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Abstract
Let ? be a star operation on a ring extension R ⊆ S . The ring extension R ⊆ S is said to be a ?-Prüfer if R[p] ⊆ S is a
Prüfer extension for each ?-prime ideal p of R. We study properties of ?-Prüfer extensions. In particular, we investigate
the transfer of star-Prüfer properties from the extension R ⊆ S to the extension R[X] ⊆ S [X] of polynomial rings, where
X is an indeterminate over S .
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1. Introduction and Background
Throughout this article, we assume that all rings are commutative with identity. Let R ⊆ S be a ring extension, and
let A be an R-submodule of S . The R-submodule A is said to be S-regular if AS = S (Knebusch & Zhang, 2002,
Definition 1 in Chapter II, p. 84). The R-submodule A of S is called S -invertible, if there exists an R-submodule B of
S such that AB = R (Knebusch & Zhang, 2002, Definition 3 in Chapter II, p. 90). In this case, we write B = A−1, and
A−1 = [R :S A] = {x ∈ S : xA ⊆ R}(Knebusch & Zhang, 2002, Remarks 1.10 in Chapter II, p. 90).
Let S be a ring, and let Γ be an additive totally ordered abelian group. Let Γ ∪ ∞ = Γ ∪ {∞}, where∞ + g = g +∞ = ∞
and g < ∞ for all g ∈ Γ. A valuation on S with values in Γ is a map v : S −→ Γ ∪∞ such that:

(1) v(xy) = v(x) + v(y) for all x, y ∈ S .

(2) v(x + y) ≥ min {v(x), v(y)} for all x, y ∈ S .

(3) v(1) = 0 and v(0) = ∞.

In this case, V = {x ∈ S : v(x) ≥ 0} is called a valuation subring of S . If v(S ) = {0,∞}, then v is said to be trivial,
otherwise v is called non-trivial (Knebusch & Zhang, 2002, Definition 1, p. 10). The subgroup of Γ generated by
v(S ) \ {∞} is called the value group of v and is denoted by Γv. If v(S ) = Γv ∪ ∞, then v is called a Manis valuation on S ,
and V = {x ∈ S : v(x) ≥ 0} is called a Manis subring of S (Knebusch & Zhang, 2002, Definition 4, p. 12).
Let S be a ring, and let R be a subring of S . If there exists a Manis valuation v : S −→ Γ ∪ ∞ such that R =
{x ∈ S : v(x) ≥ 0}, then the ring extension R ⊆ S is called a Manis extension. In this case, (R, p) is called a Manis
pair in S , where p = {x ∈ S : v(x) > 0}. For each R-submodule M of S , and for each multiplicative subset τ of R, we
denote by M[τ] the set of x ∈ S such that tx ∈ M for some t ∈ τ. If p is a prime ideal of R, and τ = R \ p, then M[p] denotes
the set of x ∈ S such that tx ∈ M for some t ∈ τ.
Let R ⊆ S be a ring extension. The ring S is called a Prüfer extension of R if (R[p], p[p]) is a Manis pair in S for every
maximal ideal p of R. In this case, we say that R is Prüfer in S . The ring extension R ⊆ S is said to be tight if for every
x ∈ S \ R, there exists an S -invertible ideal I of R such that Ix ⊆ R (Knebusch & Zhang, 2002, Definition 1, p. 94). More
on Manis valuations and Prüfer extensions can be found in Knebusch and Zhang (2002).

Lemma 1.1. Let R ⊆ S be a ring extension, and let p be a prime ideal of R. If R[p] ⊆ S is a Prüfer extension, then(
R[p], p[p]

)
is a Manis pair in S .

Proof. Let p be a prime ideal of R. Suppose that R[p] ⊆ S is a Prüfer extension. By (Paudel & Tchamna, 2021b, Remark

2.1(1)), p[p] is a prime ideal of R[p]. Hence, by the definition of a Prüfer extension,
((

R[p]

)
[p[p]]

,
(
p[p]

)
[p[p]]

)
is a Manis pair

in S . But by (Knebusch & Zhang, 2002, Lemma 2.9 (c), p. 28), we have

(R[p])[p[p]] = R[p]

and
(p[p])[p[p]] = p[p].

It follows that
(
R[p], p[p]

)
is a Manis pair in S . �
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Remark 1.2. Let R ⊆ S be a ring extension. For any prime ideal p of R, if Ap = Bp, then A[p] = B[p]. In fact, if x ∈ A[p].
Then there exists t ∈ R \ p and a ∈ A such that tx = a. Furthermore, we have a

t ∈ Ap = Bp. Hence a
t = b

t′ with b ∈ B
and t′ ∈ R \ p. Thus s(at′) = s(bt) for some s ∈ R \ p. It follows that s(tx)t′ = (st)b. Hence (stt′)x ∈ B. This shows that
x ∈ B[p] since stt′ ∈ R \ p. Thus A[p] ⊆ B[p]. Similarly, B[p] ⊆ A[p]. Hence A[p] = B[p].

