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Abstract

A well documented characteristic of COVID-19 is that whereas certain infected individuals recover without ever showing
symptoms, others regarded as vulnerable, usually age with comorbidities tend to succumb to more or less severe symp-
toms. To address pertinent issues, we formulate an S EIAIS RS Transmission Dynamics model of COVID-19 where IA

and IS respectively represent asymptomatic and symptomatic classes thus allowing the inclusion of parameters which are
vulnerability sensitive. We define a vulnerability factor, φ and show that the model is globally asymptotically stable at
the disease-free equilibrium when R0 < 1 and φ is appropriately bounded above. We also show that the model is globally
asymptotically stable at the endemic equilibrium when R0 > 1 and φ is appropriately bounded below. Finally, we employ
numerical analysis using Ghana data, to further illustrate the effect of vulnerability related parameter values on the tra-
jectories of key variables of the model. We thereby demonstrated that if a dominantly young population is of sufficiently
low vulnerability then R0 < 1, and the Transmission Dynamics exhibits global asymptotic stability at the disease-free
equilibrium.

Keywords: epidemiology, vulnerability, transmission dynamics, COVID-19

1. Introduction

A highly infectious disease known as Coronavirus disease 2019 (Covid-19) and caused apparently by a novel virus strain,
originated in late November 2019, from Wuhan China. This virulent disease has spread rapidly and globally reaching
virtually all countries and resulting in a pandemic (Gorbalenya, 2020).

Consequently, disease has, in many ways, adversely affected the world: it has extensively disrupted socioeconomic con-
ditions, overwhelmed healthcare system capacities, and causing significant numbers of morbidities and deaths. The
commonest symptoms of disease as presented in most of its variants are: fever, cough, fatigue, severe respiratory illness,
just to mention a few (Huang, 2020). The virus is propagated directly via contact with respiratory droplets emanating
from an infected individual or indirectly through the touching of surfaces contaminated with the virus (Riou and Althaus,
2020; Qun et al., 2020). Currently due to its novelty, there is no known cure for Covid-19. Clinical case management
currently focuses on reducing disease symptoms to help support the immune system of the infected person in the fight
against the virus.

Nevertheless, with the rapid and advancing development of vaccines and antivirals, treatment of the disease has been
constantly improving. Several preventive and nonpharmaceutical measures have also been leveraged to help curtail the
rapid spread of the disease such as social distancing requirements, the mandatory use of face masks, personal hygiene
promotion through frequent washing of hands together with the use of hand sanitizers (Asamoah et al., 2020). These
extraordinary control measures have been in place to combat all the variants of Covid-19 that have emerged on the course
of time. In spite of strenuous efforts which have been made to combat the disease, Covid-19 remains endemic to date in
many areas of the globe.

In past decades mathematical models (Yavuz and Haydar, 2022; Meyer and Lima, 2022; Olumuyiwa et al., 2021) have
been employed to assess the rate and extent of spread and also prescribe effective control of infectious diseases involving
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different pathogens. These models provide decision supports to clinicians and other professionals in fields such as public
health policy making and emergency response planning. Others include health risk assessment and management, promo-
tion and social marketing of health related issues and the controlling of related hazards (Al-Sheikh, 2013; Asamoah et al.,
2021). Kermack and Mckendrick in 1927 successfully developed the Susceptible, Infected, Recovered (SIR) compart-
mental model to be used to mathematically model infectious epidemic diseases (Kermack and Mckendrick, 1927). They
later introduced another compartmental class: Exposed (denoted E) to enhance the SIR modeling 1932 thereby obtaining
the SEIR model. This was further elaborated by incorporating birth and death rates. Several studies can be cited which
have used these mathematical models to investigate infectious diseases such as tuberculosis (Bowong and Kurths, 2010;
Bowong and Jules, 2009), HIV/AIDS (Mukandavire et al., 2009), measles vaccination (Bauch et al., 2009; Widyaningsih
et al., 2018), pertusis epidemiology (Pesco et al., 2014) and more recently COVID-19 (Iboi et al., 2020).

A distinct feature of the COVID-19 pandemic that has been observed all over the world is that persons with low immunity
(Ega and Ngeleja, 2022) and/ or who are affected by Co-morbidities such as diabetes (Okyere and Ackora-Prah, 2022)
and cardio-vascular diseases tend to be more vulnerable to severe infection than those without these conditions. The said
conditions are strongly correlated with ageing: hence, it has been observed that severe Covid infection affects the aged
(65+) far more than the young. Unfortunately, such vulnerability related issues have not been adequately dealt with in
terms of transmission dynamics modeling and subsequent control implementation. The result has been the rather less than
efficient public health interventions, both at the pharmaceutical (treatments and vaccines) and nonpharmaceutical (masks
and quarantine) levels to combat the pandemic in many parts of the world.

In this paper, we attempt to address aspects of the foremetioned problems by developing a transmission dynamics model
of Covid-19 which allows the incorporation of vulnerability dependent parameters with a view to investigating the effect
of vulnerability on the long term stability or persistence of the disease. The proposed model is developed in the next
section, the theoretical analysis is presented in Section 3. Numerical simulations performed in Section 4 to support the
theoretical results and the conclusion is presented in Section 5.

2. Formulation of the Model

2.1 Model Description

Everywhere the propagation of covid-19 has been characterised as having high transitivity and that susceptible (S) indi-
viduals, once exposed (E) quickly get infected with the virus but then subsequently become infectious and asymptomatic
before possibly attaining an infectious and symptomatic status. We may thus regard individuals who though infectious,
never exhibit symptoms as nonvulnerable to the disease. We therefore categorize individuals as being vulnerable if they
become infectious and symptomatic almost immediately after being exposed.

The model we propose is thus simply a modification of the standard SEIR model in which the compartment of infectious
individuals is split into two: namely, the asymptomatic infectious (IA) and symptomatic infectious (IS ). In such an
arrangement we are clearly able to identify parameters which depend on vulnerability.

The model of the total population at any time (t) is divided into five sub-population (compartments) with respect to disease
status in the system.

