Σ0,
∂y1ε

∂ν
= w1ε on Σ1,

(41)



∂2y2ε

∂t2 − ∆y2ε = 0 in Q,

y2ε

∣∣∣
t=0 = 0,

∂y2ε

∂t

∣∣∣∣∣∣
t=0

= 0 in Ω,

∂y2ε

∂ν
= u1ε on Σ0, y2ε = w2ε on Σ1,

(42)

∥∥∥∥∥∥∂y1ε

∂ν
− u1ε

∥∥∥∥∥∥
L2(Σ0)

< ε and
∥∥∥y2ε − u0ε

∥∥∥
L2(Σ0) < ε, (43)

with, for all v ∈ Uad, Jε(u0ε, u1ε) ≤ Jε(v0, v1). Therefore in particular

Jε(u0ε, u1ε) ≤ Jε(u0, u1) , (44)

where u = (u0, u1) is the optimal control for (33)(34)(35).

But we check that Jε(u0, u1) = J(u, y) is independent of ε, and consequently that (44) becomes

Jε(u0ε, u1ε) ≤ Jε(u0, u1) = J(u, y). (45)

From which it follows that there exist constants Ci ∈ R+ \ {0}, independent of ε, such that
∥∥∥y1ε

∥∥∥
L2(Q) ≤ C1,

∥∥∥y2ε

∥∥∥
L2(Q) ≤ C2,

‖u0ε‖L2(Σ0) ≤ C3, ‖u1ε‖L2(Σ0) ≤ C4,

(46)
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and therefore that there exist û0, û1 ∈ L2(Σ0) and ŷ1, ŷ2 ∈ L2(Q) such that, when ε→ 0,
u0ε −→ û0 weakly in L2(Σ0)

u1ε −→ û1 weakly in L2(Σ0) ,

(47)

and 
y1ε −→ ŷ1 weakly in L2(Q) ,

y2ε −→ ŷ2 weakly in L2(Q) ,

(48)

the pair
(̂
u =

(̂
u0, û1

)
, ŷ

)
, with ŷ1 = ŷ = ŷ2, being admissible. Thus, it comes on the one hand, by optimality of the optimal

control-state pair (u, y), that

J(u, y) ≤ J
(̂
u, ŷ

)
(49)

and on the other hand, passing to the limit in (45), that

J
(̂
u, ŷ

)
≤ J(u, y), (50)

so that

J
(̂
u, ŷ

)
≤ J(u, y) ≤ J

(̂
u, ŷ

)
.

That is to say, by uniqueness of the optimal control-state pair (u, y), that
(̂
u, ŷ

)
= (u, y). Thereby we have just proved the

following result.

Proposition 3. For all ε > 0, the approached optimal control uε = (u0ε, u1ε), solution of (40), is such that, when ε → 0,(
uε, yε

)
verifies 

u0ε −→ u0 weakly in L2(Σ0) ,

u1ε −→ u1 weakly in L2(Σ0) ,

y1ε −→ y weakly in L2(Q) ,

y2ε −→ y weakly in L2(Q) ,

(51)

where (u, y) is the optimal control-state pair for (33)(34)(35).

But we have even more as shown now.

Theorem 2. The approached optimal control uε = (u0ε, u1ε) and the associate approached optimal state yε =
(
y1ε, y2ε

)
are such that, when ε→ 0, 

u0ε −→ u0 strongly in L2(Σ0) ,

u1ε −→ u1 strongly in L2(Σ0)

(52)

and 
y1ε −→ y strongly in L2(Q) ,

y2ε −→ y strongly in L2(Q) .

(53)
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Proof. From the previous results, we have, when ε→ 0,
u0ε −→ u0 weakly in L2(Σ0) ,

u1ε −→ u1 weakly in L2(Σ0) ,

(54)


y1ε −→ y weakly in L2(Q) ,

y2ε −→ y weakly in L2(Q)

(55)

and

J(u, y) = lim
ε→0

Jε(u0ε, u1ε) , (56)

this last result being translated by

‖y − zd‖
2
L2(Q) + N0‖u0‖

2
L2(Σ0) + N1‖u1‖

2
L2(Σ0)

= lim
ε→0

(
θ1

∥∥∥y1ε − zd

∥∥∥2
L2(Q) + θ2

∥∥∥y2ε − zd

∥∥∥2
L2(Q) + N0‖u0ε‖

2
L2(Q) + N1‖u1ε‖

2
L2(Σ0)

)
.