For a ring extension R ⊆ S , a map ?: J(R, S ) −→ J(R, S ), where J(R, S ) is the set of all R-submodules of S , is called
star operation on R ⊆ S if the following conditions are satisfied for all A, B ∈ J(R, S ).

(c1) A ⊆ A?.

(c2) If A ⊆ B, then A? ⊆ B?.

(c3) (A?)? = A?.

(c4) AB? ⊆ (AB)?.

When R? = R, the star operation ? is said to be strict. For more on star operations of ring extensions, see (Knebusch &
Kaiser, 2014, pages 139 - 164).
A star operation ? on a ring extension R ⊆ S is said to be of finite type if for each R-submodule A of R, A? =

⋃
K?,

where K ranges over all the finitely generated R-submodules of S contained in A (Knebusch & Kaiser, 2014, Definition
1 in Chapter 3, p. 156).

Remark 1.3. ((Knebusch & Kaiser, 2014, Proposition 6.3 in Chapter 3, p. 156)) For a star operation ? : J(R, S ) −→
J(R, S ), and each R-submodule A of S , define A? f =

⋃
K?, where K ranges over all the finitely generated R-submodules

of S contained in A. Then the map ? f : J(R, S ) −→ J(R, S ) defined by A 7−→ A? f is a star operation of finite type on
the extension R ⊆ S .

Let I be an ideal of R. The ideal I is said to be a ?-ideal if I? = I. Following the terminology used in ?, we call an ideal
I of R a ?-prime ideal if I is both a ?-ideal and a prime ideal of R. A maximal element in the set of all ?-ideals of R is
called ?-maximal ideal.

Lemma 1.4. ((Tchamna, 2020, Remark 2.4)) Let R ⊆ S be a ring extension, and let ? be a strict star operation of finite
type on R ⊆ S . Then each proper ?-ideal of R is contained in a ?-prime ideal (which is also a ?-maximal ideal).

Definition 1.5. Let R ⊆ S be a ring extension, and let ? be a star operation on R ⊆ S . The ring extension R ⊆ S is said
to be a ?-Prüfer extension if R[p] ⊆ S is a Prüfer extension for each ?-prime ideal p of R.

In the next section, we study properties of ?-Prüfer extensions. In Proposition 2.7, we show that if R ⊆ S is a ?-Prüfer
extension, then each finitely generated S -regular ?-submodule of S is ?-invertible. We show that any ?-Prüfer extension
is a Prüfer ?-multiplication extension (see Proposition 2.8).
In Paudel and Tchamna (2018), the notion of Prüfer ?-multiplication extension is defined and some properties are estab-
lished. Let ? : J(R, S ) −→ J(R, S ) be a star operation. The extension R ⊆ S is called (weak) Prüfer ?-multiplication
extension (P?ME) if the pair (R[m],m[m]) is Manis in S for every (S -regular) ?-maximal ideal m of R. In Remark 2.9, we
give a condition under which the notion of ?-Prüfer extension and P?ME coincide.
In Example 2.10, we show that a ?-Prüfer extension is not always a Prüfer extension. In Example 2.12, we construct a
ring extension to show that there exist ?-Prüfer extensions which are not Manis extensions. In Example 2.13, we give an
example of a ring extension R ⊆ S and a star operation ? on R ⊆ S such that the ring extension R ⊆ S is not ?-Prüfer.
In Theorem 2.16 and Theorem 2.18, we study ?-Prüfer extensions in commutative diagrams. In Theorem 2.24, we show
that if the extension R[X] ⊆ S [X] (respectively R[X][N(?1)] ⊆ S [X]) is ?2-Prüfer, then R ⊆ S is a ?1-Prüfer extension,
where ?1 and ?2 are two star operations on R ⊆ S and R[X] ⊆ S [X] respectively satisfying A?1 R[X] = (AR[X])?2 for each
R-submodule A of S .
2. Properties of ?-Prüfer Extensions
We start this section by a remark which shows that in Definition 1.5, when ? is the identity, we get a Prüfer extension.
This shows that the notion of ?-Prüfer extension is a generalization of the notion of Prüfer extension.

Remark 2.1. When the star operation in Definition 1.5 is the identity d : J(R, S ) −→ J(R, S ), the d-Prüfer extension
coincides with the definition of a Prüfer extension. In fact, if R[p] ⊆ S is a Prüfer extension for each prime ideal p of
R, then by Lemma 1.1,

(
R[p], p[p]

)
is a Manis pair in S . It follows from the definition of a Prüfer extension that R ⊆ S

is a Prüfer extension. Conversely, if R ⊆ S is a Prüfer extension, then R[p] ⊆ S is a Prüfer extension. This is a direct
consequence of (Knebusch & Zhang, 2002, Corollary 5.3, p. 50) and the fact that R ⊆ R[p] ⊆ S for each prime ideal p of
R.