The total population is represented by N and divided into sub-populations of Susceptible individuals (S ), Exposed indi-
viduals (E), Infected asymptomatic individuals (IA), Infected symptomatic individuals (IS ), and Recovered individuals
(R). The total population at time t is given by:

N(t)= S(t)+E(t)+IA(t)+IS (t) + R(t). (2.1.1)

Figure 1 shows the compartmental flow chart of the COVID-19 Model

Susceptible individuals, S (t), include those that are at risk of being infected with COVID-19. Exposed individuals, E(t),
include those that are infected but not infectious (latent) and are within the environment of the disease (COVID-19).
The infected asymptomatic compartment, IA(t), consists of individuals that have been infected and infectious but with no
symptoms of the disease (COVID-19). The infected symptomatic compartment, IS (t), consists of those that have infection,
are infectious and are showing symptoms of the disease (COVID-19). The recovered individuals, R, are those who have
recovered from the COVID-19 disease with no permanent immunity.

The Susceptible group of individuals are recruited into the population at a rate Λ and acquire COVID-19 through droplets
or direct contact of infected surfaces at the rate β. This class is reduced whenever the individuals are initially infected
with the disease or die naturally. Those who recover from the infection at the rate ξ are with no permanent immunity and
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Figure 1. Flow Chart of COVID-19 Model

join the susceptible class at ξR. Thus
dS
dt

= Λ + ξR − βS (IA + IS ) − µS

Contact with infectious surfaces and individuals, (IA + IS ) S β, make the individuals exposed and therefore are moved from
the susceptible class to the exposed compartment with a natural death rate µ. When the viral load increases the individuals
become infectious, γA E, but show no symptoms and are therefore moved to the asymptomatic class. Thus

dE
dt

= βS (IA + IS ) − (γA + µ) E

The infectious asymptomatic individuals, γA E, become symptomatic infectious at a rate η with natural death rate µ. This
class of individuals can overcome the disease and recover at the rate πA. Thus

dIA

dt
= γAE − (η + πA + µ) IA

The infectious symptomatic individuals are recruited from the asymptomatic infectious class who become symptomatic
infectious η IA and die due to the infection at a rate δ with natural death rate as µ. The class of individuals can also
overcome the disease and recover at the rate πS . Thus

dIS

dt
= ηIA − (πS + δ + µ) IS

The recovered class recruits from the asymptomatic infectious and symptomatic infectious classes at the rate πA and πS

respectively as πAIA + πS IS with natural death rate µ and they join the susceptible class at ξ. Thus

dR
dt

= πAIA + πS IS − (ξ + µ) R

The following system of nonlinear ordinary differential equations are therefore obtained as the Model equations:

dS
dt

= Λ + ξR − βS (IA + IS ) − µS

dE
dt

= βS (IA + IS ) − (γA + µ) E

dIA

dt
= γAE − (η + πA + µ) IA

dIS

dt
= ηIA − (πS + δ + µ) IS

dR
dt

= πAIA + πS IS − (ξ + µ) R



(2.1.2)
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Where
a1 = γA + µ, a2 = η + πA + µ, a3 = πS + δ + µ, a4 = ξ + µ,
then the model is transformed into;

dS
dt

= Λ + ξR − βS (IA + IS ) − µS

dE
dt

= βS (IA + IS ) − a1E

dIA

dt
= γAE − a2IA

dIS

dt
= ηIA − a3IS

dR
dt

= πAIA + πS IS − a4R



(2.1.3)

Table 1. Definition of variables and parameters of the S EIAIS RS model

Variable/Parameter Definition
S Susceptible individuals
E Exposed individuals
IA Infected asymptomatic individuals
IS Infected symptomatic individuals
R Recovered individuals
Λ Rate of recritment into the susceptible class
β Transmission probability
η Rate at which the asymptomatic become symptomatic
γA Rate at which exposed become asymptomatic
πA Rate at which the asymptomatic recover
πS Rate at which the symptomatic recover
δ Disease - induced death rate
µ Natural Death rate
ξ Rate at which recovered become susceptible due to loss of immunity

with nonnegative initial conditions S (0) ≥ 0, E(0) ≥ 0, IA(0) ≥ 0, IS (0) ≥ 0, R(0) ≥ 0 and N > 0. It is assumed that all
the parameters are nonnegative.

Clearly, the parameters γA and η are vulnerability dependent. So also are the parameters πS and δ albeit in an a posteriori
sense.

Now, let pS be the probability that a vulnerable individual goes through the path S − E − IA − IS − R as given in the
flowchart of figure1. Then pS =

(
β
a1

) (
γA
a2

) (
η
a3

)
.

Similarly, let pA be the probability that a less vulnerable individual goes through the path S − E − IA − R as given in the
flowchart of figure1. Then pA =

(
β
a1

) (
γA
a2

)
.

Hence the total probability is given by

pS + pA =

(
β

a1

) (
γA

a2

) (
η

a3

)
+

(
β

a1

) (
γA

a2

)
(2.1.4)

=

(
β

a1

) (
γA

a2

) ((
η

a3

)
+ 1

)

=

(
β

a1

) (
γA

a2

) (
η + a3

a3

)
(2.1.5)

From the viewpoint of risk theory which requires that risk or the proximity of a hazard is the product of exposure and
vulnerability, it becomes natural here to define a vulnerability factor φ as φ =

(
γA
a2

) (
η+a3

a3

)
An exposure factor, ε, is now

clearly defined as ε =
(
β
a1

)
.
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Comparing the above equation 2.1.5 with equation 3.3.27, we notice R0 is related to the exposure and vulnerability factors
ε and φ. Intact we have that R0 = S εφ

Thus expressed this way, R0 may be regarded as a measure of the risk posed by the epidemic.

3. Qualitative Properties of the Model

3.1 Positivity and Boundedness of Solutions

We want to find non-negative answers in this part. Therefore, it is crucial to understand the circumstances in which the
studied system of differential equations has non-negative solutions. If all solutions have non-negative initial data and
remain non-negative throughout, the COVID-19 model would be epidemically well posed.
Theorem 3.1: Given that at t = 0, S (0) ≥ 0, E(0) ≥ 0, IA(0) ≥ 0, IS (0) ≥ 0,R(0) ≥ 0 then

∏
=

{
(S (t), E(t), IA(t), IS (t),R(t)) ∈ R5

+

}
for all t > 0 (i.e. positively invarant) and is bounded.