(57)

But then, the norms being continuous, a fortiori weakly lower semi-continuous, it follows, with (54) and (55), that

‖y − zd‖
2
L2(Q) ≤ lim inf

ε→0

(
θ1

∥∥∥y1ε − zd

∥∥∥2
L2(Q) + θ2

∥∥∥y2ε − zd

∥∥∥2
L2(Q)

)

‖u0‖
2
L2(Σ0) ≤ lim inf

ε→0
‖u0ε‖

2
L2(Σ0),

‖u1‖
2
L2(Σ0) ≤ lim inf

ε→0
‖u1ε‖

2
L2(Σ0).

(58)

So that (57) and (58) bring 

‖y − zd‖
2
L2(Q) = lim

ε→0

(
θ1

∥∥∥y1ε − zd

∥∥∥2
L2(Q) + θ2

∥∥∥y2ε − zd

∥∥∥2
L2(Q)

)

‖u0‖
2
L2(Σ0) = lim

ε→0
‖u0ε‖

2
L2(Σ0)

‖u1‖
2
L2(Σ0) = lim

ε→0
‖u1ε‖

2
L2(Σ0).

(59)

So therefore, since

‖u0ε − u0‖
2
L2(Σ0) + ‖u1ε − u1‖

2
L2(Σ0) = ‖u0ε‖

2
L2(Σ0) + ‖u0‖

2
L2(Σ0) + ‖u1ε‖

2
L2(Σ0) + ‖u1‖

2
L2(Σ0)

− 2(u0ε , u0)L2(Σ0) − 2(u1ε , u1)L2(Σ0)

we obtain, by passing to the limit with (54), (59)2 and (59)3, that

lim
ε→0

(
‖u0ε − u0‖

2
L2(Σ0) + ‖u1ε − u1‖

2
L2(Σ0)

)
= 0,

which leads to 
u0ε −→ u0 strongly in L2(Σ0) ,

u1ε −→ u1 strongly in L2(Σ0) .

(60)
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Moreover, let us begin by noting that we can take, in (59)1, successively

(θ1 = 1, θ2 = 0) then (θ1 = 0, θ2 = 1)

to obtain

lim
ε→0

∥∥∥y1ε − zd

∥∥∥2
L2(Q) = ‖y − zd‖

2
L2(Q) = lim

ε→0

∥∥∥y2ε − zd

∥∥∥2
L2(Q). (61)

So, from ∥∥∥y1ε − y
∥∥∥2

L2(Q) =
∥∥∥y1ε − zd

∥∥∥2
L2(Q) + ‖y − zd‖

2
L2(Q) − 2

(
y1ε − zd , y − zd

)
L2(Q)

and ∥∥∥y2ε − y
∥∥∥2

L2(Q) =
∥∥∥y2ε − zd

∥∥∥2
L2(Q) + ‖y − zd‖

2
L2(Q) − 2

(
y2ε − zd , y − zd

)
L2(Q)

it follows, with (61) and (55), that 
y1ε −→ y strongly in L2(Q) ,

y2ε −→ y strongly in L2(Q) .

(62)

So we end up proving the result. �

Let us now establish, with these results of strong convergence, the approached and singular optimality systems, for the

approached optimal control uε and the optimal control-state pair (u, y), respectively.

3.3 Approached Optimality System

Let ε > 0. Let us start by recalling that, for the approached optimal control uε = (u0ε, u1ε) ∈ Uad, there exist w1ε, w2ε ∈

L2(Σ1) and y1ε, y2ε ∈ H2,2(Q), such that

∂2y1ε

∂t2 − ∆y1ε = 0 in Q,

y1ε

∣∣∣
t=0 = 0,

∂y1ε

∂t

∣∣∣∣∣∣
t=0

= 0 in Ω,

y1ε = u0ε on Σ0,
∂y1ε

∂ν
= w1ε on Σ1,

(63)



∂2y2ε

∂t2 − ∆y2ε = 0 in Q,

y2ε

∣∣∣
t=0 = 0,

∂y2ε

∂t

∣∣∣∣∣∣
t=0

= 0 in Ω,

∂y2ε

∂ν
= u1ε on Σ0, y2ε = w2ε on Σ1,

(64)

∥∥∥∥∥∥∂y1ε

∂ν
− u1ε

∥∥∥∥∥∥
L2(Σ0)

< ε and
∥∥∥y2ε − u0ε

∥∥∥
L2(Σ0) < ε. (65)

So, for all v = (v0, v1) ∈ Uad and λ ∈ R \ {0}, we have that

d
dλ

Jε(u0ε + λ (v0 − u0ε) , u1ε)
∣∣∣∣∣
λ=0

= θ1

(
y1ε − zd , φ1ε

)
L2(Q)

+ N0(u0ε , v0 − u0ε)L2(Σ0), (66)
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where φ1ε = y1(v0 − u0ε,w1ε) − y1(0,w1ε) is given by

∂2φ1ε

∂t2 − ∆φ1ε = 0 in Q,

φ1ε

∣∣∣
t=0 = 0,

∂φ1ε

∂t

∣∣∣∣∣
t=0

= 0 in Ω,

φ1ε = v0 − u0ε on Σ0,
∂φ1ε

∂ν
= 0 on Σ1.