Remark 2.2. Let R ⊆ S be a ring extension, and let ? be a strict star operation of finite type on R ⊆ S . The ring extension
R ⊆ S is ?-Prüfer if and only if R[m] ⊆ S is a Prüfer extension for each ?-maximal ideal m of R.
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Proof. Suppose that R ⊆ S is a ?-Prüfer extension. Then by definition, R[m] ⊆ S is a Prüfer extension for each ?-maximal
ideal m of R, since each ?-maximal ideal of R is also a ?-prime ideal of R. Conversely, suppose that R[m] ⊆ S is a Prüfer
extension for each ?-maximal ideal m of R. Let p be a ?-prime ideal of R. By Lemma 1.4, there exists a ?-maximal
ideal n of R containing p. Furthermore, R[n] ⊆ R[p] ⊆ S . But by hypothesis, the extension R[n] ⊆ S is Prüfer. It follows
from (Knebusch & Zhang, 2002, Corollary 5.3, p. 50) that the extension R[p] ⊆ S is Prüfer. This shows that the extension
R ⊆ S is ?-Prüfer. �

A ring extension R ⊆ S is said to be weakly surjective if for each prime ideal p of R such that pS , S , the homomorphism
ip : Rp → S p induced by the inclusion i : R ↪→ S is surjective (Knebusch & Zhang, 2002, Definition 1, p. 32).

Proposition 2.3. Let R ⊆ L ⊆ S be ring extensions such that R ⊆ L is a weakly surjective extension with pL , L for each
prime ideal p of R. Let ?1 be a star operation on R ⊆ S , and ?2 a star operation on L ⊆ S such that A?1 L = (AL)?2 for
each R-submodule A of S . The ring extension R ⊆ S is ?1-Prüfer if and only if the ring extension L ⊆ S is ?2-Prüfer.

Proof. Suppose that R ⊆ S is ?1-Prüfer. Let q be a ?2-prime ideal of L, and let p = q ∩ R. Then

p?1 = (q ∩ R)?1 ⊆ (q ∩ R)?1 L
= ((q ∩ R)L)?2 (by hypothesis)
⊆ (qL)?2

= q?2 = q.

Hence p?1 ⊆ q. On the other hand, we have p?1 = (q ∩ R)?1 ⊆ R?1 = R. This shows that p?1 ⊆ q ∩ R = p. Thus p is
a ?1-prime ideal of R. It follows from the hypothesis that R[p] ⊆ S is a Prüfer extension. But by (Knebusch & Zhang,
2002, Theorem 3.13, p. 37), we have R[p] = L[q]. Hence L[q] ⊆ S is a Prüfer extension. This shows that the ring extension
L ⊆ S is ?2-Prüfer.
Conversely, suppose that L ⊆ S is ?2-Prüfer. Let p be a ?1-prime ideal of R, and let q = pL. We have (pL)?2 = p?1 L = pL.
Hence q = pL is a ?2-ideal of L. Furthermore, by hypothesis, q = pL , L. It follows from (Knebusch & Zhang, 2002,
Theorem 4.8, p. 44) that q is a prime ideal of L satisfying p = q ∩ R. So, q is a ?2-prime ideal of L. Therefore, by
hypothesis, the ring extension L[q] ⊆ S is Prüfer. But by (Knebusch & Zhang, 2002, Theorem 3.13, p. 37), we have
R[p] = L[q]. Thus R[p] ⊆ S is a Prüfer extension. This shows that the ring extension R ⊆ S is ?2-Prüfer. �

Lemma 2.4. ((Paudel & Tchamna, 2021b, Lemma 3.2)) Let ? be a strict star operation of finite type on a ring extension
R ⊆ S , and let A be an R-submodule of S such that A? = A. Then for any multiplicatively closed subset τ of R, we have(
A[τ]

)?
= A[τ]. In particular,

(
R[τ]

)?
= R[τ].

Lemma 2.5. Let ? be a strict star operation of finite type on a ring extension R ⊆ S , and let P(?) be the set of all ?-prime
ideals of R. Let A, B be two R-submodules of S .

(1) A? =
⋂

p∈P(?) A?
[p] =

⋂
p∈P(?)

(
A[p]

)?
for each R-submodule A of R.

(2) If A[p] = B[p] for each ?-prime ideal p of R, then A? = B?.

Proof. (1) The containment A? ⊆
⋂

p∈P(?) A?
[p] is true since the containment A? ⊆ A?

