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Abstract

The aim of this paper is to explain the classification of the unitary SL2(R) representations done by Gelfand [8] by using
the induced representation technique. We induce the SL2(R) representation from the subgroup N. We get a representation
constructed on a space of homogeneous functions in two variables. Then, we move to induce the SL2(R) representation
in stages. Consequently, the representation of SL2(R) acts on a space of functions of one variable.
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1. Introduction

The special linear group SL2(R) is the group of 2 × 2 matrices with real entries and a determinant equal to one. It is an
interesting and important example of a locally compact real Lie group of three dimension. In 1947, Bargmann classified
the irreducible unitary representation of SL2(R) [2]. His approach has been presented in different sources [25, 20, 15]. The
main tool of Bargmann’s classification is to work on the Lie algebra sl2(R). Gelfand studied the SL2(R) representations
on the Lie group instead of the Lie algebra sl2(R) [8, VII]. In this paper, we use the induced representation technique
(in the sense of Mackey [21]) and the Gelfand method [8, VII] to review the classification of the irreducible unitary
representations on the Lie group SL2(R).

The affine group is a subgroup of SL2(R), and it is often used to build wavelets. To study the induced representation of
the group SL2(R), I start by considering the unitary representations of the affine group, which are due to Gelfand and
Naimark [9] .

2. Preliminaries

In this section, we present some basic notions of representation theory that are needed for our study.

2.1 Representations of Groups

Definition 2.1. [3] Let G be a group with identity element eG , and let V be a vector space. A representation π of G in V
is a homomorphism of G into GL(V) ( the group of invertible, linear mappings that carry V to itself), that is

π : G → GL(V), g 7→ π(g).

The representation operator π(g) : V → V, g ∈ G satisfies the following properties:

π(g1g2) = π(g1)π(g2), π(eG) = I.

The repreaentation π is called linear if V is a linear space and the mappings π(g) are linear operators. The space V is called
the representation space of π.

Let π be a representation of a Lie group G on a Hilbert spaceH . A strong continuity of π means that for any vector u ∈ H
and for any convergent sequence (g j)→ g ∈ G, we have [25, p.9]

‖π(g j)u − π(g)u‖ → 0.

Definition 2.2. [25] A representation π of a Lie group G on a Hilbert space H is called a unitary representation if the
operator π(g) is unitary, that is

π(g)∗ = π(g)−1 = π(g−1), g ∈ G.

There is a natural equivalence relation on the set of all representations of a group, which is defined by an intertwining
property.
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Definition 2.3. [5] Let π1 and π2 be unitary representations of a Lie group G in spaces Hπ1 and Hπ2 , respectively. An
operator U : Hπ1 → Hπ2 is called an intertwining operator between π1 and π2 if for every g ∈ G, we have

Uπ1(g) = π2(g)U.

The set of all intertwining operators is denoted by C(π1, π2). The representations π1 and π2 are unitarily equivalent if
C(π1, π2) contains a unitary operator U so that π1(g) = Uπ2(g)U−1. We shall write C(π) for C(π, π), which is the space of
the bounded operators onHπ that commute with π(g).

Definition 2.4. [20] Let π be a representation of a Lie group G on the vector space V . Define the subspace V∞ to consist
of functions f ∈ V such that the map g 7→ π(g) f is infinitely differentiable for any g ∈ G. Then, the derived representation
generated by an element X of the corresponding Lie algebra g is the representation dπ(X) of g given as follows:

dπ(X) f :=
d
dt
π(exp tX) f

∣∣∣∣∣
t=0
, where f ∈ V∞. (2.1)

2.2 Decomposition of Representations

One of the main problems of the theory of representations is the problem of decomposing representations of a group G
into the simplest possible components. In the following, we will provide some relevant notation.

Definition 2.5. [17] Let π be a linear representation of a Lie group G in a Hibert spaceH . A linear subspace L ⊂ H is an
invariant subspace for π if for any x ∈ L and g ∈ G the vector π(g)x again belongs to L.

There are two trivial invariant subspaces, the null subspace and the entire space. All other invariant subspaces are non-
trivial. Let π be a representation of a Lie group G on a Hilbert spaceH . If there are only two trivial invariant subspaces,
then π is an irreducible representation. Otherwise, we have a reducible representation.

Definition 2.6. [17] A representation on H is called decomposable if there are two non-trivial invariant subspaces H1 and
H2 of H such that H = H1 ⊕ H2.

Any unitary representation is either irreducible or decomposable. The irreducibility of representation is often established
by Schur’s lemma.

Lemma 2.7. (Schur’s lemma)[5] Let G be a group and C(π) be the set of all intertwining operators. Then

• A unitary representation π of G is irreducible if and only if C(π) contains only scalar multiples of the identity.

• Suppose π1 and π2 are irreducible unitary representations of G. If π1 and π2 are equivalent,then C(π1, π2); is one-
dimensional otherwise, C(π1, π2) = 0.

Definition 2.8. [3] A character χ of an Abelian locally compact group G is a continuous function χ : G → C, which
satisfies

|χ(g)| = 1, χ(g1g2) = χ(g1)χ(g2),

and for all g1, g2 ∈ G. That is, a character χ is a one-dimensional continuous irreducible unitary representation of G.

2.3 Induced Representations

In this section, we describe the construction of induced representations [5, 16, 17]. Let G be a group H be a closed
subgroup of G; then X = G/H is the left coset space. For a character χ : H → T, where χ(h1h2) = χ(h1)χ(h2) and
|χ(h)| = 1, let Vχ be the vector space of functions F : G → C having the property:

F(gh) = χ(h)F(g), ∀g ∈ G, h ∈ H. (2.2)

The space Vχ is invariant under the left action of G, that is

Λ(g) : Vχ → Vχ, [Λ(g)F](g′) = F(g−1g′), g, g′ ∈ G. (2.3)

The restriction of the left action of G on the space Vχ is called the induced representation.
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An equivalent realisation of the above induced representation can be defined on the homogeneous space X = G/H. Let
s : X → G, be a section map that is a right inverse of the natural projection map p : G → X, that is

p ◦ s = IX .

Then the left action of G on the homogeneous space X is given by:

g · x = p(gs(x)),

where g ∈ G and x ∈ X. Any element g ∈ G can be uniquely decomposed as g = s(p(g))r(g) where the map r : G → H is
given by r(g) = s(p(g))−1g.

Now, for a character χ of the subgroup H, introduce the lifting map Lχ : W(X)→ Vχ, as follows:

[Lχ f ](g) = χ(r(g)) f (p(g)), f ∈ W(X),

where W(X) := { f : X → C} is the vector space of all complex functions on the homogeneous space X = G/H. Let the
pulling map P : Vχ → W(X), given by:

[PF](x) = F(s(x)),

such that P ◦ Lχ = IW(X). and Lχ ◦ P = IVχ .

Next, the operator πχ(g) on W(X) is given as follows:

πχ(g) := P ◦ Λ(g) ◦ Lχ. (2.4)

This can be represented by the following commutative diagram:

Vχ Vχ

W(X) W(X)

Λ(g)

PLχ

ρχ(g)

Figure 1: Induced representation from a character of a subgroup

Thus, the representation πχ acts on W(X) via the following explicit formula:

[πχ(g) f ](x) = χ̄(r(g−1 ∗ s(x))) f (g−1 · x). (2.5)

3. The Group SL2(R)

The Lie group SL2(R) consists of 2 × 2 matrices with real entries and a determinant equal to one

SL2(R) =

{(
a b
c d

)
: ad − bc = 1, a, b, c, d ∈ R

}
.

It acts on the upper half-plane by Möbius transformation

g · z =
az + b
cz + d

,

where g ∈ SL2(R) and z ∈ {z ∈ C : Imz > 0}.

The group SL2(R) contains the following three subgroups:

K =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
, (3.1)

A =

{(
α 0
0 α−1

)
: α > 0

}
, (3.2)

N =

{(
1 x
0 1

)
: x ∈ R

}
. (3.3)
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Hence,we have the Iwasawa decomposition SL2(R) = KAN. Therefore, every element g ∈ SL2(R) has a unique represen-
tation as g = kan, where k ∈ K, a ∈ A and n ∈ N. That is,(

a b
c d

)
=

(
cos θ sin θ
− sin θ cos θ

) (
α 0
0 α−1

) (
1 x
0 1

)
. (3.4)

The values of parameters in the above decomposition are as follows:

α =
√

a2 + c2, x =
ab + cd
a2 + c2 , θ = arctan

−c
a
.

Consequently, cos θ = a
√

a2+c2
and sin θ = −c

√
a2+c2

.

Moreover, the affine group defined as follows:

Aff =

{
1
√

a

(
a b
0 1

)
, a > 0, b ∈ R

}
,

is a subgroup of the S L2(R) group. That is because we can decompose the affine group as a semi-direct product of the
subgroups A and N i.e. Aff = A n N.