Proof. The total population of the model at any time (t) is given by: N(t) = S (t) + E(t) + IA(t) + IS (t) + R(t)

dN
dt

=
dS
dt

+
dE
dt

+
dIA

dt
+

dIS

dt
+

dR
dt

dN
dt

= (−E − IA − S − IS − R) µ + Λ − δIS

dN
dt

= Λ − µN − δIS

Absence of excess mortality gives:

dN
dt
≤ Λ − µN (3.1.6)

Integrating ∫
dN ≤

∫
Λ − µNdt

∫
dN

Λ − µN
≤

∫
dt

multiply both sides by −µ

∫
−µdN

Λ − µN
≥

∫
−µdt

ln(Λ − µN) ≥ −µt + q

(Λ − µN) ≥ e−µt+q

(Λ − µN) ≥ Qe−µt (3.1.7)

Applying the initial condition

N(0) = N0

We obtain the relation for

(Λ − µN0) = Q
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Λ − µN(t) ≥ (Λ − µN0)e−µt (3.1.8)

As t −→ ∞, e−µt −→ 0

Λ − µN(t) ≥ 0

−Λ + µN(t) ≤ 0

µN(t) ≤ Λ

N(t) ≤
Λ

µ
(3.1.9)

Since

N(t)

is monotonically increasing starting from the initial state

N(0)

it approaches the upperbound.

Thus

N(t) > N(0)

for

t > 0

but

N(0) ≥ 0.

Therefore

N(t)

is bounded below by

0.

In conclusion

0 ≤ N(t) ≤
Λ

µ
. (3.1.10)

Hence, ∏
=

{
(S , E, IA, IS ,R) ∈ R5

5 : S + E + IA + IS + R ≤
Λ

µ

}
(3.1.11)

Where
∏

is a positively invariant set and bounded within zero and Λ
µ

.

Consider:
dS
dt

= Λ + ξR − βS (IA + IS ) − µS (3.1.12)

(IA + IS ) ≤ κ since the population is bounded

dS
dt
≥ Λ + ξR − κβS − µS
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R = (N − S − E − IA − IS )

dS
dt
≥ Λ + ξ(N − S − E − IA − IS ) − κβS − µS

(S + E + IA + IS ) ≤ κ since the population is bounded

and N(t) is bounded below by 0.

dS
dt
≥ Λ − ξκ − (κβ + µ)S

Let (Λ − ξκ) = Λ
′

and (κβ + µ) = µ
′

dS
dt
≥ Λ

′

− µ
′

S

integrating ∫
dS ≥ −

∫
(Λ

′

− µ
′

S )dt

∫
dS

(Λ′
− µ

′S )
≥

∫
dt

Multiply both sides by −µ
′

∫
−µ

′

dS
(Λ′
− µ

′S )
≤

∫
−µ

′

dt

ln (Λ
′

− µ
′

S ) ≤ (−µ
′

)t + c

(Λ
′

− µ
′

S ) ≤ Ce(−µ
′
)t

where
C = ec

At the initial time, t=0 and susbstituting into the inequality

C = (Λ
′

− µ
′

)S (0)

Thus, the inequality becomes;

Λ
′

− µ
′

S (t) ≤ (Λ
′

− µ
′

)S (0)e(−µ
′
)t

As t −→ ∞, e(−µ
′
)t = 0

−µ
′

S (t) ≤ −Λ
′

µS (t) ≥ Λ
′

S (t) ≥
Λ
′

µ
′ (3.1.13)
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Since S (t) is monotonically decreasing function it starts from its initial state S (0) and decreasing towards its lower bound.
Thus we have S (t) ≤ S (0). Hence S (0) is an upper bound of S (t) for all t > 0. In conclusion we have Λ

′

µ
′ ≤ S (t) ≤ S (0).

Similarly, positivity and boundedness can be shown for E, IA, IS and R

3.2 Determination of Equilibrium Points of the Model

3.2.1 Disease-free Equilibrium Point

The disease-free equilibrium, E0 = (S , E, IA, IS , R), of the system of ordinary differential equations in (2.1.2) only exists
when E = IA = IS = R = 0 and all other controls held constant. This is computed by setting the system of differential
equations in 2.1.2 and the state variables E = IA = IS = R = 0 . This is given as

dS
dt

= Λ + ξ R − βS (IA + IS ) − µS = 0

S =
Λ

µ
,

and all other state variables become zeros

Hence, the disease-free equilibrium is given by:

E0 = (S 0, E0, I0
A, I

0
S ,R

0) =

(
Λ

µ
, 0, 0, 0, 0

)
(3.2.14)

3.2.2 Endemic Equilibrium Point

The endemic equilibrium point E∗ =
(
S ∗, E∗, I∗A, I∗S , R∗

)
is obtained by solving the system of equations 2.1.3 at a station-

ary point.

Λ + ξR∗ − βS ∗(I∗A + I∗S ) − µS ∗ = 0 (3.2.15)

βS ∗(I∗A + I∗S ) − a1E∗ = 0 (3.2.16)

γAE∗ − a2I∗A = 0 (3.2.17)

ηI∗A − a3I∗S = 0 (3.2.18)

πAI∗A + πS I∗S − a4R∗ = 0 (3.2.19)

Making E and IS the subject of equations 3.2.17 and 3.2.18 we get

E∗ =
a2I∗A
γA

(3.2.20)

I∗S =
ηI∗A
a3

(3.2.21)

Substituting for E and IS in equation 3.2.16

βS ∗
(
I∗A +

ηI∗A
a3

)
−

a1a2I∗A
γA

= 0
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=> βS ∗
(
1 +

η

a3

)
I∗A −

a1a2I∗A
γA

= 0

=>
βS ∗

a3
(a3 + η) I∗A =

a1a2I∗A
γA

=> S ∗ =
a1a2a3

βγA(a3 + η)
(3.2.22)

Substitute for IS equation 3.2.21 in equation 3.2.19

πAI∗A + πS

(
ηI∗A
a3

)
− a4R∗ = 0

=>

(
πA +

πS η

a3

)
I∗A = a4R∗

=>
(πAa3 + πS η) I∗A

a3
= a4R∗

R∗ =
(πAa3 + πS η) I∗A

a3a4
(3.2.23)

Rearranging equation 3.2.15
µS ∗ − Λ = ξR∗ − βS ∗(I∗A + I∗S )

