Volume and Surface of the Hypersphere

Vlad L. Negulescu
Correspondence: Vlad L. Negulescu. E-Mail: vlulune@googlemail.com
Received: June 26, 2023 Accepted: October 4, 2023 Online Published: October 17, 2023
doi:10.5539/jmr.v15n5p69
URL: https://doi.org/10.5539/jmr.v15n5p69

Abstract

This paper presents a simply method to calculate the volume and the surface of a hypersphere, and is mainly addressed to students who study physics or engineering. The basic knowledges of geometry and mathematical analysis are sufficient to understand the material presented below.

Keywords: content, generalized surface, unit radius sphere, unit radius surface

1. Introduction

The content, or the generalized volume of a domain(body) in a Euclidean n-dimensional space, shows the amount of space occupied by this domain. For example, if the domain is a curve (one-dimensional), then the content is expressed by its length. The content of a surface (two-dimensional) is its area. For the three-dimensional subspaces the content is identical with the classical volume.

The generalized surface(frontier), or boundary of a body in n dimensional Euclidian space represents the ($\mathrm{n}-1$)-dimensional domain, which separates the body from the rest of space.
Let us see as example the two-dimensional sphere (circle). See the figure 1, below:

Figure 1. The two-dimensional sphere, of radius $\mathrm{R}=2$ divisions
The differential volume is a rectangle with the length of $2 R \cos \beta$, and width of dx_{2} (the differential of the variable x_{2}).

$$
\begin{gather*}
d x_{2}=d(R \sin \beta)=R \cos \beta d \beta \\
d V_{2}(R)=2 R^{2} \cos ^{2} \beta d \beta \tag{1.1}\\
V_{2}(R)=2 R^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \beta d \beta=4 R^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \beta d \beta \tag{1.2}
\end{gather*}
$$

In general, we may write: $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos \pi^{n} \beta d \beta$

$$
\begin{gather*}
I_{2}=\int_{0}^{\frac{\pi}{2}} \cos ^{2} \beta d \beta=\int_{0}^{\frac{\pi}{2}} \frac{\cos 2 \beta+1}{2} d \beta=\frac{\pi}{4} \tag{1.3}\\
V_{2}(R)=\pi R^{2}, \text { or } V_{2}=\pi \tag{1.4}
\end{gather*}
$$

The expression V_{2}, which represents the "volume" for a unit radius, is a numerical constant. We may write:

$$
\begin{equation*}
V_{2}(R)=V_{2} R^{2} \tag{1.5}
\end{equation*}
$$

The S_{2} is the perimeter of the circle which separates the kernel of the "two-dimensional sphere" from the neighboring space.

$$
\begin{equation*}
d S_{2}(R)=R d \beta \tag{1.6}
\end{equation*}
$$

Integrating it obtains:

$$
\begin{equation*}
S_{2}(R)=R \int_{0}^{2 \pi} d \beta=2 \pi R=S_{2} R \tag{1.7}
\end{equation*}
$$

The expression S_{2} represents the "surface" for a "sphere" with unit radius.

2. The Volume of a \mathbf{N}-Dimensional Sphere

The coordinates of a point P in an n -dimensional cartesian system can be written as:

$$
\begin{gather*}
x_{i}=R \cos \alpha_{i} \cos \beta \quad, \text { for } \mathrm{i}=1,2, \ldots \ldots . \mathrm{n}-1 \\
\sum_{i=0}^{n-1} \cos ^{2} \alpha_{i}=1 \tag{2.1}\\
x_{n}=R \sin \beta
\end{gather*}
$$

It is obvious that all points with the same radius(R) build a n -dimensional sphere in the corresponding space. Its content takes, generally speaking, the following form:

$$
V_{n}(R)=V_{n} R^{n}, \text { where } \mathrm{V}_{\mathrm{n}} \text { is a mathematical constant. }
$$

There is a network of ($\mathrm{n}-1$)-dimensional spheres each having a radius of $\mathrm{R} \cos \beta$, which belongs to this n -dimensional sphere. It is like this n-dimensional sphere is built of slices with "bases" consisting of such ($\mathrm{n}-1$)-dimensional spheres.
The volume element of this hyper-sphere is:

$$
\begin{equation*}
d V_{n}(R)=V_{n-1}(R \cos \beta) d x_{n}=V_{n-1} R^{n} \cos ^{n} \beta d \beta \tag{2.2}
\end{equation*}
$$

Integrating (2.2), it obtains the expression of the volume:

$$
\begin{equation*}
V_{n}(R)=2 R^{n} V_{n-1} \int_{0}^{\frac{\pi}{2}} \cos ^{n} \beta d \beta=2 R^{n} V_{n-1} I_{n} \tag{2.3}
\end{equation*}
$$

Integrating In by parts we obtain:

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos ^{n} \beta d \beta=\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \cos ^{n-2} \beta d \beta \quad, \text { or } I_{n}=\frac{n-1}{n} I_{n-2} \tag{2.4}
\end{equation*}
$$

Generally speaking, we have:

$$
\begin{equation*}
V_{n}(R)=V_{n} R^{n}, \quad \text { and according to (2.3), } \quad V_{n}=2 V_{n-1} I_{n} \tag{2.5}
\end{equation*}
$$

For an even n we obtain

$$
\begin{equation*}
I_{2 j}=\frac{1.3 .5 \ldots(. . .2 j-1)}{2.4 .6 \ldots \ldots \ldots . .2 j} I_{0}=\frac{1.3 .5 . \ldots \ldots .(2 j-1)}{2.4 .6 \ldots \ldots \ldots . .2 j} \frac{\pi}{2} \tag{2.6}
\end{equation*}
$$