[p] is always true for each p ∈ P(?).
Let x ∈

⋂
p∈P(?) A?

[p], and let a =
{
t ∈ R : tx ∈ A?}. Then for each p0 ∈ P(?), we have x ∈ A?

[p0]. So, there exists
t0 ∈ R \ p0 such that t0x ∈ A?. Hence t0 ∈ a ∩ (R \ p0). This shows that a ∩ (R \ p0) , ∅. It follows from Lemma
1.4 that a? = R. Since ? is a star operation of finite type, there exist t1, . . . , t` ∈ a such that R = (t1, . . . , t`)?. Thus
x ∈ xR = x(t1, . . . , t`)? ⊆ (t1x, . . . , t`x)? ⊆ A?. This shows that

⋂
p∈P(?) A?

[p] ⊆ A?. Therefore A? =
⋂

p∈P(?) A?
[p].

Let y ∈
⋂

p∈P(?)

(
A[p]

)?
. Then for each p0 ∈ P(?), we have y ∈

(
A[p0]

)?
. Since the star operation ? is of finite type, there

exist x1, . . . , x` ∈ A[p0] such that y ∈ (x1, . . . , x`)?. For 1 ≤ i ≤ `, let ti ∈ R \ p0 such that tixi ∈ A, and let t =
∏`

i=1 ti.
Then ty ∈ t (x1, . . . , x`)? ⊆ (tx1, . . . , tx`)? ⊆ A?. Thus y ∈ A?

[p0]. This shows that y ∈
⋂

p∈P(?) A?
[p]. It follows that⋂

p∈P(?)

(
A[p]

)?
⊆

⋂
p∈P(?) A?

[p] = A?. On the other hand, for each p ∈ P(?), we have A ⊆ A[p]. Thus A? ⊆
(
A[p]

)?
. Hence

A? ⊆
⋂

p∈P(?)

(
A[p]

)?
. Therefore, A? =

⋂
p∈P(?) A?

[p] =
⋂

p∈P(?)

(
A[p]

)?
.

(2) Let A, B be two R-submodules of S such that A[p] = B[p] for each p ∈ P(?). Then (A[p])? = (B[p])?. It follows from
part (1) that A? =

⋂
p∈P(?)

(
A[p]

)?
=

⋂
p∈P(?)

(
B[p]

)?
= B?. �

Let R ⊆ S be a ring extension, and let X be an indeterminate over S . For any g ∈ S [X], and any ring A between R and S ,
we denote by cA(g) the A-submodule of S generated by the coefficients of g. When A = S , cS (g) coincides with the ideal
of S generated by the coefficients of g.
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Let S be a ring, and let T = {g ∈ S [X] : cS (g) = S }, where X is an indeterminate over S . Then the set T is a multiplicative
system in S [X] (Gilmer, 1992, Proposition 33.1, p. 410). Following the same notation in Gilmer (1992), we denote by
S (X) the quotient ring (S [X])T .

Proposition 2.6. Let R ⊆ S be a ring extension. If the ring extension R ⊆ S is ?-Prüfer for any strict star operation ? on
R ⊆ S , then R ⊆ S is a Prüfer extension if and only if R(X) ⊆ S (X) is a Prüfer extension.

Proof. Suppose there exists a strict star operation on R ⊆ S such that the ring extension R ⊆ S is ?-Prüfer. We show
that all the hypothesis of (Paudel & Tchamna, 2021a, Theorem 4.9) are satisfied. By Lemma 2.5, we have R = R? =⋂

p∈P(?) R?
[p] =

⋂
p∈P(?) R[p]. Furthermore, by hypothesis, R[p] ⊆ S is Prüfer for each p ∈ P(?). Therefore, by Lemma 1.1,(

R[p], p[p]

)
is a Manis pair in S . It follows from the equivalency (1) ⇔ (4) of (Paudel & Tchamna, 2021a, Theorem 4.9 )

that R ⊆ S is a Prüfer extension if and only if R(X) ⊆ S (X) is a Prüfer extension. �

Proposition 2.7. Let ? be a star operation on a ring extension R ⊆ S . If R ⊆ S is a ?-Prüfer extension, then each finitely
generated S -regular ?-submodule of S is ?-invertible.