=> µS ∗ − Λ = ξR∗ − βS ∗
(a3 + η) I∗A

a3

Using equations 3.2.22 and 3.2.23 above,we now substitute S and R as follows

µ
a1a2a3

βγA(a3 + η)
− Λ = ξ

(πAa3 + πS η) I∗A
a3a4

− β
a1a2a3

βγA(a3 + η)
(a3 + η) I∗A

a3

µ
a1a2a3

βγA(a3 + η)
− Λ = ξ

(πAa3 + πS η) I∗A
a3a4

−
a1a2

γA
I∗A

µ
a1a2a3

βγA(a3 + η)
− Λ =

[
ξ

(πAa3 + πS η)
a3a4

−
a1a2

γA

]
I∗A

Finding the L.C.M

µa1a2a3 − ΛβγA(a3 + η)
βγA(a3 + η)

=

[
ξγA(πAa3 + πS η) − a1a2a3a4

a3a4γA

]
I∗A

=> I∗A =
µa1a2a3 − ΛβγA(a3 + η)

βγA(a3 + η)
×

a3a4γA

ξγA(πAa3 + πS η) − a1a2a3a4

=> I∗A =

[
µa1a2a3 − ΛβγA(a3 + η)

]
a3a4[

ξγA(πAa3 + πS η) − a1a2a3a4
]
β(a3 + η)

(3.2.24)

Let

Γ =
[
µa1a2a3 − ΛβγA(a3 + η)

]
a3a4 and Γ1 =

[
ξγA(πAa3 + πS η) − a1a2a3a4

]
β(a3 + η)

Hence
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I∗A =
Γ

Γ1
(3.2.25)

The endemic equilibrium point is given as E∗ =
(
S ∗, E∗, I∗A, I∗S , R∗

)
where;

S ∗ =
a1a2a3

βγA(a3+η) ,

E∗ = a2Γ

γAΓ1
,

I∗A = Γ
Γ1
,

I∗S =
ηΓ

a3Γ1
, and

R∗ =
(πAa3+πS η)Γ

a3a4Γ1
.

3.3 Basic Reproduction Number of the Model

The concepts of Next Generation Matrix is applied here to establish the stability of the disease-free equilibrium (E0). The
basic reproduction number is computed.

Using the Next Generation Matrix (van den Driessche and Watmough, 2002), we consider only the infective classes in the
system of differential equations as:

dE
dt

= βS (IA + IS ) − a1E

dIA

dt
= γAE − a2IA

dIS

dt
= ηIA − a3IS


(3.3.26)

The corresponding Jacobian matrix at disease free equilibrium is given as:

J =


−a1 β S β S

γA −a2 0

0 η −a3


Where F and V is represented by

F =

 0 βS βS
0 0 0
0 0 0


V =

 −a1 0 0
γA −a2 0
0 η −a3


.

Thus

V−1 =


−a1

−1 0 0

−
γA

a1a2
−a2

−1 0

−
γAη

a1a2a3
−

η
a2a3

−a3
−1


such that:

FV−1 =

 0 βS βS
0 0 0
0 0 0



−a1

−1 0 0

−
γA

a1a2
−a2

−1 0

−
γAη

a1a2a3
−

η
a2a3

−a3
−1
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=


β S γA
a1a2

+
β S γAη
a1a2a3

β S
a2

+
β S η
a2a3

β S
a3

0 0 0

0 0 0


The reproduction number is the largest spectral radius (ρ) of |FV−1| and this is obtained as:

ρ(FV−1) =
β S γA (η + a3)

a1a2a3

Hence the Basic Reproduction (R0) is given as:

R0 =
β S γA (η + a3)

a1a2a3
(3.3.27)

3.4 Sensitivity Analysis of the Model

The goal of sensitivity analysis is to measure the impact of parameter changes on the behaviour of the model. This is done
to give more attention to parameters that are observed to play a significant role in the model behaviour. However these
parameter values are sometimes unavailable or are not accurately measured. Sensitivity analysis plays a role by informing
researchers to begin to pay attention to the model parameter values and measuring them more accurately.

The forward normalized sensitivity index would be used to perform the analysis.

Definition: It is defined as follows: Let R0 be a function that depends on xi and it is differentiable, then the normalized
forward sensitivity index of R0 relative to xi is given by

Π
xi
R0

=
∂R0

∂xi
×

xi

R0
(3.4.28)

where R0 =
β S γA(η+a3)

a1a2a3

This index measures the relative change in R0 due to relative changes in xi. It shows the significance of each parameter in
determining the spread of the infection. For an example, the sensitivity index of R0 with respect to β is given as
Π
β
R0

=
∂R0
∂β
×

β
R0

= 1(positive)

Π
µ
R0

= −µ
(

1
µ

+ 1
γA+µ

+ 1
πS +δ+µ

)
(negative)

Π
γA
R0

=
∂R0
∂γA
×

γA
R0

=
γA
γA+µ

(positive)

Π
πS
R0

=
∂R0
∂πS
×

πS
R0

= −
πS

πS +δ+µ
(negative)

Πδ
R0

=
∂R0
∂δ
× δ
R0

= − δ
πS +δ+µ

(negative)

ΠΛ
R0

=
∂R0
∂Λ
× Λ
R0

= 1(positive)
Π
πA
R0

=
∂R0
∂πA
×

πA
R0

= − πA
η+πA+µ

(negative)

Π
η
R0

=
∂R0
∂η
×

η
R0

= −
η

η+πA+µ
(negative)

These expressions are evaluated with the values of the parameter that constitute R0.

If the sensitivity index which is given by, Π
xi
R0

=
∂R0
∂xi
×

xi
R0

, of a parameter is negative then a decrease (increase) in the
value of the parameter will cause a decrease (increase) in R0. However, if the sensitivity index is positive then an increase
(decrease) in the value of the parameter will cause an increase (decrease) in R0.The reproduction number, R0, measures
the average number of new infections caused by an infected individual in a population. Therefore an increase in the
reproduction number will be detrimental to the survival of the population. Increases in β, γA, and Λ will lead to an
increase in R0 and hence an increase in the transmission of the virus and πS , δ, η, µ, and πA have an inverse relation with
R0.