(67)

Similarly, we get that

d
dλ

Jε(u0ε, u1ε + λ (v1 − u1ε))
∣∣∣∣∣
λ=0

= θ2

(
y2ε − zd , φ2ε

)
L2(Q)

+ N1(u1ε , v1 − u1ε)L2(Σ0), (68)

with φ2ε = y2(v1 − u1ε,w2ε) − y2(0,w2ε) defined by

∂2φ2ε

∂t2 − ∆φ2ε = 0 in Q,

φ2ε

∣∣∣
t=0 = 0,

∂φ2ε

∂t

∣∣∣∣∣
t=0

= 0 in Ω,

∂φ2ε

∂ν
= v1 − u1ε on Σ0, φ2ε = 0 on Σ1.

(69)

Which gives, with the first order Euler-Lagrange conditions, that the approached optimal control uε = (u0ε, u1ε) is the

unique element ofUad satisfying

∀ v = (v0, v1) ∈ Uad,

θ1

(
y1ε − zd , φ1ε

)
L2(Q)

+ N0(u0ε , v0 − u0ε)L2(Σ0) ≥ 0,

θ2

(
y2ε − zd , φ2ε

)
L2(Q)

+ N1(u1ε , v1 − u1ε)L2(Σ0) ≥ 0.

(70)

Then, we introduce the adjunct states p1ε and p2ε respectively defined by

∂2 p1ε

∂t2 − ∆p1ε = θ1

(
y1ε − zd

)
in Q,

p1ε

∣∣∣
t=T = 0,

∂p1ε

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

p1ε = 0 on Σ0,
∂p1ε

∂ν
= 0 on Σ1,

(71)

and 

∂2 p2ε

∂t2 − ∆p2ε = θ2

(
y2ε − zd

)
in Q,

p2ε

∣∣∣
t=T = 0,

∂p2ε

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

∂p2ε

∂ν
= 0 on Σ0, p2ε = 0 on Σ1.

(72)

59



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 6; 2023

So it comes, from (67) et (71), that

θ1

(
y1ε − zd , φ1ε

)
L2(Q)

=

(
∂2 p1ε

∂t2 , φ1ε

)
L2(Q)

−
(
∆p1ε , φ1ε

)
L2(Q)

=

(
p1ε ,

∂2φ1ε

∂t2

)
L2(Q)

−
(
p1ε , ∆φ1ε

)
L2(Q) −

(
∂p1ε

∂ν
, v0 − u0ε

)
L2(Σ0)

= −

(
∂p1ε

∂ν
, v0 − u0ε

)
L2(Σ0)

,

and, from (69) et (72), that

θ2

(
y2ε − zd , φ2ε

)
L2(Q)

=

(
∂2 p2ε

∂t2 , φ2ε

)
L2(Q)

−
(
∆p2ε , φ2ε

)
L2(Q)

=

(
p2ε ,

∂2φ2ε

∂t2

)
L2(Q)

−
(
p2ε , ∆φ2ε

)
L2(Q) −

(
∂p2ε

∂ν
, φ2ε

)
L2(Σ0)

−

(
∂p2ε

∂ν
, φ2ε

)
L2(Σ1)

+

(
p2ε ,

∂φ2ε

∂ν

)
L2(Σ0)

+

(
p2ε ,

∂φ2ε

∂ν

)
L2(Σ1)

=

(
p2ε ,

∂2φ2ε

∂t2

)
L2(Q)

−
(
p2ε , ∆φ2ε

)
L2(Q) +

(
p2ε , v1 − u1ε

)
L2(Σ0)

=
(
p2ε , v1 − u1ε

)
L2(Σ0).

Thus, the optimality condition (70) is rewritten



∀ v = (v0, v1) ∈ Uad,

(
N0u0ε −

∂p1ε

∂ν
, v0 − u0ε

)
L2(Σ0)

≥ 0,

(
N1u1ε + p2ε , v1 − u1ε

)
L2(Σ0) ≥ 0.

(73)

Which ends up proving the following theorem, characterizing the approached optimal control uε.