The Lie algebra sl2(R) is the set of all 2 × 2 real matrices of trace zero. It is a three-dimensional Lie algebra so we can
choose a basis{Z, A, B} of sl2(R) by setting

Z =

(
0 1
−1 0

)
, A =

1
2

(
−1 0
0 1

)
and B =

1
2

(
0 1
1 0

)
. (3.5)

Note that

[Z, A] = 2B, [Z, B] = −2A, [A, B] = −
1
2

Z. (3.6)

The exponential map of each matrix Z, A and B forms a one-dimensional subgroup of the group S L2(R) given as follows:

exp(θZ) ∈
{(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
, (3.7)

exp(θA) ∈
{(

e
−θ
2 0

0 e
θ
2

)
: θ ∈ R

}
, (3.8)

exp(θB) ∈
{(

cosh θ
2 sinh θ

2
sinh θ

2 cosh θ
2

)
: θ ∈ R

}
. (3.9)

4. Irreducible Unitary Representations of SL2(R)

The irreducible unitary strongly continuous representation of SL2(R) was classified by Bargmann in 1947 [2], and his
approach has been used in different sources , such as [20, 25]. Suppose that ρ is an irreducible unitary strongly continuous
representation of SL2(R) on a Hilbert spaceH . The classification steps are as follows:

Step 1: Set the Gårding space[6] for ρ,

G(ρ) = {ρ( f )u : u ∈ H , f ∈ C∞0 (G)},

where G = SL2(R). Denote the derived representations of the matrices Z, A, and B (3.5) by

dρ(Z) = E, dρ(A) = A1, and dρ(B) = B1.

From (3.6), we find that

[E, A1] = 2B1, [E, B1] = −2A1, and [A1, B1] = −
1
2

E. (4.1)

Step 2: Consider the ladder operators

L+ = A1 − iB1, and L− = A1 + iB1. (4.2)

25



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 5; 2023

Since ρ is unitary, then A1 and B1 are skew-symmetric. This implies that

L∗+ = −L−.

From the commutator relation in (4.1), we have

[E, L±] = ±2iL±, [L+, L−] = −iE. (4.3)

Step 3: The Casimir operator given by C := Z2−4A2−4B2, is an element of the centre of the universal enveloping algebra
for the Lie algebra sl2(R). Therefore, by Schur’s lemma (2.7), it acts as a scalar for the irreducible unitary representation
ρ,

dρ(C) = λI. (4.4)

Step 4: The decomposition into the irreducible subspace of the representation ρ(K) on the Hilbert space H leads to the
orthogonal sum, since K is a compact subgroup,

H =
⊕
k∈Z

Vk.

The unitary irreducible representation on the subgroup K is the character eiks

ρ(exp sZ) = eiksI on Vk.

Thus,

E = dρ(Z) =
d
ds
ρ(esZ)|s=0

=
d
ds

eiks|s=0

= ik on Vk.

(4.5)

Moreover, for the Casimir operator C := Z2 − 4A2 − 4B2, we have

dρ(C) := dρ(Z)2 − 4dρ(A)2 − 4dρ(B)2

= E2 − 4A2
1 − 4B2

1

= E2 − 2(L+L− + L−L+).

From(4.3), we have

4L+L− = E2 − 2iE − λ,

4L−L+ = E2 + 2iE − λ.

Then by (4.5),

−4L+L− = k2 − 2k + λ,

−4L−L+ = k2 + 2k + λ.

Since L∗+ = −L−, then

‖L−‖L(Vk ,Vk−2) =
1
2

[(k − 1)2 + λ − 1]
1
2 ,

‖L+‖L(Vk ,Vk+2) =
1
2

[(k + 1)2 + λ − 1]
1
2 .

From the commutator relation (4.3), we have

[E, L±] = ±2iL± ⇔ EL± = L±E ± 2iL±.

Then by (4.5), for v ∈ Vk,
E(L±v) = L±(Ev) ± 2iL±v = (k ± 2)i(L±v).
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Therefore, the ladder operators L± act as
L± : Vk → Vk±2.

Step 5: We have the commutator relation [L+, L−] = −iE. Then, for each vector vk ∈ Vk, where k ∈ spec(1/i)E, the
collection of vectors

vk+2n := (L+)nvk,

vk−2n := (L−)nvk, n ∈ Z+,

is invariant under the operators L+, L−, E. Therefore, Vk is a one-dimensional space.

Step 6: The ladder operators act on the vector spaces Vk where k ∈ spec(1/i)E. There are only four possibilities for the
spectrum of the operator (1/i)E. First, if the ladder operators are two-sided infinite operators, given that the representation
ρ is irreducible, the spectrum is either in the even or odd integer set. That is,

spec(1/i)E = {....... − 4,−2, 0, 2, 4......},
spec(1/i)E = {..... − 5,−3, 1,−1, 3, 5, .....}.

Second, if the ladder operators are one-sided infinite operators, then for Vk , 0, we have the following sets of spectrum:

• For L+ = 0 on Vk, spec(1/i)E = {.....n − 4, n − 2, n}, n ∈ Z+.

• For L− = 0 on Vk, spec(1/i)E = {n, n + 2, n + 4, .......}, n ∈ Z+.

Step 7: In each case above select a unit vector vk ∈ Vk, k ∈ spec( 1
i )E. We have L+vk = αkvk+2. The absolute value of αk is

|αk | =
1
2

[(k + 1)2 + λ − 1]
1
2 . (4.6)

The action of L− on vk+2 is given as follows:

L−vk+2 = βkvk, where βk = −αk.

Therefore, the type of the spectrum together with the value of dρ(C) = λI, fully determines the unitary irreducible
representation of SL2(R). This stated in the following theorem.

Theorem 4.1. [25] Any nontrivial irreducible unitary representation of SL2(R) is unitary equivalent to one of the follow-
ing types:

• Members of the holomorphic discrete series, denoted by ρ+
n such that

dρ+
n (C) = 1 − (n − 1)2, n ∈ Z+,

when spec(1/i)E = {n, n + 2, ........}.

• Members of the anti-holomorphic discrete series, denoted by ρ−−n such that

dρ−−n(C) = 1 − (n − 1)2, n ∈ Z+,

when spec(1/i)E = {....., n − 4, n − 2, n}.

• Mock discrete series ρ+
1 ,ρ−
−1, for n = 1.

• A member of the first principal series, denoted by ρe
is such that

dρe
is(C) = 1 + s2, s ∈ R,

when spec(1/i)E = {.......,−4,−2, 0, 2, 4, ......}.

• A member of the complementary series, denoted by ρe
s such that

dρe
s(C) = 1 − s2, s ∈ (−1, 1)\{0},

when spec(1/i)E = {.......,−4,−2, 0, 2, 4, ......}.

• A member of the second principal series, denoted by ρo
is such that

dρo
is(C) = 1 + s2, s ∈ R\{0},

when spec(1/i)E = {...,−5,−3,−1, 1, 3, 5, .....}.
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5. Induced Representation of the Group SL2(R)

In this section, we induce a representation of the group SL2(R) from a trivial character of the subgroup N. We get a
representation on a space of functions with two variables. Then, we can have this representation on a space of functions
with one variable by using inducing in stages technique. That is, first induce a representation for the affine group from a
trivial character of the subgroup N. We get an affine group representation that can be decomposed into a one-dimensional
representation which is a complex character. Then, we induce a representation for the group SL2(R) from a complex
character of the affine group.

5.1 The SL2(R) Induced Representation from the Subgroup N

Let χe : N → T be a trivial character of the subgroup N. The character χe induces a linear representation of SL2(R). This
induced representation is constructed in the vector space V, which consists of the functions Fe : SL2(R) 7→ C with the
property

Fe

(
a b
c d

)
= χe

(
1 b

a
0 1

)
F

(
a 0
c a−1

)
.

The space V is invariant under the left shift of the group SL2(R). The restriction of the left shift on V is the left regular
representation of the group SL2(R), which is given by

[Λ(g)Fe](g′) = Fe(g−1 ∗ g′). (5.1)

In the following, we obtain an equivalent induced representation constructed in the left homogeneous space X = SL2(R)/N.

The Iwasawa decomposition SL2(R) = KAN implies that the homogeneous space X = SL2(R)/N topologically identifies
to KA ' T × R+ ' R2\{0}. Hence we can choose the section map to be given by

s : X → SL2(R),

: (u, v) 7→
(
u 0
v u−1

)
, u > 0.

The natural projection map will be

p : SL2(R)→ X,

:
(
a b
c d

)
7→ (a, c),

such that s is the right inverse of p. Therefore, the unique decomposition of g ∈ SL2(R) is of the form(
a b
c d

)
=

(
a 0
c a−1

) (
1 b

a
0 1

)
.

The map r : SL2(R)→ N is given by

r
(
a b
c d

)
=

(
1 b

a
0 1

)
. (5.2)

The SL2(R) action on the space X = SL2(R)/N can be expressed in terms of p and s as follows:(
a b
c d

)
: w 7→

(
a b
c d

)−1

· w = p

(a b
c d

)−1

· s(u, v)

 = (du − bv, av − cu).