3.5 Stability Analysis of the Model

3.5.1 Local Stability Analysis

The stability analysis can be performed by considering the eigenvalues of the Jacobian matrix evaluated at a particular
equilibrium point. Here we shall focus on the disease-free equilibrium point.
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The relevant Jacobian matrix of model (2.1.3) is given by:

J =



−β (IA + IS ) − µ 0 −β S −β S ξ

β (IA + IS ) −a1 β S β S 0

0 γA −a2 0 0

0 0 η −a3 0

0 0 η πS −a4


(3.5.29)

The Jacobian matrix at the disease-free equilbrium point is written as:

J(DFE) =



−µ 0 −β S −β S ξ

0 −a1 β S β S 0

0 γA −a2 0 0

0 0 η −a3 0

0 0 η πS −a4


(3.5.30)

The characteristic equation of (3.5.30) is given by

|J(DFE) − λI| = (−µ − λ)(−a4 − λ)

∣∣∣∣∣∣∣∣∣∣∣
−a1 − λ β S β S

γA −a2 − λ 0

0 η −a3 − λ

∣∣∣∣∣∣∣∣∣∣∣ = 0 (3.5.31)

Obviously (−µ) and (−a4) are negative terms and the stability of the model depends on

|J
′

(DFE) − λI| =

∣∣∣∣∣∣∣∣∣∣∣
−a1 − λ β S β S

γA −a2 − λ 0

0 η −a3 − λ

∣∣∣∣∣∣∣∣∣∣∣ = 0 (3.5.32)

where J
′

(DFE) is the reduced form of J(DFE).

Simplifying and collecting terms of the above (3.5.32) we have

3∑
n=0

mnλ
n = 0 (3.5.33)

where
m3 = 1,
m2 = a3 + a2 + a1,
m1 = (a2 + a1) a3 + a1a2 − β S γA,
m0 = a1a2a3 − β S γA (η + a3) .
Theorem 3.2: (Routh-Hurwitz Criterion for third order polynomial) The polynomial m3λ

3 + m2λ
2 + m1λ + m0 has all

roots in the open left half of the complex plane if and only if m2 > 0, m2m1 − m0m3 > 0 and m0(m2m1 − m0m3) > 0 See
Mahardika et al. (2019).

Theoremm 3.3: The disease-free equilibrium point of the model is locally asymptotically stable whenever R0 ≤ 1, other-
wise it is unstable.

Proof. The expression m2 = a3 + a2 + a1, is obviously a positive term.
The expression m2m1 − m0m3= (a3 + a2 + a1) ((a2 + a1) a3 + a1a2 − β S γA) − a1a2a3 + β S γA (η + a3). m2m1 − m0m3 =

(a3 + a2 + a1)
(
(a2 + a1) a3 + a1a2 −

R0a1a2a3
η+a3

)
−a1a2a3+R0a1a2a3. m2m1−m0m3 = (a3 + a2 + a1) a1a2a3

(
1
a1

+ 1
a2

+ 1
a3
−
R0
η+a3

)
−

a1a2a3 + R0a1a2a3 where
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βS =
R0a1a2a3
γA(η+a3)

Since
R0
η+a3

< R0
a3

we have now
m2m1 − m0m3 > (a3 + a2 + a1) a1a2a3

(
1
a1

+ 1
a2

)
+ (a3 + a2 + a1) a1a2a3

(
1
a3
−
R0
a3

)
− a1a2a3 (1 − R0)

m2m1 − m0m3= (a3 + a2 + a1) a1a2a3

(
1
a1

+ 1
a2

)
+ (a3 + a2 + a1) a1a2a3

(
1−R0

a3

)
− a1a2a3 (1 − R0)

m2m1 − m0m3= (a3 + a2 + a1) a1a2a3

(
1
a1

+ 1
a2

)
+ a1a2 [(a3 + a2 + a1) (1 − R0) − a3 (1 − R0)]

m2m1 − m0m3= (a3 + a2 + a1) a1a2a3

(
1
a1

+ 1
a2

)
+ a1a2 [(a2 + a1) (1 − R0) + a3 (1 − R0) − a3 (1 − R0)]

m2m1 − m0m3= (a3 + a2 + a1) a1a2a3

(
1
a1

+ 1
a2

)
+ a1a2 (a2 + a1) (1 − R0)

m2m1 − m0m3= (a3 + a2 + a1) a3 (a1 + a2) + a1a2 (a2 + a1) (1 − R0) Thus m2m1 − m0m3 > 0 whenever R0 ≤ 1.
Again the expression (m2m1 − m0m3) m0. By the properties of real numbers, If
m2m1 − m3m0 > 0
and
m0 > 0,
then
(m2m1 − m3m0) m0 > 0.
It has been shown above that
m2m1 − m3m0 > 0 is positive whenever R0 ≤ 1.
Now it is thus to be establish that
m0 = a1a2a3 − β S γA (a3 + η).
Substituting
βS =

R0a1a2a3
γA(η+a3)

into mo gives
m0 = a1a2a3 − R0a1a2a3
m0 = (1 − R0) a1a2a3 is positive when R0 < 1 Thus (m2m1 − m3m0) m0 is also positive whenever R0 ≤ 1 The system is
locally asymptotically stable at the disease free equilibrium point whenever φ < µa1

Λβ
. Proof. R0 < 1 then S εφ < 1

=>φ < 1
S ε

S = Λ
µ

, ε =
β
a1

φ < µa1
Λβ
.

3.5.2 Global Stability of the Disease-free Equilibrium

In the case of Local stability there exist a neighbourhood of the equilibrium point within which the system is stable. This
neighbourhood is called the basin of attraction. If the basin of attraction is the entire space on which the model is valid
i.e. R5

+ then the system is said to be globally stable. This require that the condition of the LaSalle-Lyapunov must hold.

As a result, we can draw the following conclusion concerning the stability of the disease-free equilibrium globally.

Theorem 3.4: The DFE is globally asymptotically stable in
∏

, the nonnegative orthant containing R5
+, where R0 ≤ 1.

Proof. Considering the candidate LaSalle-Lyapunov function we have:

LDFE(t) = AE + BIA + CIS + DR (3.5.34)

such that the variables A,B,C, and D are all nonnegative constants. It fulfills using its time derivative along the trajectories
2.1.2

L̇DFE(t) = AĖ + BİA + CİS + DṘ

= A(βS (IA + IS ) − (γA + µ)E),

+B(γAE − (η + πA + µ)IA),

+C(ηIA − (πS + δ + µ)IS ),

+D(πAIA + πS IS − (ξ + µ)R)

= (−A((γA + µ) + BγA)E

+(AβS − B(η + πA + µ) + Cη + DπA)IA

+(AβS −C(πS + δ + µ) + DπS )IS
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−(D(ξ + µ))R.