Proof. Suppose that R ⊆ S is a ?-Prüfer extension, and let A be an S -regular finitely generated R-submodule of S . Let p
be a ?-prime ideal of R. By (Paudel & Tchamna, 2021b, Remark 2.1(1)), p[p] is a prime ideal of R[p]. The ring extension
R[p] ⊆ S is Prüfer since R ⊆ S is ?-Prüfer. If follows from Lemma 1.1 that the ring extension

(
R[p]

)
[p[p]]

⊆ S is Manis. But

by (Knebusch & Zhang, 2002, Lemma 2.9, p. 28), we have
(
R[p]

)
[p[p]]

= R[p]. Hence the ring extension R[p] ⊆ S is Manis.
Thus Rp ⊆ S p is a Manis extension (see comments in (Knebusch & Zhang, 2002, p. 13) after the proof of (Knebusch &
Zhang, 2002, Proposition 1.3, p. 13)). It follows from (Knebusch & Zhang, 2002, Remark 1.10(e), p. 90) that Ap[Rp :Sp

Ap] = Rp. Therefore, by (Knebusch & Zhang, 2002, Lemma 1.1(c)), we have (A[R :S A])p = Ap[R :S A]p = Rp since A is

finitely generated. It follows from Remark 1.2 that (A[R :S A])[p] = R[p]. Thus
(
(A[R :S A])[p]

)?
= (R[p])?. But by Lemma

2.4, we have (R[p])? = R[p]. Thus
(
(A[R :S A])[p]

)?
= R[p]. Furthermore, by Lemma 2.5(2), we have

(
(A[R :S A])[p]

)?
⊆(

(A[R :S A])?
)

[p]
. Hence R[p] ⊆

(
(A[R :S A])?

)
[p]
⊆ (R?)[p] = R[p]. This shows that R[p] =

(
(A[R :S A])?

)
[p]

. It follows

from Lemma 2.5(1) that R = R? =
⋂

p∈P(?) R[p] =
⋂

p∈P(?)

(
(A[R :S A])?

)
[p]

= (A[R :S A])?. This shows that A is
S -invertible. �

Proposition 2.8. Let R ⊆ S be a ring extension, and let ? be a star operation on R ⊆ S . If R ⊆ S is a ?-Prüfer extension,
then R ⊆ S is P?ME.

Proof. Suppose that ring extension R ⊆ S is ?-Prüfer. Let m be a ?-maximal ideal. Then R[m] ⊆ S is a Prüfer extension.
It follows from Lemma 1.1 that the pair

(
R[m],m[m]

)
is Manis in S . This shows that the ring extension R ⊆ S is P?ME. �

Remark 2.9. Let R ⊆ S be a ring extension, and let Q(R) be the total ring of fractions of the ring R. Let ? be a star
operation on R ⊆ S . If Q(R) ⊆ S , then the notions of ?-Prüfer and P?ME coincide.

Proof. Suppose that the ring extension R ⊆ S is P?ME. Let p be a ?-prime ideal of R. Then
(
R[p], p[p]

)
is a Manis pair

in S . Since Q(R) ⊆ S , it follows from (Paudel & Tchamna, 2018, Remark 3.3) that R[p] ⊆ S is a Prüfer extension. This
shows that the ring extension R ⊆ S is ?-Prüfer. Furthermore, by the previous proposition, if R ⊆ S is ?-Prüfer, then
R ⊆ S is P?ME. Therefore, the notions of ?-Prüfer and P?ME coincide when Q(R) ⊆ S . �

It is worth noting that any Prüfer ring extension R ⊆ S is also a ?-Prüfer extension for any star operation ? on R ⊆ S . In
fact, if p is a ?-prime ideal of R, then R ⊆ R[p] ⊆ S . So by (Knebusch & Zhang, 2002, Corollary 5.3, P. 50), the extension
R[p] ⊆ S is Prüfer.

In Example 2.10, we construct a ring extension to show that there exist ?-Prüfer extensions which are not Prüfer exten-
sions.

Example 2.10. Let K be a field, X,Y be two indeterminates over K and let R = K[X,Y] and S = K(X,Y). Then R ⊆ S is
a t-Prüfer which is not Prüfer.

Proof. Note that S is the total ring of fractions of R. The ring R is a Krull domain which is a PvMD (El Baghdadi, Izelgue,
& Tamoussit, 2020, Proposition 1.2 (i) ⇔ (iii)). It follows from Remark 2.9 that R ⊆ S is t-Prüfer. On the other hands,
the extension R ⊆ S is not Prüfer. In fact, for p = (X,Y)K[X,Y], the ring extension R[p] ⊆ S is not a Manis. Notice that
in this case, R[p] = Rp. If R[p] was a Manis valuation, then R[p] will be a discrete valuation ring (DVR) since R[p] is a
Noetherian ring. But we know that R[p] is not a DVR since R[p] has Krull dimension 2. �

Example 2.11. Let K be a field, X,Y be two indeterminates over K, R = K[X,Y] and S = K[X, 1
X ,Y]. The extension

R ⊆ S is α-Prüfer, where α the restriction of the star operation t on K[X,Y] ⊆ K(X,Y) to the ring extension R ⊆ S
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Proof. Let p be a prime ideal of R. With respect to the ring extension R ⊆ S , we have R[p] =
{
u ∈ K[X, 1

X ,Y] : tu ∈ K[X,Y] for some t < p
}
.