Let W be a vector space of function f on the homogeneous space X. The lifting map for the subgroup N and its character
χe is given by:

[Lχe f ]
(
a b
c d

)
:= χe

(
r
(
a b
c d

))
f
(
p
(
a b
c d

))
= f (a, c).

(5.3)

Then, the pulling map P : V → W, which is the right inverse of the lifting map, is given by

[PF](u, v) := F(s(u, v)).
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Therefore, the representation U : W → W, which is induced by the character χe, is

U(g) = P ◦ Λ(g) ◦ Lχe . (5.4)

To calculate the explicit form of U(g), take the left action of the lifting map

[Λ(g)Lχe f ](g′) = [Lχe f ](g−1 ∗ g′) = f (da′ − bc′, ac′ − a′c) = Fe(g′). (5.5)

Then, apply pulling for the function Fe

[PFe](u, v) = Fe(s(u, v))

= Fe

(
u 0
v u−1

)
= f (du − bv, av − cu).

(5.6)

Hence, from(5.4), we obtain the following formula:

[U(g) f ](u, v) = f (du − bv, av − cu), (5.7)

where (u, v) ∈ X and g =

(
a b
c d

)
.

5.2 Affine Group Representation Induced From a Trivial Character

For the trivial character χe, the induced representation of the subgroup N is ρ+
χe

: L2(R+)→ L2(R+) and is expressed as

[ρ+
χe

(a, b) f ](x) =
√

a f (ax), f ∈ L2(R+). (5.8)

It is a reducible unitary representation. To decompose it into irreducible components, we will find the eigenfunction of
the operator ρ+

χe
(a, b) f as follows:

[ρ+
χe

(a, b) f ](t) = λa,b f (t) ⇒
√

a f (at) = λa,b f (t).

Let f (t) = tα, where α ∈ C. Then, we obtain

[ρ+
χe

(a, b)](tα) =
√

a(at)α = aα+ 1
2 tα.

Hence, the eigenfunction of ρ+
χe

(a, b) is tα. Let the inverse Mellin transform be given by

[M−1 f̃ ](t) = f (t) =
1
√

2π

∫ ∞

−∞

t−
1
2 +is f̃ (s)ds, t ∈ R+, (5.9)

where α = − 1
2 + is. The function f̃ (s) is the Mellin transform f̃ (s) = [M f ](x) =

∫ ∞
0 xs f (x) dx

x . Therefore, we obtain

[ρ+
χe

(a, b) f ](t) =
√

a f (at)

=
√

a
1
√

2π

∫ ∞

−∞

f̃ (s)(at)−
1
2 +isds

=
1
√

2π

∫ ∞

−∞

ais f̃ (s)t−
1
2 +isds

=
1
√

2π

∫ ∞

−∞

χs(a, b) f̃ (s)t−
1
2 +isds,

(5.10)

where χs(a, b) = ais is a complex character of the affine group. Hence, the irreducible component of the representation
ρ+
χe

(5.8) is the character χs.

5.3 Induction in Stages

Let P be the subgroup of SL2(R), which is defined as follows:

P =

{(
a b
0 a−1

)
: a ∈ R\{0}, b ∈ R

}
.
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There exists a homomorphism T : P → Aff such that T−1(a, b) has two elements, one for a > 0 and the other for a < 0.
The S L2(R) representations (5.7) can be obtained by induction in stages. That is

IndSL2(R)
P [IndP

Nχe] = IndSL2(R)
N [χe].

First induce the trivial character χe of the subgroup N to the affine group. We will obtain the co-adjoint representation
ρ+
χ : U→ U, which is given as follows: [

ρ+
χe

(
a b
0 a−1

)
g
]

(t) =
√

ag
(
at

)
.

The vector space U consists of all functions on the homogeneous space Aff/N = A. It is reducible, and from subsection
5.2 we can decompose it into irreducible component which is the following the character:

χα

(
a 0
0 a−1

)
= aα, α ∈ C.

Therefore, for the subgroup P = AN, the character is given by

χs

(
a b
0 a−1

)
= |a|ssgnε(a), ε = {0, 1}, s ∈ C.

Next, the character χs induces a representation of the group S L2(R). This representation is constructed on the vector space
V, which consist of the functions Fs : SL2(R)→ C with the following property:

Fs

(
a b
c d

)
= χs

(
a b
0 a−1

)
F

(
1 0
c
a 1

)
.

This vector space is invariant under the left shift of the group SL2(R). The restriction of the left shift on this space is an
induced representation.

An equivalent form of the induced representation can be constructed on the homogeneous space X = SL2(R)/P. The
space of the left cosets X = SL2(R)/P can be defined by the following equivalence relation: g ∼ g′ if and only if there
exists x ∈ P such that g = g′x. Then, the equivalence class for all g ∈ SL2(R) is given by the following:

[g] =

[(
a b
c d

)]
= [c : a] =

{
[ c

a : 1], a , 0
[1 : 0], a = 0 .

Thus, we can identify the space X = SL2(R)/P by the real projective line P(R).

Next, let s : P(R)→ SL2(R) be the section map given by

s(w) =

(
1 0
w 1

)
. (5.11)

The natural projection map will be

p : SL2(R)→ P(R)

:
(
a b
c d

)
7→

c
a
,

(5.12)

where a , 0, and p ◦ s = IP(R). The unique decomposition of any g ∈ SL2(R) defined by s is of the form(
a b
c d

)
=

(
1 0
c
a 1

) (
a b
0 a−1

)
.

Hence, the map r : SL2(R)→ P is given by

r
(
a b
c d

)
=

(
a b
0 a−1

)
. (5.13)

The SL2(R) action on the left homogeneous space X = SL2(R)/P � P(R) is the Möbius transformation and we can
express it in terms of p and s as follows:(

a b
c d

)
: w 7→

(
a b
c d

)−1

· w = p

(a b
c d

)−1

· s(x)

 =
ax − c
d − bx

, (5.14)

30



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 5; 2023

where
(
a b
c d

)
∈ SL2(R), x ∈ P(R) and · is the action of SL2(R) on P(R) from the left.

Let W be the vector space of all functions on the homogeneous space X = P(R). The lifting map Lχs : W → V for the
subgroup P and its character χs associates each function f on the projective line P(R) with a function F on the SL2(R)
group. That is [

Lχs f
] (a b

c d

)
:= χs

(
r
(
a b
c d

))
f
(
p
(
a b
c d

))
= |a|ssgnε(a) f

( c
a

)
,

(5.15)

where a , 0. Then, the pulling map P : V→ W, which is the right inverse of the lifting map, is given as follows:

[PF](x) := F(s(x)).

Therefore, the representation T : W→ W that induced by the character χs is given as follows:

T (g) = P ◦ Λ(g) ◦ Lχs . (5.16)

The explicit formula of T (g) is calculated as follows. First, take the left action of the lifting map

[Λ(g)Lχs f ](g′) = [Lχs f ](g−1g′)

= |da′ − bc′|ssgnε(da′ − bc′) f
(

ac′ − ca′

da′ − bc′

)
= Fs(g′).

(5.17)

Then, apply pulling to the function Fs

[PFs](x) = Fs(s(x))

= Fs

(
1 0
w 1

)
= |d − bw|ssgnε(d − bx) f

( ax − c
d − bx

)
.

(5.18)

Hence, by (5.17) and (5.18) from(5.16), we obtain the formula

[Ts(g) f ](x) = |d − bx|ssgnε(d − bx) f
( ax − c
d − bx

)
, (5.19)

where f ∈ W and g =

(
a b
c d

)
.

6. Gelfand Method to Classify the Group SL2(R) Representation

In section 4, we present Bargmann’s classification for the SL2(R) representations which used the derived representation
and find the vector modules of the representations on the Lie algebra sl2(R). In [8, chapter VII], the representations for
the group SL2(R) have been classified by working on the Lie group instead of the Lie algebra. The method is based on
studying the invariance of bilinear functional on a normed space. Then, we move to study the invariance of the inner
product on a Hilbert space. The following sections explain the Gelfand method in details.

7. Invariant Bilinear Functionals

In section 5, the SL2(R) representations are constructed on the vector space of functions Wt on the homogeneous space
X = SL2(R)/N = KAN/N. The space X can be topologically identified as follows:

X = KA ' T × R+ ' R2\{0}.

Definition 7.1. Consider pairs of numbers t = (s, ε), where s is any complex number and ε = 0 or 1. Then associate each
such pair with the space Wt that consists of functions f (x1, x2) with the following properties:

• Every function f (x1, x2) ∈ Wt is homogeneous of degree s−1, and it has even parity if ε = 0 and odd parity if ε = 1.
This means that for a , 0

f (ax1, ax1) = |a|s−1sgnε(a) f (x1, x2).
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• The function f (x1, x2) is infinitely differentiable for every x1 and x2 except at the point (0, 0).