For an odd n we get:

$$
\begin{equation*}
I_{2 j-1}=\frac{2.4 .6 \ldots \ldots \ldots .(2 j-2)}{1 \cdot 3.5 \ldots \ldots(2 j-1)} I_{1}=\frac{2.4 .6 \ldots \ldots . .(2 j-2)}{1.3 .5 \ldots \ldots(2 j-1)} \tag{2.7}
\end{equation*}
$$

Let us develop expression (2.5) for $n=2 k$,

$$
\begin{equation*}
V_{2 k}=2 V_{2 k-1} I_{2 k}=2^{2} V_{2 k-2} I_{2 k-1} I_{2 k}=\cdots=2^{2 k} I_{2}\left(I_{3} I_{4}\right) \ldots \ldots\left(I_{2 k-1} I_{2 k}\right) \tag{2.8}
\end{equation*}
$$

As we see there are k-1 products $\left(I_{2 j-1} I_{2 j}\right)$, for $\mathrm{j}=2$ trough k. Using (2.6) and (2.7) we get:

$$
\begin{gather*}
I_{2 j-1} I_{2 j}=\frac{\pi}{2} \frac{1}{2 j} \quad \text { Considering that } I_{2}=\frac{\pi}{4} \quad \text { we obtain finnaly: } \\
V_{2 k}=\frac{\pi^{k}}{k!} \tag{2.9}
\end{gather*}
$$

Now let us do the same for $\mathrm{n}=2 \mathrm{k}+1$

$$
\begin{equation*}
V_{2 k+1}(1)=2^{2 k+1}\left(I_{2} I_{3}\right)\left(I_{4} I_{5}\right) \ldots \ldots .\left(I_{2 k} I_{2 k+1}\right) \tag{2.10}
\end{equation*}
$$

There are k products $\left(I_{2 j} I_{2 j+1}\right)$, for $\mathrm{j}=1$ through k , and:

$$
\begin{gather*}
I_{2 j} I_{2 j+1}=\frac{1}{2 j+1} \frac{\pi}{2} \tag{2.11}\\
V_{2 k+1}(1)=2^{2 k+1} \frac{\pi^{k}}{2^{k}} \frac{1}{\prod_{j=1}^{k}(2 j+1)}=2^{k+1} \frac{\pi^{k}}{(2 k+1)!!} \tag{2.12}
\end{gather*}
$$

Where $\mathrm{n}!$!, denotes the double factorial, i.e., $11!!=11.9 .7 .5 .3 .1$.
In my paper published in 2015, http://article.sapub.org/10.5923.j.ijtmp.20150502.03.html, can be found the deduction of the volume of the four-dimensional sphere, using the hypercomplex number representation (see paragraph 2.11, equation 2.57).

3. The Surface of the \mathbf{N}-Dimensional Hypersphere

As was mentioned in the introduction, a hyper-sphere is separated from the complementary n-dimensional space by a boundary, which is called "surface" by extension of the familiar surface of a three-dimensional body.
The corresponding surface of an n-dimensional sphere is an $n-1$ domain with a content proportional with R^{n-1}. Using the same method as for the volume element we get

$$
\begin{equation*}
d S_{n}(R)=S_{n-1}(R \cos \beta) R d \beta=S_{n-1}(R) R \cos ^{n-2} \beta d \beta \tag{3.1}
\end{equation*}
$$

Integrating (3.1) it obtains:

$$
\begin{equation*}
S_{n}(R)=2 R S_{n-1}(R) I_{n-2} \tag{3.2}
\end{equation*}
$$

Using the formula (2.4) it obtains:

$$
\begin{equation*}
S_{n}(R)=2 R S_{n-1}(R) I_{n} \frac{n}{n-1} \tag{3.3}
\end{equation*}
$$

If R is the unit radius, then we may write:

$$
\begin{equation*}
S_{n}=2 S_{n-1} I_{n} \frac{n}{n-1} \tag{3.4}
\end{equation*}
$$

Further it will be used the same procedure as by calculation of the volume of the hypersphere. Finally, we obtain the following formula:

$$
\begin{array}{r}
S_{n}=n V_{n} \quad \text { or, } \\
\qquad S_{n}(R)=\frac{d V_{n}(R)}{d R} \tag{3.5}
\end{array}
$$

The next table shows the volume and the surface of a hyper-sphere for different n.
Table 1. The volume and the surface of a n-dimensional sphere

Dimension	1	2	3	4	5	6
Volume	$2 R$	πR^{2}	$\frac{4}{3} \pi R^{3}$	$\frac{1}{2} \pi^{2} R^{4}$	$\frac{8}{15} \pi^{2} R^{5}$	$\frac{1}{6} \pi^{3} R^{6}$
Surface	2	$2 \pi R$	$4 \pi R^{2}$	$2 \pi^{2} R^{3}$	$\frac{8}{3} \pi^{2} R^{4}$	$\pi^{3} R^{5}$

References

Collins, G. P. (2004). The shapes of space. Scientific American, 291(1), 94-103. https://doi.org/10.1038/scientificamerican0704-94
Conway, J. H., \& Sloane, N. J. A. (2013). Sphere packings, lattices and groups (Vol. 290). Springer Science \& Business Media.
Mayrhofer, K. (1952). Inhalt und Mass (Content and measure), Springer-Verlag, MR 0053185. https://doi.org/10.1007/978-3-7091-7806-5
Vlad, L. N. (2015). Hyper-Complex Numbers in Physics. International Journal of Theoretical and Mathematical Physics, 5(2), 28-43. http://article.sapub.org/10.5923.j.ijtmp.20150502.03.html

Weisstein, E. W. (2014). Hypersphere. From mathworld-A Wolfram web resource. URL http://mathworld. wolfram. com/Hypersphere. html.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