We show that R[p] = Rp. Let u ∈ R[p] and t ∈ R \ p such that tu ∈ R. Then tu = a for some a ∈ R. Thus u = a
t ∈ K(X,Y).

It follows that u ∈ Rp. Hence R[p] ⊆ Rp. On the other hand, if v ∈ Rp, then v = b
s with b ∈ R and s ∈ R \ p. Hence

sv = b ∈ R. It follows that v ∈ R �

In Example 2.12, we construct a ring extension to show that there exist ?-Prüfer extensions which are not Manis exten-
sions.

Example 2.12. Let K be a field, and let X,Y be two indeterminates over K. Let b be a nonzero element of K and let
V1 = (X)K[X,Y](X) + K[Y](Y), V2 = (X)K[X,Y](X) + K[Y](b+Y), R = V1 ∩ V2. Then the ring extension R ⊆ K(X,Y) is
?-Prüfer for each star operation ? on R ⊆ K(X,Y). Furthermore, the ring extension R ⊆ S is not Manis.

Proof. Let S = K(X,Y). The ring R is not a local ring since it has two maximal ideals (see (Paudel & Tchamna, 2023,
Example 3.2)). It follows that R ( R[p] ⊆ S for each ?-prime ideal p of R. Furthermore, by the definition of a maximal
non-Manis extension ((Paudel & Tchamna, 2023, Definition 2.1)), the ring extension R[p] ⊆ S is Manis. But in this case,
R[p] = Rp is a local ring. It follows from (Knebusch & Zhang, 2002, Scholium 10.4, p. 147), that the ring extension is
Prüfer. This shows that for each ?-prime ideal p, R[p] ⊆ S is Prüfer extension. Thus, the ring extension R ⊆ K(X,Y) is
?-Prüfer. �

In Example 2.13, we give an example of a ring extension R ⊆ S which is never ?-Prüfer for any star operation ? on
R ⊆ S . Recall that a ring extension R ⊆ S is called maximal non-Prüfer extension if R ⊆ S is not a Prüfer extension and
T ⊆ S is a Prüfer extension for any intermediate ring T between R and S .

Example 2.13. Let C be the field of complex, R be the field of real numbers. Let R = R + XC [[X]], S the total ring of
fractions of R. Then the ring extension R ⊆ S is not ?-Prüfer for any star operation ? on R ⊆ S .

Proof. By (JABALLAH, 2012, Example 34), R is a pseudo-valuation domain (see Hedstrom and Houston (1978) for
the definition and some properties of a pseudo-valuation domain), and the ring extension R ⊆ S is maximal non-Prüfer.
Furthermore, by (JABALLAH, 2012, Theorem 5), the ring R as a unique maximal ideal M. It follows from (Hedstrom &
Houston, 1978, Theorem 2.10), M−1 is a valuation overring with maximal ideal M.

Let v be the classical “v-operation” on the domain R (i.e. Iv =
(
I−1

)−1
for each fractional ideal of R). We show that M is a

v-ideal. By contradiction, suppose that M is not v-ideal. We have M ⊆ Mv ⊆ R. Then by the maximality of M, we have
Mv = R. It follows from (Tchamna, 2020, Lemma 2.5(2)) that M−1 = R. This is a contradiction since by the previous
paragraph M−1 is an overring of R. This shows that M is a v-ideal.
Let ? be a star operation on the ring extension R ⊆ S . By (Knebusch & Kaiser, 2014, Proposition 3.6(c), p. 141), we
have M ⊆ M? ⊆ Mv = M. This shows that M is a ?-ideal of R.
Furthermore, R = R[M] = RM . But by the definition of a maximal non-Prüfer, the extension R = R[M] ⊆ S is not Prüfer.
Therefore, the ring extension R ⊆ S is not ?-Prüfer. �

Proposition 2.14. Let R ⊆ S be a ring extension, and let Ψ : S −→ T be a surjective ring homomorphism. If the ring
extension Ψ(R) ⊆ Ψ(S ) is Manis and ker Ψ ⊆ R, then R ⊆ S is a Manis extension.

Proof. Suppose that Ψ(R) ⊆ Ψ(S ) is a Manis extension. Then there exists a Manis valuation v : Ψ(S ) −→ Γ ∪ {∞} such
that Ψ(R) = {t ∈ Ψ(S ) : v(t) ≥ 0} and v (Ψ(S )) = Γv ∪ {∞}. Define the map v′ : S −→ Γ ∪ {∞} by v′(x) = v(Ψ(x)) for each
x ∈ S . Then for two elements x, y of S , we have:
(i) v′(x + y) = v (Ψ(x + y)) = v (Ψ(x) + Ψ(y)) ≥ min (v (Ψ(x)) , v (Ψ(y))) = min(v′(x), v′(y)).
(ii) v′(xy) = v (Ψ(xy)) = v (Ψ(x)Ψ(y)) = v (Ψ(x)) + v (Ψ(y)) = v′(x) + v′(y).
(iii) v′(1) = v(Ψ(1)) = v(1) = 0 and v′(0) = v(Ψ(0)) = v(0) = ∞.
This shows that v′ is a valuation map. Furthermore, v′(S ) = v (Ψ(S )) = Γv ∪ {∞}.