The coefficients of E, IA, IS , and R are set to zero using the constants A, B, C and D. This is

(−A(γA + µ) + BγA)E

−A(γA + µ) + BγA = 0

=> B =
A(γA + µ)

γA
(3.5.35)

Now substitute B into the coefficient of IA

=>

(
AβS + A

(
(γA + µ)
γA

)
(η + πA + µ)

)
IA

The equation coeffients of C are equal

=> A
(

(γA + µ)
γA

)
(η + πA + µ) + Cη = −C(πS + δ + µ)

=> A
(

(γA + µ)
γA

)
(η + πA + µ) + Cη + C(πS + δ + µ) = 0

=> A
(

(γA + µ)
γA

)
(η + πA + µ) + C(η + πS + δ + µ) = 0

=> C =
A

(
(γA+µ)
γA

)
(η + πA + µ)

(η + πS + δ + µ)
(3.5.36)

Coeffients of IS is same as IA

=> (IA + IS )

AβS ∗ +

A
(

(γA+µ)
γA

)
(η + πA + µ)

(η + πS + δ + µ)

 (πS + δ + µ)


But

βS ∗ =
R0a1a2a3

γA (η + a3)
Then

L̇DFE = (IA + IS )

A
(
R0a1a2a3

γA (η + a3)

)
−

A
(

(γA+µ)
γA

)
(η + πA + µ)

(η + πS + δ + µ)

 (πS + δ + µ)

 (3.5.37)

Let

Q =


(

(γA+µ)
γA

)
(η + πA + µ)

(η + πS + δ + µ)

 (πS + δ + µ)

And

K =

(
a1a2a3

γA (η + a3)

)
Where

a1 = γA + µ, a2 = η + πA + µ, a3 = πS + δ + µ

So

K =

(
(γA + µ)(η + πA + µ)(πS + δ + µ)

γA (η + πS + δ + µ)

)
Comparing we observe that

K = Q

Thus we can write
KR0 − Q

Then we have
QR0 − Q

Hence
L̇DFE = (IA + IS ) (Q(R0 − 1)) (3.5.38)

=> when R0 = 1 then L̇DFE = 0 and when R0 < 1 then L̇DFE < 0. Therefore, globally asymtotically stable when R0 ≤ 1.
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3.5.3 Existence and Uniqueness of the Endemic Equilibrium

We here present the existence and uniqueness of the endemic equilibrium for the model 2.1.2. We shall make use of the
basic reproduction number R0.

Let E∗ = (S ∗, E∗, I∗A, I∗S , R∗) be the positive endemic equilibrium of model. Then, the positive endemic equilibrium can
be obtained by setting the right hand side of equations in the model 2.1.2 equal to zero, giving



Λ + ξR∗ − βS ∗(I∗A + I∗S ) − µS ∗ = 0
βS ∗(I∗A + I∗S ) − a1E∗ = 0
γAE∗ − a2I∗A = 0
ηI∗A − a3I∗S = 0
πAI∗A + πS I∗S − a4R∗ = 0

(3.5.39)

where

a1 = γA + µ, a2 = η + πA + µ, a3 = πS + δ + µ, a4 = ξ + µ.

Using the first, second, fourth and fifth equations of equation 3.5.39, one has

S ∗ =
a1a2a3

βγA(a3+η) , E∗ = a2Γ

γAΓ1
, I∗A = Γ

Γ1
, I∗S =

ηΓ
a3Γ1

R∗ =
(πAa3+πS η)Γ

a3a4Γ1
.

We now substitute the above expressions of S ∗, E∗, I∗S , and R∗ into R0, one obtains the following endemic equilibrium
equations



S =
R0a1a2a3

βγA(a3 + η)
,

E∗ =
βS (η + a3)Γ
R0a1a3Γ1

,

I∗S =
R0a1a2Γ

βS γAΓ1
− 1,

R∗ =
R0a1a2a3(πA + πS )Γ

βS γAa3a4Γ1

(3.5.40)

with

Γ =
[
µa1a2a3 − ΛβγA(a3 + η)

]
a3a4,

Γ1 =
[
ξγA(πAa3 + πS η) − a1a2a3a4

]
β(a3 + η),

R0 =
β S γA(η+a3)

a1a2a3
, -

Lemma Provided R0 > 1, there exist solution to the system of equation 2.1.3 such that the model can attain endemic
equilibrium.

Proof. Using the Next Generation method we have shown that

R0 =
β S γA(η+a3)

a1a2a3

S =
R0a1a2a3
βγA(a3+η) .

(1) S = S ∗R0 > S ∗R0 − S ∗ = S ∗(R0 − 1)

Thus S is positive (and therefore exists) only if R0 > 1.

(2) Let G = ΓγA and G1 = Γ1a1a2 then

IA =
(
G

G1

)
S

IA =
(
G

G1

)
S ∗R0 = I∗AR0

IA = I∗AR0 > I∗AR0 − I∗A = I∗A(R0 − 1)

Thus IA is positive (and therefore exists) only if R0 > 1.

(3) Since E, IS , and R are each propotional to IA, it follows similarly that E, IS , and R are each positive (and therefore
exists) only if R0 > 1.
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The result follows since (S ∗, E∗, I∗A, I∗S , R∗) is the limit point of the considered neighbourhood. It is noted that a given
initial value problem (IVP) has a unique solution.

3.5.4 Global Stability of the Endemic Equiilbrium

In this section, we offer a finding pertaining to the presence and distinctiveness of the global asymptotic stability in the
nonnegative orthant.

Theorem 3.5: When R0 > 1, the endemic equilibrium E∗ = (S ∗, E∗, I∗A, I∗S , R∗) is globally asymptotically stable in
∏

.