In subsection 5.3, the SL2(R) representations (5.19) have been constructed on the vector space of functions Wt on the real
projective line P(R). We can realise the space Wt as the space of one variable by associating a function f (x1, x2) ∈ Wt

with a function ϕ(x) ∈ Wt as follows:

f (x1, x2) = |x2|
s−1sgnε(x2)ϕ

(
x1

x2

)
. (7.1)

Definition 7.2. From the relation (7.1), every function ϕ(x) ∈ Wt is given by ϕ(x) = f (x, 1). Then, the function ϕ(x) has
the following properties:

• ϕ(x) is infinitely differentiable.

• The function ϕ̃(x) = f (1, x) = |x|s−1sgnε(x)ϕ
(

1
x

)
, is infinitely differentiable. Then, we obtain

ϕ(x) = |x|s−1sgnε(x)ϕ̃
(

1
x

)
= |x|s−1sgnε(x) f

(
1,

1
x

)
.

As |x| → ∞, we have ϕ(x) ∼ |x|s−1sgnε(x) f (1, 0).

This condition shows the behaviour of ϕ(x) for large |x|. In particular, it implies that asymptotically as |x| → ∞, the
function ϕ(x) goes as

ϕ(x) ∼ C|x|s−1sgnε(x).

In this section, we will study the case of the SL2(R) representations (5.19) possessing an invariant bilinear functional.
Associate the pairs of numbers t1 = (s1, ε1) and t2 = (s2, ε2) with the spaces Wt1 and Wt2 ,respectively. Then, consider the
following two representations of SL2(R):

[Ts1 (g)ϕ](x) = |d − bx|s1−1sgnε1 (d − bx)ϕ
( ax − c
d − bx

)
, (7.2)

[Ts2 (g)ψ](x) = |d − bx|s2−1sgnε2 (d − bx)ψ
( ax − c
d − bx

)
, (7.3)

acting on the spaces Wt1 and Wt2 , respectively.

A bilinear functional (·, ·) : Wt1 ×Wt2 → R, is called invariant if

(Ts1 (g)ϕ,Ts2 (g)ψ) = (ϕ, ψ), (7.4)

for all g ∈ S L2(R),ϕ ∈ Wt1 and ψ ∈ Wt2 .

By the Iwasawa decomposition SL2(R) = KAN, every matrix g ∈ SL2(R) can be written as a product of the following
three matrices:

g1 =

(
1 0
x0 1

)
∈ N, g2 =

(
α 0
0 α−1

)
∈ A, g3 =

(
0 1
−1 0

)
∈ K. (7.5)

Hence, the linear fractional transformation (5.14) can be obtained by combining the following three types of transforma-
tion:

• Translation: x→ g−1
1 · x = x − x0.

• Dilation: x→ g−1
2 · x = α2x.

• Inversion: x→ g−1
3 · x = −1

x .

Therefore, in determining whether a bilinear functional is invariant, it is sufficient to consider the operators corresponding
to the three matrices g1, g2 and g3.
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7.1 Invariance Under Translation

For the matrix g1, the representations (7.2) and (7.3) are given as follows :

[Ts1 (g1)ϕ](x) = ϕ(x − x0), (7.6)
[Ts2 (g1)ψ](x) = ψ(x − x0). (7.7)

We want to find a bilinear functional (ϕ, ψ) that satisfies the following condition :

(Ts1 (g1)ϕ,Ts2 (g2)ψ) = (ϕ, ψ).

We shall restrict our considerations to the infinitely differentiable functions with bounded support in the spaces Wt1 and
Wt2 . Then, by the kernel theorem A.5 we can define an integral transform as follows:

Lk : ϕ→ Lk(ϕ) such that [Lkϕ](x2) =

∫
k(x1, x2)ϕ(x1)dx1.

Hence, we obtain

(Lk(ϕ), ψ) =

∫ ∞

−∞

∫ ∞

−∞

k(x1, x2)ϕ(x1)ψ(x2)dx1dx2,

where x1, x2 ∈ R and k(x1, x2) is the kernel of the integral. We can consider

(ϕ, ψ) =

∫ ∞

−∞

∫ ∞

−∞

k(x1, x2)ϕ(x1)ψ(x2)dx1dx2. (7.8)

Then, by using (7.6)and (7.7), we have

(Ts1 (g1)ϕ,Ts2 (g2)ψ) =

∫ ∞

−∞

∫ ∞

−∞

k(x1 − x0, x2 − x0)ϕ(x1 − x0)ψ(x2 − x0)dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞

k(x′1, x
′
2)ϕ(x′1)ψ(x′2)dx′1dx′2

= (ϕ, ψ)

where x′1 = x1 − x0, and x′2 = x2 − x0.

Therefore, the kernel is invariant under translation. We may associate k(x1, x2) with a function of a single variable that is

k(x1, x2) = k(x1 − x2, 0) = k0(x1 − x2).

Hence, every bilinear functional (ϕ, ψ) (7.8) invariant with respect to translation is of the form

(ϕ, ψ) =

∫ ∞

−∞

∫ ∞

−∞

k0(x1 − x2)ϕ(x1)ψ(x2)dx2dx1. (7.9)

7.2 Invariance Under Dilation

Now, we wish to further that (ϕ, ψ) be invariant under the representations (7.2) and (7.3) for g2. These operators are given
as follows:

[Ts1 (g2)ϕ](x) = |α|−s1+1sgnε1 (α)ϕ(α2x),

[Ts2 (g2)]ψ(x) = |α|−s2+1sgnε2 (α)ψ(α2x).

The condition that (ϕ, ψ) be invariant under these operators may consequently be written as

(ϕ, ψ) = |α|−s1−s2+2sgnε1+ε2 (α)(ϕ(α2x), ψ(α2x)). (7.10)

First, note that this requires that ε1 = ε2.

Let x = x1 − x2 in the integral (7.9). The bilinear functional will be given as follows:

(ϕ, ψ) =

∫ ∞

−∞

k0(x)
∫ ∞

−∞

ϕ(x1)ψ(x1 − x)dx1dx = (k0, ω) (7.11)
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where ω(x) =
∫ ∞
−∞

ϕ(x1)ψ(x1 − x)dx1.

Next, substitute (k0, ω) for (ϕ, ψ) in (7.10) considering that

α−2ω(α2x) =

∫ ∞

−∞

ϕ(α2x1)ψ(α2[x1 − x])dx1.

We get
(k0, ω) = |α|−s1−s2 (k0, ω(α2x)).

Let α > 0 and replace α by α
1
2 ; then, the above equation becomes

(k0, ω) = α−
1
2 (s1+s2)(k0, ω(αx)),

which shows that k0 is a homogeneous generalized function of degree λ = − 1
2 (s1 + s2) − 1.

Recall one of the basic properties of homogeneous generalized functions of a single variable [10]. For every complex
number λ, there exists one even and one odd homogeneous generalized function of degree λ and every other homogeneous
generalized function of this degree is a linear combination of these. Hence, k0(x) is given by one of the two following
forms:

• If 1
2 (s1 + s2) , 0, 1, 2...., n.., where n ∈ Z, then

k0(x) = C1|x|−
1
2 (s1+s2)−1 + C2|x|−

1
2 (s1+s2)−1sgn(x). (7.12)

• If 1
2 (s1 + s2) = 0, 1, 2, 3, .....n... is a non-negative integer, then

k0(x) = C1δ
1
2 (s1+s2)(x) + C2x−

1
2 (s1+s2)−1. (7.13)

The function δ
1
2 (s1+s2)(x) is the derivative of the delta function. It is defined by∫

ϕ(x1)δ
1
2 (s1+s2)(x1 − x2) = ϕ

1
2 (s1+s2)(x2).

We established that an invariant bilinear functional (ϕ, ψ) can exist only if ε1 = ε2 for the representations (7.2) (7.3).

7.3 Invariance Under Inversion

Let us now use the condition of invariance under inversion in addition to the invariance under translation and dilation .
The operators Ts1 (g) and Ts2 (g) for the matrix g3 are given as follows:

[Ts1 (g3)ϕ](x) = |x|s1−1sgnε(x)ϕ
(
−1
x

)
,

[Ts2 (g3)ψ](x) = |x|s2−1sgnε(x)ψ
(
−1
x

)
.

The invariant condition of bilinear functional (7.4) under Ts1 (g3) and Ts2 (g3) become(
Ts1 (g3)ϕ,Ts2 (g3)ψ

)
= (ϕ, ψ).