Let α ∈ Γv′ . Since Γv′ is the (additive) subgroup of Γ generated by v′(S ) \ {∞}, we have α =
n∑

i=1
v′(xi) =

n∑
i=1

v(ϕ(xi)) =

v
(

n∏
i=1

Ψ(xi)
)

= v
(
Ψ(

n∏
i=1

xi)
)
∈ Γv. Hence Γv′ ⊆ Γv. On the other hand, if β ∈ Γv, then β =

∑̀
i=1

v(yi), with yi ∈ Ψ(S ) for 1 ≤

i ≤ `. Write yi = Ψ(xi) with xi ∈ S for 1 ≤ i ≤ `. Then β =
∑̀
i=1

v(Ψ(xi)) = v
(∏̀

i=1
Ψ(xi)

)
= v

(
Ψ

(∏`
i=1 xi

))
= v′

(∏̀
i=1

xi

)
∈ Γv′ .

This shows that Γv ⊆ Γv′ . Hence Γv = Γv′ . Therefore v′(S ) = v (Ψ(S )) = Γv ∪ {∞} = Γv′ ∪ {∞}. It follows that v′ is a Manis
valuation.
Let x ∈ R. Then Ψ(x) ∈ Ψ(R). Hence v′(x) = v (Ψ(x)) ≥ 0. On the other hand, let s ∈ S such that v′(s) ≥ 0. Then
v(Ψ(s)) ≥ 0. Thus Ψ(s) ∈ Ψ(R). Therefore, Ψ(s) = Ψ(r) for some r ∈ R. Hence s − r ∈ ker Ψ ⊆ R. It follows that s ∈ R.
This shows that R = {x ∈ S : v′(x) ≥ 0}. Thus the extension R ⊆ S is Manis. �
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Lemma 2.15. Let R ⊆ S and L ⊆ T be two ring extensions, and consider the following commutative diagram with
ker Ψ ⊆ Nil(R), where Nil(R) is the intersection of the prime ideals, Ψ is surjective and α is the restriction of Ψ to R.

R L

S T
Ψ

α

If p is a prime ideal of R, then Ψ(R)[Ψ(p)] = Ψ(R[p]).

Proof. Let p be a prime ideal of R. Since Ψ is surjective and ker Ψ ⊆ Nil(R) ⊆ p, Ψ(p) is a prime ideal of Ψ(R). Let
y = Ψ(x) ∈ Ψ(R)[Ψ(p)] with x ∈ S . There exists u ∈ Ψ(R) \ Ψ(p) such that uy ∈ Ψ(R). Let t ∈ R such that u = Ψ(t).
Then t ∈ R \ p; otherwise we will have u = Ψ(t) ∈ Ψ(p). Which is a contradiction. Furthermore, uy ∈ Ψ(R) implies
that Ψ(t)Ψ(x) = Ψ(r) for some r ∈ R. Thus tx − r ∈ Ker Ψ ⊆ R. Hence tx ∈ R. It follows that x ∈ R[p]. Therefore,
y = Ψ(x) ∈ Ψ(R[p]). This shows that Ψ(R)[Ψ(p)] ⊆ Ψ(R[p]).

On the other hand, if y ∈ Ψ(R[p]), then there exists x ∈ R[p] such that y = Ψ(x). Let t ∈ R \ p such that tx ∈ R. Then
Ψ(t)Ψ(x) ∈ Ψ(R). By contradiction, if Ψ(t) ∈ Ψ(p), then there exists s ∈ p such that t − s ∈ ker Ψ ⊆ Nil(R) ⊆ p. So, t ∈ p.
Which is a contradiction to the choice of p. Thus Ψ(p) ∈ Ψ(R) \ Ψ(p). This shows that y = Ψ(x) ∈ Ψ(R)[Ψ(p)]. Hence
Ψ(R[p] ⊆ Ψ(R)[Ψ(p)]. This shows that Ψ(R[p] = Ψ(R)[Ψ(p)]. �

Theorem 2.16. Consider the commutative diagram in Lemma 2.15. Let ? be a star operation of finite type on R ⊆ S ,
and let ?′ be a star operation of finite type on L ⊆ T such that Ψ(A)?