Proof. When considering the system R0 > 1 there exists a unique endemic equilibrium (S ∗, E∗, I∗A, I∗S , R∗) given as in
2.1.3. The following Lyapunov function candidate is considered:

LEE(t) = (S − S ∗lnS ) + A1(E − E∗lnE) + A2(IA − I∗AlnIA) + A3(IS − I∗S lnIS ) + A4(R − R∗lnR), (3.5.41)

where A1 is a constant that will later be established, followed by A2, A3, and A4. With regard to time, this function can be
differentiated to produce

L̇EE(t) =

(
1 −

S ∗

S

)
Ṡ + A1

(
1 −

E∗

E

)
Ė + A2

(
1 −

I∗A
IA

)
İA + A3

(
1 −

I∗S
IS

)
İS + A4

(
1 −

R∗

R

)
Ṙ

=

(
1 −

S ∗

S

)
[Λ − µS − βS (IA + IS ) + ξR]

+A1

(
1 −

E∗

E

)
[βS (IA + IS ) − a1E]

+A2

(
1 −

I∗A
IA

)
[γAE − a2IA] + A3

(
1 −

I∗S
IS

)
[ηIA − a3IS ]

+A4

(
1 −

R∗

R

)
[πAIA + πS IS − a4R]

(3.5.42)

where a1, a2, a3, and a4 are defined as in 2.1.3. By considering 2.1.3, one has



Λ = µS ∗ − βS ∗(I∗A + I∗S ) + ξR∗

a1E∗ = βS ∗(I∗A + I∗S )
a2I∗A = γAE∗

a3I∗S = ηI∗A
a4R∗ = πAI∗A + πS I∗S

(3.5.43)

with this in mind 3.5.42 becomes

L̇EE(t) =

(
1 −

S ∗

S

)
[µS ∗ + βS ∗(I∗A + I∗S ) − ξR∗ − µS − βS (IA + IS ) + ξR]

+A1

(
1 −

E∗

E

)
[βS (IA + IS )] − A1a1E + A1βS ∗(I∗A + I∗S )

+A2

(
1 −

I∗A
IA

)
[γAE] − A2a2IA + A2γAE∗

+A3

(
1 −

I∗S
IS

)
[ηIA] − A3a3IS + A3ηI∗A

+A4

(
1 −

R∗

R

)
[πAIA + πS IS ] − A4a4R + A4πAI∗A + A4πS I∗S

= −µ
(S − S ∗)2

S
+ βS ∗(I∗A + I∗S )

(
1 −

S ∗

S

)
+ ξR∗

+[A3η + A4πA − A2a2 + βS ∗]IA + [−A3a3 + A4πS + βS ∗]IS

+[−A1a1 + A2γA]E + [−A4a4]R + A2γAE∗
(
1 −

E
E∗

)
+ A3ηI∗A

(
1 −

IA

I∗A

)
+A4πAI∗A

(
1 −

IA

I∗A

)
+ A4πS I∗S

(
1 −

IS

I∗S

)
− A1βS ∗

E∗

E
S
S ∗

(
I∗A + I∗S

)
− ξR∗

(
1 −

R
R∗

)

(3.5.44)
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Now, let (x, y, z, v,w) =
(

S ∗
S ,

E∗
E ,

I∗A
IA
,

I∗S
IS
, R∗

R

)
, we have

L̇EE(t) = −µ
(S − S ∗)2

S
+ βS ∗

(
I∗A + I∗S

)
(1 − x) + ξR∗ + [−A1a1 + A2γA]E

+[A3η + A4πA − A2a2 + βS ∗]IA + [−A3a3 + A4πS + βS ∗]IS + [−A4a4]R
+A2γAE∗ (1 − y) + A3ηI∗A (1 − z) + A4πAI∗A (1 − z)

+A4πS I∗S (1 − v) − A1βS ∗
y
x
(
I∗A + I∗S

)
− ξR∗(1 − w)

(3.5.45)

In order for the coefficients of S (IA+IS ), E, IA, IS , and R to be equal to zero, the nonnegative constants A1, A2, A3 and A4
are selected



−1 + A1 = 0,
−A1a1 + A2γA = 0,
−A4a4 + ξ = 0,
A4πA + A3η − A2a2 + βS ∗ = 0,
A4πS − A3a3 + βS ∗ = 0

(3.5.46)

With the help of 3.5.39, we can easily state that the fifth equation of 3.5.46 is satisfied when the first and fourth equations
of 3.5.46 are satisfied. As a result, in the following equations, we just take into account:


A1 = 1,
A1a1 = A2γA,

−A4a4 + ξ = 0,
A4πA + A3η − A2a2 + βS ∗ = 0.

(3.5.47)

The equation above when solved gives

A1 = 1, A2 =
γA

a1
, A4 =

ξ

a4
, A3 =

A2a2 − A4πA − βS ∗

η
(3.5.48)

Replacing the above expressions of A1, A2, A3, and A4 in 3.5.45 one obtains

L̇EE(t) = −µ
(S − S ∗)2

S
+ βS ∗

(
I∗A + I∗S

)
(2 − x) + ξR∗ (1 − w)

−A1βS ∗
(
I∗A + I∗S

) y
x

+ A2γAE∗ (1 − y)

+A3ηI∗A (1 − z) + A4πAI∗A (1 − z) + A4πS I∗S (1 − v)

(3.5.49)

Now, using the fact that A1 = 1, equation 3.5.49 becomes

L̇EE(t) = −µ
(S − S ∗)2

S
+ A1βS ∗

(
I∗A + I∗S

)
(2 − x) + ξR∗ (1 − w)

−A1βS ∗
(
I∗A + I∗S

) y
x

+ A2γAE∗ (1 − y)

+A3ηI∗A (1 − z) + A4πAI∗A (1 − z) + A4πS I∗S (1 − v) ,

= −µ
(S − S ∗)2

S
+ A1βS ∗

(
I∗A + I∗S

) (
2 − x −

y
x

)
+ ξR∗ (1 − w)

+A2γAE∗ (1 − y) +A3ηI∗A (1 − z) + A4πAI∗A (1 − z) + A4πS I∗S (1 − v)

(3.5.50)

The result of multiplying the second equation of 3.5.43 by A1 and the second equation of 3.5.47 by E∗ is

A1a1E∗ = A2γAE∗

A1a1E∗ = A1βS ∗(I∗A + I∗S )
(3.5.51)

63



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 5; 2023

Hence, it clearly appears that

− A1βS ∗(I∗A + I∗S ) + A2γAE∗ = 0 (3.5.52)

Now, multiplying the preceding equation by F1(u) where u = (x, y, z, v,w)T and F1(u) a function to be calculated later,
gives

−A1βS ∗(I∗A + I∗S )F1(u) + A2γAE∗F1(u) = 0 (3.5.53)

Additionally, if the fourth equation of 3.5.43 is multiplied by A4 and the third equation of 3.5.47 is multiplied by R∗, the
result is

A4a4R∗ = ξR∗

A4a4R∗ = A4πAI∗A + A4πS I∗S
(3.5.54)

Then, one can deduce that

− A4πAI∗A − A4πS I∗S + ξR∗ = 0 (3.5.55)

Additionally, multiplying the previous equation by F2(u) where u = (x, y, z, v,w)T and F2(u) is a later-determined function,
gives