Then,by using (7.9) and changing the variable, we get∫ ∫
k0(x1 − x2)ϕ(x1)ψ(x2)dx1dx2 =

∫ ∫
k0

(
x1 − x2

x1x2

)
|x1|
−s1−1|x2|

−s2−1sgnε(x1x2)ϕ(x1)ψ(x2)dx1dx2. (7.14)

To find the value of s1 and s2 for which (7.14) is valid, we will consider the different forms of k0(x), which are given by
(7.12) and (7.13).
In the first case ,(7.12) k0(x) is invariant if C1 or C2 is zero. Hence, we get

k0(x) = |x|−
1
2 (s1+s2)−1sgnν(x), ν = 0 or 1.
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Then, we substitute |x|−
1
2 (s1+s2)−1sgnν(x) for k0(x) in (7.14). We obtain that the bilinear functional is invariant if s1 = s2 ,

0, 1, 2.., n, , . In this case the invariant bilinear functional is given as follows:

(ϕ, ψ) =

∫ ∞

−∞

|x1 − x2|
−s1−1sgnε(x1 − x2)ϕ(x1)ψ(x2)dx1dx2. (7.15)

Similar, for (7.13) , k0(x) is invariant if C1 or C2 is zero. Then, we obtain

k0(x) = δ
1
2 (s1+s2)(x), or k0(x) = x−

1
2 (s1+s2)−1.

We substitute δ
1
2 (s1+s2)(x) for k0(x) in (7.14). We get the following invariant bilinear functionals:

• if s1 = s2 is an integer but the representation is not holomorphic, we have

(ϕ, ψ) =

∫ ∞

−∞

ϕs1 (x)ψ(x)dx, (7.16)

• if s1 = −s2, we have

(ϕ, ψ) =

∫ ∞

−∞

ϕ(x1)ψ(x2)dx1dx2. (7.17)

For k0(x) = x−
1
2 (s1+s2)−1, the invariant bilinear functional is given as follows:

(ϕ, ψ) =

∫ ∞

−∞

(x1 − x2)−s1−1ϕ(x1)ψ(x2)dx1dx2, (7.18)

where s1 = s2 ∈ Z and the representation is holomorphic.

To conclude, the S L2(R) group representations Tt1 and Tt2 given by (7.2), (7.3) have an invariant bilinear functional if and
only if ε1 = ε2 = {0, 1} and either s1 = s2 or s1 = −s2, where s1, s2 ∈ C.

8. Invariant Bilinear Functionals for Holomorphic Representations

In section 7, the bilinear functional (7.18) was invariant if s1 = s2 = n ∈ Z. In this case, the representation operator is
given by

[Tn(g)ϕ](x) = (d − bx)n−1ϕ
( ax − c
d − bx

)
. (8.1)

In this section, we illustrated the invariant subspaces of the S L2(R) representation Tn. The representation Tn is called
holomorphic because it is constructed in a space of holomorphic functions. This is explained in the following text.

Let ρ : H2(R)→ H2(R) be the quasi-regular representation of the affine group given by

[ρ(a, b) f ](x) = a
−1
2 f

( x − a
b

)
.

Let the mother wavelet be c(x) := 1
iπ

1
i±x , and let the operator F± : L2(R)→ C be defined by

F±( f ) = 〈 f , c〉 =
1
πi

∫
R

f (x)
i ± x

dx.

Then, from the Definition B.1, the covariant transformWρ
F : L2(R)→ H2(R) becomes

[Wρ
F+

f ](b + ai) = F+(ρ(a, b)−1 f (t)) =
1

2πi

∫
R

f (t)
t − (b + ai)

dt.

The image space for this covariant transform consists of the null solution of the Cauchy-Riemann equation ∂z̄ in the upper
half-plane. This has been explained in example B.5.

Also, for the affine group, consider the contravariant transform ( see subsection C)M : H2(R) → L2(R), which is given
by

[M f ](t) = lim
a→0

f (a, t).
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Therefore, the compositionM◦Wρ
F+

: H2(R)→ H2(R) is given as follows:

[M◦Wρ
F+

f ](t) = lim
a→0

1
2πi

∫
R

f (t)
t − (b + ia)

dt. (8.2)

This shows that at a = 0, we get the boundary value of the Cauchy integral [C f ](b + ia), and the vector space of functions
[C f ](b + i0) is the Hardy space on the real line.

Now, for nonnegative integer n, let Dn be the space with the invariant bilinear functional

(ϕ, ψ) =

∫ ∞

−∞

(x1 − x2)−n−1ϕ(x1)ψ(x2)dx1dx2. (8.3)

To find the invariant subspaces of Dn, we choose the kernels k0(x) = (x − i0)−n−1 and k0(x) = (x + i0)−n−1. From (7.9), the
functionals corresponding to them are

(ϕ, ψ)+ =

∫ ∞

−∞

(x1 − x2 − i0)−n−1ϕ(x1)ψ(x2)dx1dx2, (8.4)

(ϕ, ψ)− =

∫ ∞

−∞

(x1 − x2 + i0)−n−1ϕ(x1)ψ(x2)dx1dx2, (8.5)

where ϕ(x) and ψ(x) ∈ Dn. From (8.2), we associate every ϕ(x) with the following two bounded support functions:

ϕ+(x) =
1

2πi

∫ ∞

−∞

ϕ(x1)
x1 − x − i0

dx1, (8.6)

ϕ−(x) = −
1

2πi

∫ ∞

−∞

ϕ(x1)
x1 − x + i0

dx1. (8.7)

These functions are in the Hardy space on the upper and lower half planes, respectively, and we have ϕ(x) = ϕ+(x)+ϕ−(x).

Then, the bilinear functional on the upper and lower half planes, respectively, are given by the following:

(ϕ, ψ)+ =
2πi
n

∫ ∞

−∞

ϕ(n)
+ (x)ψ(x)dx, (8.8)

(ϕ, ψ)− =
2πi
−n

∫ ∞

−∞

ϕ(n)
− (x)ψ(x)dx. (8.9)

The functions ϕ(n)
+ (x) and ϕ(n)

− (x) are the nth derivative of ϕ+(x) and ϕ−(x), respectively, and are given as follows:

ϕ(n)
+ (x) =

n
2πi

∫ ∞

−∞

ϕ(x1)
(x1 − x − i0)n+1 dx1, (8.10)

ϕ(n)
− (x) =

−n
2πi

∫ ∞

−∞

ϕ(x1)
(x1 − x + i0)n+1 dx1. (8.11)

Theorem 8.1. [8, p.410] The integrals (ϕ, ψ)+ (8.8) and (ϕ, ψ)− (8.9) converge for arbitrary ϕ and ψ ∈ Dn, and hence, we
define invariant bilinear functionals on all of Dn.

Let D−n ⊂ Dn be a subspace of ϕ(x) functions such that (ϕ, ψ)+ = 0 for every ψ ∈ Dn. Equation (8.8) shows that D−n
contains all ϕ(x) functions such that ϕ(n)

+ (x) = 0. Hence, we obtain ϕn(x) = ϕ(n)
− (x) on the space D−n . Thus, ϕ(x) is the

boundary value of a holomorphic function in the lower half-plane.

Similarly, (ϕ, ψ)− = 0 on a subspace D+
n ⊂ Dn of the function ϕ(x), which is the boundary value of a holomorphic function

in the upper half-plane.

The intersection of D+
n and D−n is the finite dimensional subspace En of all polynomials of degree n − 1 and less. To

conclude, the space Dn of analytic representation contains three invariant subspaces: one finite dimensional and two
infinite dimensional. In Lemma 9.4, we show that the quotient space Dn/En is the direct sum of the invariant subspaces
D+

n /En and D−n /En.

For −n ∈ Z−, let F−n be the space where the invariant bilinear functional given by (8.3) is equal to zero . Hence, F−n

consists of functions ϕ(x) that satisfy ∫ ∞

−∞

xkϕ(x)dx = 0, k = 0, ...,−n − 1. (8.12)
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Remark 8.2. For the homogeneous function k0(x) = x−n−1, let k1(x) = x−n−1 ln |x| be an associated homogeneous function
That is

k1(αx) = (αx)−n−1 ln |αx|

= α−n−1x−n−1[ln |α| + ln |x|]

= α−n−1[x−n−1 ln |x| + ln |α|x−n−1]

= α−n−1[k1(x) + ln |α|k0(x)].

The bilinear functional of k1(x) = x−n−1 ln |x| is defined on the space F−n and is given by

(ϕ, ψ)1 =

∫ ∞

−∞

(x1 − x2)−n−1 ln |x1 − x2|ϕ(x1)ψ(x2)dx1dx2. (8.13)

By simple calculation, for g2 (7.5) and Tn (8.1), we have

(Tn(g2)ϕ,Tn(g2)ψ))1 =
[
(ϕ, ψ)1 + ln |α−2|(ϕ, ψ)

]
, (8.14)

where (ϕ, ψ) is given by (8.3). On the space F−n, the invariant bilinear functional is (ϕ, ψ) = 0 . Hence, we obtain

(Tn(g2)ϕ,Tn(g2)ψ)1 = (ϕ, ψ)1.

Therefore, the bilinear functional (ϕ, ψ)1 is invariant under dilation on the space F−n.