Theorem 3. Let ε > 0. The approached optimal control uε = (u0ε, u1ε) is unique solution to (40) if and only if there exist

w1ε,w2ε ∈ L2(Σ1) , y1ε, y2ε ∈ H2,2(Q) and p1ε, p2ε ∈ H2,2(Q),

such that the quadruplet
{
(u0ε, u1ε) , (w1ε,w2ε) ,

(
y1ε, y2ε

)
,
(
p1ε, p2ε

)}
is solution of the approached optimality system de-
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fined by the partial differential systems



∂2y1ε

∂t2 − ∆y1ε = 0 in Q,

y1ε

∣∣∣
t=0 = 0,

∂y1ε

∂t

∣∣∣∣∣∣
t=0

= 0 in Ω,

y1ε = u0ε on Σ0,
∂y1ε

∂ν
= w1ε on Σ1,

(74)



∂2y2ε

∂t2 − ∆y2ε = 0 in Q,

y2ε

∣∣∣
t=0 = 0,

∂y2ε

∂t

∣∣∣∣∣∣
t=0

= 0 in Ω,

∂y2ε

∂ν
= u1ε on Σ0, y2ε = w2ε on Σ1,

(75)



∂2 p1ε

∂t2 − ∆p1ε = θ1

(
y1ε − zd

)
in Q,

p1ε

∣∣∣
t=T = 0,

∂p1ε

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

p1ε = 0 on Σ0,
∂p1ε

∂ν
= 0 on Σ1,

(76)



∂2 p2ε

∂t2 − ∆p2ε = θ2

(
y2ε − zd

)
in Q,

p2ε

∣∣∣
t=T = 0,

∂p2ε

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

∂p2ε

∂ν
= 0 on Σ0, p2ε = 0 on Σ1,

(77)

the estimates ∥∥∥∥∥∥∂y1ε

∂ν
− u1ε

∥∥∥∥∥∥
L2(Σ0)

< ε and
∥∥∥y2ε − u0ε

∥∥∥
L2(Σ0) < ε, (78)

and the variational inequality system 

∀ v = (v0, v1) ∈ Uad,

(
N0u0ε −

∂p1ε

∂ν
, v0 − u0ε

)
L2(Σ0)

≥ 0,

(
N1u1ε + p2ε , v1 − u1ε

)
L2(Σ0) ≥ 0.

(79)
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3.4 Singular Optimality System

From the results of Section 3.2, we have, when ε→ 0,
u0ε −→ u0 strongly in L2(Σ0) ,

u1ε −→ u1 strongly in L2(Σ0)

and


y1ε −→ y strongly in L2(Q) ,

y2ε −→ y strongly in L2(Q) ,

where (u, y) is the optimal control-state pair for (35).

Then, systems (76) and (77) being well-posed in the sense of Hadamard, it follows that there exist

p1, p2 ∈ H2,2(Q), (80)

with, when ε→ 0, 
p1ε −→ p1 strongly in L2(Q) ,

p2ε −→ p2 strongly in L2(Q) .

(81)

Thus, the singular optimality system, for the optimal control-state pair (u, y) of the initial control problem (35), is as

specified by the following theorem, easily deriving, with the strong convergence results recalled above, from the previous

Theorem 3.

Theorem 4. The control-state pair (u, y) is unique solution of (33)(34)(35) if and only if the triple {u, y, p}, with

p = (p1, p2) ∈
(
H2,2(Q)

)2

as given above by (80) and (81), is solution of the singular optimality system defined by the partial differential systems

∂2y
∂t2 − ∆y = 0 in Q,

y|t=0 = 0,
∂y
∂t

∣∣∣∣∣
t=0

= 0 in Ω,

y = u0,
∂y
∂ν

= u1 on Σ0,

(82)



∂2 p1

∂t2 − ∆p1 = θ1 (y − zd) in Q,

p1|t=T = 0,
∂p1

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

p1 = 0 on Σ0,
∂p1

∂ν
= 0 on Σ1,

(83)



∂2 p2

∂t2 − ∆p2 = θ2 (y − zd) in Q

p2|t=T = 0,
∂p2

∂t

∣∣∣∣∣
t=T

= 0 in Ω,

∂p2

∂ν
= 0 on Σ0, p2 = 0 on Σ1,

(84)
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and the variational inequalities system 

∀ v = (v0, v1) ∈ Uad,

(
N0u0 −

∂p1

∂ν
, v0 − u0

)
L2(Σ0)

≥ 0,

(N1u1 + p2 , v1 − u1)L2(Σ0) ≥ 0.

(85)

As we indicated earlier, the present analysis addresses well the question of the control of the hyperbolic Cauchy system

without using any other assumption than the sufficient ones of non-vacuity, convexity and closure of the sets of admissible

controls. The density results obtained by the interpretation made of the initial problem being enough to achieve the strong

convergence of the process.

4. Conclusion

In this work, we succeed in characterizing the optimal control-state pair of the control problem for the hyperbolic ill-

posed Cauchy problem, using the controllability concept. The method consists in interpreting the initial problem as a

system of inverse problems and therefore a system of controllability problems. An approach that allows us to obtain, in

the general case with constraints on the control, a strong and decoupled singular optimality system. And that, without

using any additional assumption, such as that of non-vacuity of the interior of the sets of admissible controls, a Slater-type

assumption that many analyses have had to use.
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