− A4πAI∗AF2(u) − A4πS I∗S F2(u) + ξR∗F2(u) = 0 (3.5.56)

Thus, after plugging equations 3.5.53 and 3.5.56 into equation 3.5.50, one obtains

L̇EE(t) = −µ
(S − S ∗)2

S
+ A1βS ∗

(
I∗A + I∗S

) (
2 − x −

y
x
− F1(u)

)
+ξR∗ (1 − w + F2(u)) + A2γAE∗ (1 − y + F1(u))+A3ηI∗A (1 − z − F2(u))

+A4πAI∗A (1 − z − F2(u)) + A4πS I∗S (1 − v − F2(u))

(3.5.57)

In order to ensure that the coefficients of E∗ and R∗ are equal to zero the functions F1(u) and F2(u) are selected. In this
scenario, one gets

F1(u) =

(
1
y
− 1

)
and F2(u) =

[(
1
z
,

1
v
,

1
w
,

)
− 1

]
f or I∗A, I∗S , and R∗ respectively. (3.5.58)

Then, we finally have

L̇EE(t) = −µ
(S − S ∗)2

S
+ A1βS ∗

(
I∗A + I∗S

) (
3 − x −

y
x
−

1
y

)
+A3ηI∗A

(
2 − z −

1
z

)
+A4πAI∗A

(
2 − z −

1
z

)
+A4πS I∗S

(
2 − v −

1
v

) (3.5.59)

So, it can be seen from the arithmetic-geometric means inequality that L̇EE(t) ≤ 0 is equal only if S = S ∗ and y = z = v =

w. The endemic equilibrium is globally asymptotically stable in
∏

, according to the LaSalle’s invariance principle. The
fact that

∏
is absorbing establishes the positive orthant’s global asymptotic stability.

4. Numerical Analysis of the Model

Using Ghana data, we now perform numerical simulations of the model. Table 2 displays estate parameter values with
relevant soures in the literature indicated.

The sensitivity indices of the model parameters influencing R0 are shown in Table 3 using the parameter values in Table
2 as a basis.
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Table 2. Parameters estimates of the S EIAIS RS model

Parameter Value(per day) Source
Λ 2.8452 (365days) Okyere and Ackora-Prah (2022)
β 0.83117941×10−4 Okyere and Ackora-Prah (2022)
η 0.1200 Estimated
γA 0.2344×10−4 Estimated
πA 0.080 Estimated
πS 0.563 Estimated
δ 0.00002442 Estimated
µ 0.4252912 ×10−5 Estimated
ξ 0.0167 Akuka et al. (2022)

Figure 2. Epidemiological Curve of confirmed COVID-19 cases in Ghana, March 12, 2020 C June 30, 2020

Table 3. Sensitivity indices of the S EIAIS RS model parameters

Parameter Sensitivity index
Λ +1.000
β +1.000
η -0.599
γA +0.846
πA -0.399
πS -0.999
δ -4.337×10−5

µ -1.000
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Figure 3. Susceptible Figure 4. Exposed

Figure 5. Infectious Asymptomatic Figure 6. Infectious Symptomatic

Figure 7. Recovered Figure 8. All variables

With positive sign of Λ, β and γA in Table 3, there is a positive correlation between each of these parameters and R0 which
indicates that increasing (decreasing) any of these parameters would lead to increase (decreasing) in R0, thus increasing
(decreasing) the prevalence of COVID-19 disease. Also, with negative sign of η, πA, πS , δ and µ, there is a negative
correlation between any of these parameters and R0. This means that increasing (decreasing) and of these parameters
would lead to decrease (increase) of R0, thus decreasing (increasing) the prevalence of COVID-19 disease.

Based on these parameter values, we computeR0 and the vulnerability factor as follows: R0 = 0.78216, and φ = 1.42179×
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10−4.

COVID-19 epidemic in Ghana therefore has a locally asymptotic stability at the disease free equilibrium point. Also,
the result shows that the Ghana population has low vulnerability which is due to the relatively young population of that
country. In fact, according to the 2021 Population and Housing census, the population of the country is 30.8 million and
3.14% of the population are 65 and above. Also 47.13% of the population are between the age 0-19 years (Service, 2021).

Inserting the parameter values in the model equations we have, for the model, S (0) = 30, 799, 998, E(0) = 0.2, IA(0) =

02, IS (0) = 0, R(0) = 0. The equations were numerically solved using MATLAB ode45 and plots of the trajectories of
the variables S , E, IA, IS , and R obtained.

Figure 3 shows that the susceptible population monotonically decreases with time for the first 250 days. Figure 4, 5, and
6 indicate a peaking of infected populations and a tapering off by day 250. Considering Figure 4, 5, and 6 we obsevered
that the number of exposed individuals turns to be greater than the number of infectious asymptomatic individuals which
in turns is also greater than the number of infectious symptomatic individuals. From Figure 7 we see that the number of
recovering individuals is higher than any of the other individuals. The above is summarized in Figure 8.

Epidemiological Curve of COVID-19 Cases, March-June 2020, the distribution of cases showed a propagated outbreak
with multiple peaks of about one-month interval. The highest peak of confirmed cases as at June 30, 2020 was observed
at June 10, 2020, (Kenu et al., 2020). The index cases were confirmed on March 12, 2020. Among symptomatic patients,
cases were distributed over the four months with multiple peaks with the highest peak on April 29, 2020 (Figure 2).

5. Conclusion

We have formulated an S EIAIS RS Transmission Dynamics model of COVID-19 and proved that it is epidemiological
well posed, is globally asymptotically stable at the disease free equilibrium and at the endemic equilibrium when R0 < 1
and R0 > 1 respectively. We also show that a vulnerability factor define via vulnerability dependent parameters, when
appropriately bounded leads to stability at the disease free equilibrium.

Finally employing secondary clinical COVID-19 data on symptomatic and asymptomatic cases together with age structure
census data from Ghana, we are able to demonstrate that the relatively low impact of the pandemic could be largely due to
the youthfulness of the Ghanaian population. This evidently is the cause of a sufficiently low vulnerability so that R0 < 1.
Thus the transition dynamics is necessarily globally asymptotically stable at the disease free equilibrium. Thus for this
population, the disease can be eradicated and tends not to persist.

In a sequel to this paper we shall further explore issues raised here in the context of an age structured extension of our
basic model.
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