Also, by direct calculation, (ϕ, ψ)1 is invariant under inversion on F−n, that is,

(Tn(g3)ϕ,Tn(g3)ψ)1 = (ϕ, ψ)1,

where g3 is given in (7.5) and Tn is (8.1). Hence, (ϕ, ψ)1 is an invariant bilinear functional on F−n.

Next, for k1(x) = x−n−1 ln |x|, there exists the following kernels:

k+
1 (x) = lim

y→+0
x−n−1 ln |x − iy| = x−n−1 ln |x − i0|, (8.15)

k−1 (x) = lim
y→−0

x−n−1 ln |x + iy| = x−n−1 ln |x + i0|. (8.16)

The functionals corresponding to k+
1 (x) and k−1 (x) are

(ϕ, ψ)+
1 =

∫ ∞

−∞

(x1 − x2)−n−1 ln(x1 − x2 − i0)ϕ(x1)ψ(x2)dx1dx2,

(ϕ, ψ)−1 =

∫ ∞

−∞

(x1 − x2)−n−1 ln(x1 + x2 − i0)ϕ(x1)ψ(x2)dx1dx2.

Hence, F−n is an invariant space and contains two invariant subspaces:

• The subspace F+
−n is the subspace of functions in F−n, which are the boundary values of the function in the upper

half plane, where (ϕ, ψ)−1 = 0.

• The subspace F−−n is the subspace of functions in F−n, which are the boundary values of function in the lower half
plane, where (ϕ, ψ)+

1 = 0.

Next, we want to show that the subspaces F+
−n and F−−n consist of the boundary values of holomorphic functions in the

upper and lower half-planes, respectively.

For ϕ(z), a holomorphic function in the upper half-plane, we have limy+→0 ϕ(z) = ϕ(x), where z = x + iy. Then, ϕ(x) is the
boundary value for ϕ(z).

Let ϕ̂(ζ) =
∫ ∞
−∞

ϕ(x)e−2πixζ be the Fourier transform of ϕ(x). Then, we obtain∫ ∞

−∞

xkϕ(x)dx = (−2πi)kϕ̂k(0). (8.17)

By Cauchy’s integral theorem for the function ϕ(z), which is holomorphic in the upper half-plane, we get ϕ̂(ζ) = 0, ζ > 0.
Hence, ϕ̂k(0) = 0, and (8.17) is equal to zero. This implies that ϕ(x) ∈ F+

−n.

The same is noted for the boundary value of holomorphic function in the lower half-plane.
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9. Equivalence of the SL2(R) Representations

In this section, we study under which conditions the SL2(R) representations Tt1 (7.2) and Tt2 (7.3) are equivalent.

Definition 9.1. For the representations Tt1 and Tt2 , an intertwining operator A is a continuous mapping of the space Wt1
onto the space Wt2 , that is,

ATt1 (g) = Tt2 (g)A.

The representations Tt1 and Tt2 are equivalent if there exists an intertwining operator A which is one-to-one continuous
mapping with the continuous inverse A−1 such that:

Tt1 (g) = ATt2 (g)A−1.

To obtain the conditions for the existence of an intertwining operator A, we establish a relation between the operator A
and the bilinear functional (ϕ, ψ). Let W−t2 be the space of the representation T−t2 acting on. The space W−t2 is associated
with the pair of number −t2 = (−s2, ε2). Then let B(ψ, ϕ) be an invariant bilinear functional on the spaces W−t2 and Wt1 . It
is shown in section 7 that if s1 = −s2 then the invariant bilinear functional is given by the following:

B(ψ, ϕ) =

∫ ∞

−∞

ψ(x)ϕ(x)dx. (9.1)

Let A : Wt1 → Wt2 be a linear operator. Then, we associate with A the bilinear functional (ϕ, ψ) on the spaces Wt1 and
W−t2 as expressed by the following:

(ϕ, ψ) = B(ψ, Aϕ) =

∫ ∞

−∞

ψ(x)Aϕ(x)dx, (9.2)

where ϕ ∈ Wt1 , ψ ∈ W−t2 .

Lemma 9.2. The linear operator A : Wt1 → Wt2 intertwines with the representations Tt1 and Tt2 if and only if (ϕ, ψ) =

B(ψ, Aϕ) invariant under Tt1 and T−t2 .

Proof. From equation (9.1), we obtain the following:

B(T−t2 (g)ψ, ATt1 (g)ϕ) = B(T−t2 (g)ψ,Tt2 (g)Aϕ),

where ϕ ∈ Wt1 and ψ ∈ W−t2 . The invariance of the bilinear functional B(ψ, ϕ) implies that

B(T−t2 (g)ψ,Tt2 (g)Aϕ) = B(ψ, Aϕ),

for all ψ and ϕ. Then, we have
B(T−t2 (g)ψ, ATt1 (g)ϕ) = B(ψ, Aϕ) = (ϕ, ψ).

Therefore, (ϕ, ψ) is invariant under Tt1 (g) and T−t2 . �

In section 7, we found the conditions under which the invariant bilinear functionals (ϕ, ψ) exist. By substituting −s2 for s2
in these conditions, we get that the S L2(R) representations Tt1 and Tt2 have an intertwining operator A, which maps Wt1
continuously into Wt2 if and only if ε1 = ε2 = {0, 1} and either s1 = s2 or s1 = −s2, where s1, s2 ∈ C.

To obtain the expression of such an operator A, first consider the case s1 = s2, the invariant bilinear functional is given by

(ϕ, ψ) = λ

∫ ∞

−∞

ϕ(x)ψ(x)dx.

Comparing this with (9.2), we conclude that every operator A on Wt2 follows the condition that ATt1 (g) = Tt2 (g)A is a
multiplier of the unit operator. This implies that A = λI, where λ is constant. Therefore, by Schur’s lemma (2.7), all the
representations Tt1 and Tt2 except the holomorphic representation are irreducible.

Next, for the case s1 = −s2, we have two invariant bilinear functionals (7.15) and (7.16). For the functional given by
(7.15), the operator A is expressed as follows:

Aϕ(x) = λ

∫ ∞

−∞

|x1 − x|−s1−1sgnε(x1 − x)ϕ(x1)dx1.

For (7.16), the operator A is given as follows:

Aϕ(x) = ϕ(s)(x).

Theorem 9.3. [8, p.416] Consider the representation operators Tt1 (g) and Tt2 (g) given by (7.2) and (7.3), respectively,
possessing an intertwining operator A maps Wt1 continuously into Wt2 . Then, A is a one-to-one map, and Tt1 (g),Tt2 (g) are
equivalent.
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9.1 Equivalence of the Holomorphic Representation of SL2(R)

Consider the analytic representations Tn and T−n given by (8.1) for n ∈ Z+. From section 8, the bilinear invariant functional
is expressed as follows:

(ϕ, ψ) =

∫ ∞

−∞

[λ1ϕ
(n)
+ (x) + λ2ϕ

(n)
− (x)]ψ(x)dx,

where λ1 and λ2 are arbitrary constants. The functions ϕ+
(n)(x) and ϕ−(n)(x) are given by (8.10) and (8.11),respectively.

Hence, any operator intertwining with the holomorphic representations (8.1) is of the form

A′ϕ(x) =
λ1

2πi

∫ ∞

−∞

ϕ(n)(x1)
x1 − x − i0

dx1 −
λ2

2πi

∫ ∞

−∞

ϕ(n)(x1)
x1 − x + i0

dx1.

This shows that the holomorphic representations Tn and T−n are inequivalent.

Let us illustrate the relations between the analytic representations. As mentioned in section 8 that for the analytic repre-
sentations Tn and T−n acting on Dn and D−n, respectively, where n ∈ Z+, we have established the following:

• The space Dn contains three invariant subspaces:

– En, the space of all polynomials of degree n − 1 and less,

– D+
n ,the subspace of all functions ϕ(x) that are boundary values of holomorphic functions on the upper half

plane such that A−ϕ(x) = 0, and

– D−n , the subspace of all functions ϕ(x) that are boundary values of holomorphic functions on the lower half
plane such that A+ϕ(x) = 0. The intersection of D+

n and D−n is En, and their sum is the entire space Dn.

Here, A+ and A− maps Dn onto D−n and are defined by

A+ϕ(x) =
1

2πi

∫ ∞

−∞

ϕ(n)(x1)dx1

x1 − x − i0
, (9.3)

A−ϕ(x) = −
1

2πi

∫ ∞

−∞

ϕ(n)(x1)dx1

x1 − x + i0
. (9.4)

• The space D−n contains three subspaces:

– Fn, the space of all ϕ(x) such that ∫ ∞

−∞

xkϕ(x)dx = 0, k = 0, ... − n − 1, (9.5)

– F+
−n, the subspace of functions that are boundary values of holomorphic functions on the upper half plane, and

– F−−n, the subspace of function that are the boundary values of holomorphic functions on the lower half plane.

Lemma 9.4. [8] The S L2(R) representations on the subspaces Dn/En and F−n are reducible. Also, Dn/En and F−n are
direct sums of two invariant subspaces.

Proof. The quotient space Dn/En is the space of functions in Dn defined only up to the polynomial of degree n − 1 and
less. Consider the intertwining operators A+ (9.3) and A− (9.4) that maps the spaces Dn onto D−n. The operators A+ and
A− satisfy the following:

A+Tn(g) = T−n(g)A+, and A−Tn(g) = T−n(g)A−.

Every other intertwining operator for Tn(g) and T−n(g) is a linear combination of A+ and A−.

Let ϕ(x) be a function in the space Dn. In subsection 8, we show that

ϕ(x) = ϕ+(x) + ϕ−(x),

where the functions ϕ+(x) and ϕ−(x) are the boundary values of some holomorphic functions in the upper and lower
half-planes, respectivly. That is ϕ+(x) ∈ D+

n and ϕ−(x) ∈ D−n . The above implies that space Dn/En is a direct sum of the
form

Dn/En = D+
n /En ⊕ D−n /En.
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Hence, the representation on the space Dn/En is reducible.

Next, let the subspaces F+
−n and F−−n be the images of the subspaces D+

n and D−n under the covariant transforms A+ and
A−, respectively. The subspaces F+

−n and F−−n are invariant under T−n and F+
−n ∩ F−−n = {φ}, respectivly. Thus, we have the

direct sum
F−n = F+

−n ⊕ F−−n.

�

Remark 9.5. Since we have shown that the S L2(R) representations on the subspaces D+
n /En and F+

−n are equivalent under
the covariant transforms A+,we can realise the representation in the upper half plane ϕ(z). Then, the S L2(R) representation
on D+

n /Es � F+
−n is given by

[Tn(g)ϕ](z) = (d − bz)n−1ϕ
( az − c
d − bz

)
. (9.6)

However, the subspace D+
n /En � F+

−n does not consist of all analytic functions ϕ(z) in the upper half-plane. The function
ϕ(z) must be infinitely differentiable together with ϕ̃(z) = zn−1ϕ(−1

z ) in the closed upper half-plane. The same is noted, for
the S L2(R) representations on the subspaces D−n /En � F−−n.

Lemma 9.6. [8] The equivalence of the holomorphic representations Tn, T−n in the following pairs of subspaces:

• En and D−n/F−n, where the intertwining operator is given by

Aϕ(x) =

∫ ∞

−∞

(x1 − x)n−1ϕ(x1)dx1.

• Dn/En and F−n, where A is the differential operator dn/dxn.

• D+
n /En and F+

−n or D−n /En and F−−n, where the intertwining operator is A+(9.3) or A− (9.4).

10. Unitary Representations of the Group SL2(R)

Unitary representation is a representation on a Hilbert space with an invariant inner product. Hence we need to find the
conditions under which it is possible to define an invariant inner product under the SL2(R) representation. Recall that an
inner product is a positive definite non-degenerate Hermitian functional. Hence, we start by studying the invariance of the
Hermitian functional.

10.1 The Existence of an Invariant Hermitian Functional

Let Wt be the space of the representation Tt (7.2) associated with the pair of numbers t = (s, ε), s ∈ C. Then, for t = (s, ε),
we have the space Wt of the representation T t̄, which is given as follows:

[T t̄(g)ψ](x) = |d − bx|s̄−1sgnε(d − bx)ψ
( ax − c
d − bx

)
. (10.1)

The Hermitian functional is defined as 〈ϕ, ψ〉 : Wt ×Wt̄ → R. The goal of this subsection is to find the conditions under
which this functional is invariant, that is

〈ϕ, ψ〉 = 〈Tt(g)ϕ,T t̄(g)ψ〉.

From section 7, the bilinear functional (ϕ, ψ) is invariant if and only if s1 = s2 or s1 = −s2. Let the number s2 be
the complex conjugate of s1. Then, the bilinear functional (ϕ, ψ) will be converted to the Hermitian functional 〈ϕ, ψ〉.
Therefore, the Hermitian functional 〈ϕ, ψ〉 is invariant if and only if s = s or s = −s.

The expressions of the invariant Hermitian functional will be as follows:

• For s = −s, i.e. s is pure imaginary, we have:

〈ϕ, ψ〉 =

∫ ∞

−∞

ϕ(x)ψ(x)dx. (10.2)

• For s = s, i.e. if s is real, we have:

〈ϕ, ψ〉 =

∫ ∞

−∞

|x1 − x2|
−s1−1sgnε(x1 − x2)ϕ(x1)ψ(x2)dx1dx2. (10.3)
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Also, if s is a nonnegative integer and the representation is not holomorphic, the invariant Hermitian functional is

〈ϕ, ψ〉 =

∫ ∞

−∞

ϕ(s)(x)ψ(x)dx.

• For the holomorphic representation (8.1) every invariant Hermitian functional is a linear combination of:

〈ϕ, ψ〉+ =

∫ ∞

−∞

ϕ(n)
+ (x)ψ(x)dx, (10.4)

〈ϕ, ψ〉− =

∫ ∞

−∞

ϕ(n)
− (x)ψ(x)dx. (10.5)

where ϕ(n)
+ (x) and ϕ(n)

− (x) are given by (8.10) and (8.11), respectively.

10.2 Positive Definite Invariant Hermitian Functional

The invariant Hermitian bilinear functional given by (10.2), is positive definite for pure imaginary number s. The invariant
Hermitian bilinear functional given by (10.3), is positive definite if ε = 0 and |s| < 1 [8, p.427].

Next, for the holomorphic representation, every invariant Hermitian bilinear functional is a linear combination of (10.4)
and (10.5). Consider 〈ϕ, ψ〉+ , 0 as a Hermitian functional on the subspace D+

n /En. We will show that 〈ϕ, ψ〉+ is positive
definite.

The Fourier transform of ϕ(n)(x) is given by F [ϕ(n)(ζ)] = (−i)nζnϕ̂(ζ), where ϕ̂(ζ) =
∫ ∞
−∞

ϕ(x)eiζxdx.

Note that since ϕ+(x) is the boundary value of a holomorphic function on the upper half-plane, then the Fourier transform
of ϕ+(x) is supported on −∞ < ζ < 0. Then, the Plancherel theorem implies that

〈ϕ, ψ〉+ = i−n
∫ ∞

−∞

ϕ(n)
+ (x)ψ(x)dx =

1
2π

∫ 0

−∞

|ζ |nϕ̂(ζ)ψ̂(ζ)dζ.

Thus, 〈ϕ, ψ〉+ is positive definite on D+
n /En.

Similarly, the invariant Hermitian functional 〈ϕ, ψ〉− is positive definite on the subspace D−n /En since we have

〈ϕ, ψ〉− = i−n
∫ ∞

−∞

ϕ(n)
− (x)ψ(x)dx =

1
2π

∫ ∞

0
ζnϕ̂(ζ)ψ̂(ζ)dζ.

For the case that n is a negative integer, we have shown in the proof of Theorem 9.4 that the subspaces D+
n /En and D−n /En

map to the subspaces F+
−n and F−−n by the intertwining operator A+ and A−, respectively. Hence, the invariant Hermitian

functionals on F+
−n and F−−n are positive definite.

Recall in Remark 9.5 that we can realise F+
−n as the space of holomorphic function in the upper half-plane. The represen-

tation in this case is defined by

[Tn(g)ϕ](z) = (d − bz)n−1ϕ
( az − c
d − bz

)
, where z = x + iy. (10.6)

The expression of the positive invariant Hermitian functionals for this model is of the form

〈ϕ, ψ〉 =

∫
Imz>0

ϕ(z)ψ(z)ω(z)dzdz̄,

where ω(z) is a positive function. To find the form of ω(z), we apply Tn(g) (10.6) to ϕ(z) and ψ(z). Then, by direct
calculation, the invariance condition is given by 〈Tn(g)ϕ,Tn(g)ψ〉 = 〈ϕ, ψ〉,which is valid if and only if ω(z) = (Imz)−n−1 =

y−n−1.

10.3 Representations of SL2(R) on the Hilbert Space

We found in subsection 10.2 the condition under which there exists a positive definite Hermitian functional 〈ϕ, ψ〉 invariant
under Tt(g), that is

〈Tt(g)ϕ,Tt(g)ψ〉 = 〈ϕ, ψ〉.

We can consider such a Hermitian functional as an inner product in the space Wt. Then, if Wt is completed with respect
to the norm

‖ϕ‖2 = 〈ϕ, ϕ〉,
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we obtain a Hilbert spaceH .

The operators Tt(g) on Wt can be extended uniquely to unitary operators on H . We denote these unitary operators, as
before, by Tt(g) such that they also satisfy the representation group property:

Tt(g1g2) = Tt(g1)Tt(g2).

Hence, these unitary operators form a representation of SL2(R).

Lemma 10.1. [8]. For every representation Tt that possesses a positive definite Hermitian functional, a corresponding rep-
resentation of SL2(R) by unitary operators on the Hilbert space exists. In this correspondence, equivalent representations
correspond to unitary equivalent representations and inequivalent representations correspond to inequivalent ones.

Next, we wish to classify the unitary representation of the SL2(R) group.

• Representations of the principal (continuous) series:
For s = iρ where ρ ∈ R and ε = 0 or 1, the representations are defined by

Tiρ(g)ϕ(x) = |d − bx|iρ−1sgnε(d − bx)ϕ
( ax − c
d − bx

)
. (10.7)

From subsection 10.2 the inner product in this case is as follows:

〈ϕ, ϕ〉 =

∫ ∞

−∞

ϕ(x)ϕ(x) < ∞.

• Representations of the complementary series:
These representations are defined by a real parameter s , 0 in the interval −1 < s < 1. The inner product is given
by

〈ϕ, ϕ〉 =

∫ ∞

−∞

|x1 − x2|
s1−1ϕ(x1)ϕ(x2)dx1dx2.

The representation is defined by

Ts(g)ϕ(x) = |d − bx|s−1ϕ
( ax − c
d − bx

)
. (10.8)

• Representations of the discrete series:

For each integer number n, the inner product on the space of holomorphic functions in the upper half plane is given
by

〈ϕ, ϕ〉 =

∫
y>0

∫
R
|ϕ(x + iy)|2y−n−1dxdy < ∞. (10.9)

The representation is identified by

Tn(g)ϕ(z) = (d − bz)n−1ϕ
( az − c
d − bz

)
, n ∈ Z. (10.10)
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Appendices

A. Generalised Functions

A generalised function (also called a distribution) is a generalisation of the classical notion of a function. In the following,
we provide basic definitions. For more information, refer to [23, 10, 26].

Definition A.1. [23] Let Ω be an open subset of Rn. The set of test functions D(Ω) consists of all real functions ϕ(x)
defined in Ω vanishing outside a bounded subset of Ω that stays away from the boundary of Ω, such that all partial
derivatives of all order of ϕ are continuous.

Remark A.2. [14] We can define the test function to be the elements of the space C∞0 (Ω).

Definition A.3. [23] The set of all continuous linear functional on D is denoted by D′, and its elements are called
generalised functions. By functional, we mean the real or complex valued function onD written ( f , ϕ) where ϕ ∈ D.

A generalized function f is a linear functional if it satisfies the identity:

a1( f , ϕ1) + a2( f , ϕ2) = ( f , a1ϕ1 + a2ϕ2).

By continuous, we mean that if ϕ1 is close enough to ϕ, then ( f , ϕ1) is close to ( f , ϕ).

Remark A.4. [23] If f is a function such that the integral
∫

f (x)ϕ(x)dx exists for every test function φ, then:

( f , ϕ) =

∫
f (x)ϕ(x)dx

defines a generalized function.

Theorem A.5. (The Kernel Theorem) [11, p.18]

Every bilinear functional (ϕ, ψ) on the space D of all infinitely differentiable functions that have bounded supports and
which is continuous in each of the arguments ϕ and ψ has the form:

(ϕ, ψ) = (k, ϕ(x) ⊗ ψ(y)),

where k is a continuous linear functional on the space D(X × Y) of infinitely differentiable functions of two variables
having bounded supports.

Definition A.6. A function f (x) is called a homogeneous function of degree λ if:

f (αx) = αλ f (x), α , 0.

A function f1(x) is called an associated homogeneous function of degree λ if:

f1(αx) = αλ[ f1(x) + ln |α| f0(x)], α , 0.

f0(x) is a homogeneous function of of degree λ.

B. Covariant Transform

Definition B.1. [18] Let ρ be a representation of a group G in a space V and F be an operator acting from V to a space
U. We define a covariant transformWρ

F acting from V to the space L(G,U) of U-valued functions on G by the formula:

W
ρ
F : υ 7→ υ̂(g) = F(ρ(g−1)υ), υ ∈ V, g ∈ G. (B.1)

The operator F is called a fiducial operator.

Example B.2. [18] Let V be a Hilbert space with an inner product 〈., .〉 and ρ be a unitary representation of a group G in
the space V . Let F : V → C be the functional υ 7→ 〈υ, υ0〉 defined by a vector υ0 ∈ V . The vector υ0 is called the mother
wavelet. In the set-up, transformation (B.1) is the well-known expression for a wavelet transform

W : υ 7→ υ̃(g) = 〈ρ(g−1)υ, υ0〉 = 〈υ, ρ(g)υ0〉, υ ∈ V, g ∈ G. (B.2)

The family of the vectors υg = ρ(g)υ0 is called wavelets or coherent states. The image of (B.2) consists of scalar valued
functions on G.
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Proposition B.3. [18] Let G be a Lie group and ρ be a representation of G in a space V . Let [W f ](g) = F(ρ(g−1 f ) be
a covariant transform defined by a fiducial operator F : V → U. Then the right shift [W f ](gg′) by g′ is the covariant
transform

[W′ f ](g) = F′(ρ(g−1) f ),

defined by the fiducial operator F′ = F ◦ ρ(g−1). In other words, the covariant transform intertwines right shifts R(g) :
f (h)→ f (gh) on the group G with the associated action

ρB(g) : F 7→ F ◦ ρ(g−1),

on fiducial operators
R(g) ◦WF =WρB(g)F , g ∈ G.

Corollary B.4. [18] Let a fiducial operator F be a null solution for the operator A =
∑

j a jdρ
X j

B , where X j ∈ g and a j are
constants. Then the covariant transform [WF](g) = F(ρ(g−1) f ) for any f satisfies

D(WF f ) = 0 where D =
∑

j

a jL
X j .

Here, LX j are the left invariant fields (Lie derivatives) on G corresponding to X j.

Example B.5. Consider the representation

[πp(a, b) f ](x) = a
−1
p f

(
x − b

a

)
, (B.3)

of the affine group on the space Lp(R) with p = 1.

Let XA =

(
1 0
0 0

)
and XN =

(
0 1
0 0

)
be the basis of the Lie algebra g of the affine group. They generate one-parameter

subgroups of g

a(t) =

(
et 0
0 1

)
and n(t) =

(
1 t
0 1

)
,

then the derived representations are
[dπ(XA) f ](x) = − f (x) − x f ′(x),

[dπ(XN) f ](x) = − f ′(x).

The corresponding left invariant vector fields on the affine group are

LXA = a∂a, LXN = a∂b.

The mother wavelet 1
x+i is a null solution of the operator

−dπ(XA) − idπ(XN) = I + (x + i)
d
dx
.

Therefore, the image of the covariant transform with the fiducial operator

F+( f ) =
1
πi

∫
R

f (x)
i − x

dx,

consists of the null solutions to the operator

−LXA + iLXN = ia(∂b + i∂a),

that is essence of the Cauchy-Riemann operator ∂z = ∂
∂x + i ∂

∂y in the upper half-plane.
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C. The Contravariant Transform

Define the left action Λ of a group G on a space of functions over G by

Λ(g) : f (h)→ f (g−1h).

An object invariant under the left action Λ is called left invariant. In particular, let L and L′ be two left invariant spaces of
functions on G. We say that a pairing 〈., .〉 : L × L′ → C is a left invariant if

〈Λ(g) f ,Λ(g) f ′〉 = 〈 f , f ′〉,

for all f ∈ L, f ′ ∈ L′.

Definition C.1. [18] Let 〈., .〉 be a left pairing on L × L′ as above, let ρ be a representation of G in a space V , we define
the function w(g) = ρ(g)w0 for w0 ∈ V such that w(g) ∈ L′ in a suitable sense. The contravariant transformMρ

w0 is a map
L→ V defined by the pairing

M
ρ
w0 : f → 〈 f ,w〉, where f ∈ L.

Definition C.2. Let H̃p(R2
+), 1 < p < ∞, be the space of all holomorphic functions f which satisfy the following norm:

‖ f ‖H̃p = lim
a→0

1
a

(∫ ∞

−∞

| f (a, b)|pdb
) 1

p

.

Example C.3. [18] Let G be the affine group with measure dµ(a, b) = db
a and the representation πp (B.3). The following

invariant pairing on G is called Hardy pairing:

〈 f1, f2〉 = lim
a→0

∫ ∞

−∞

f1(a, b) f2(a, b)
db
a
,

where f1 ∈ H̃p(R2
+) and f2 ∈ H̃q(R2

+) such that 1
p + 1

q = 1.
In this case, we can choose the function v0(x) = 1

iπ
1

x+i ∈ Lp(R). Then, the contravariant transform is

[Mv0 f ](x) = 〈 f , πp(a, b)v0〉

= lim
a→0

∫ ∞

−∞

f (a, b)
a
−1
p +1

πi(x + ia − b)
db

= lim
a→0

a
−1
p +1

πi

∫ ∞

−∞

f (a, b)db
b − (x + ia)

.

(C.1)

The contravariant transform (C.1) is the boundary value of the the Cauchy integral as a→ 0.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

46