′

= Ψ(A?) for each R-submodule A of S . If the ring
extension R ⊆ S is ?-Prüfer, then the ring extension L ⊆ T is ?′-Prüfer.

Proof. Suppose that the ring extension R ⊆ S is ?-Prüfer. Let q be a ?′-maximal ideal of L, and let p = Ψ−1(q). Then
q = Ψ(p) since Ψ is surjective. We have q = q?

′

= Ψ(p)?
′

= Ψ(p?). Hence p? ⊆ Ψ−1(q) = p. It follows that p? = p since
the inclusion p ⊆ p? is always true. Furthermore, if x, y ∈ R such that xy ∈ p, then Ψ(xy) ∈ q. Thus Ψ(x) ∈ q or Ψ(y) ∈ q
since q is maximal (hence a prime ideal). Therefore, x ∈ Ψ−1(q) = p or y ∈ Ψ−1(q) = p. This shows that p is a ?-prime
ideal of R.
The ring extension R[p] ⊆ S is Prüfer since by hypothesis, the ring extension R ⊆ S is ?-Prüfer. Therefore, by (Knebusch
& Zhang, 2002, Proposition 5.7, p. 51) and the fact that Ψ is surjective, the ring extension Ψ(R[p]) ⊆ T is Prüfer. It
follows that L[q] ⊆ T is a Prüfer extension. This shows that the ring extension L ⊆ T is ?′-Prüfer. �

Remark 2.17. A question worth investigating is the converse of the statement of Theorem 2.16. In other words, with the
same hypothesis as in Theorem 2.16, when the ring extension L ⊆ T is ?′-Prüfer, is the ring extension R ⊆ S ?-Prüfer?
This remains an open question. However, in the next theorem, we prove that the ring extension L ⊆ T is ?′-Prüfer when
R ⊆ S is P?ME.

Theorem 2.18. With the same hypothesis as in Theorem 2.16, if the ring extension L ⊆ T is ?′-Prüfer, then the ring
extension R ⊆ S is P?ME.

Proof. Suppose that the ring extension L ⊆ T is ?′-Prüfer. Let m be a ?-maximal ideal of R. Observe that Ψ(m)?
′

=

Ψ(m?) = Ψ(m). So, Ψ(m) is a ?′-ideal of L. Let n be a ?′-maximal ideal of L containing Ψ(m), and let p = Ψ−1(n). Then
m ⊆ p since Ψ(m) ⊆ Ψ(p) = n. It follows from the maximality of m that m = p or p = R. By contradiction, suppose that
p = R. Then Ψ(p) = Ψ(R). Thus n = L. Which is a contradiction since n is a proper ideal of L. Hence m = p, and we
have Ψ(m) = Ψ(p) = n. This shows that Ψ(m) is a ?′-maximal ideal of L. It follows from the hypothesis that the ring
extension L[Ψ(m)] ⊆ T is Prüfer. Hence, by Lemma 1.1, L[Ψ(m)] ⊆ T is a Manis extension. But by Remark 2.15, we have
L[Ψ(m]) = Ψ(R)[Ψ(m)] = Ψ(R[m]). Hence the extension Ψ(R[m]) ⊆ Ψ(S ) is Manis. It follows from Proposition 2.14 that
R[m] ⊆ S is a Manis extension. This shows that R ⊆ S is P?ME. �

Lemma 2.19. Let R ⊆ S be a ring extension, and let X be an indeterminate over S . If R[X] ⊆ S [X] is a Prüfer extension,
then R ⊆ S is a Prüfer extension.

Proof. Suppose that R[X] ⊆ S [X] is a Prüfer extension. Let B be an S -overring of R, and let a ∈ B. Then by (Knebusch &
Zhang, 2002, Theorem 5.2, p. 47), we have

(
R[X] :S [X] ax

)
B[X] = B[X]. But by (Tchamna, 2020, Lemma 2.5 (3)), we

have
(
R[X] :S [X] ax

)
= (R :S a) R[X]. Therefore (R :S a) B[X] = B[X]. Thus (R :S a) B = B. It follows from (Knebusch &

Zhang, 2002, Theorem 5.2, p. 47) that R ⊆ S is a Prüfer extension. �

Proposition 2.20. Let R ⊆ S be a ring extension, and let X be an indeterminate over S . Let ?1 be a star operation on
R ⊆ S , and let ?2 be a star operation on R[X] ⊆ S [X] such that A?1 R[X] = (AR[X])?2 for each R-submodule A of S . If
R[X] ⊆ S [X] is a ?2-Prüfer extension, then the extension R ⊆ S is ?1-Prüfer.
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Proof. Suppose that R[X] ⊆ S [X] is a ?2-Prüfer extension. Let p be a ?1-prime ideal of R. Then pR[X] is a prime ideal
of R[X], since (R/p) [X] is isomorphic to R[X]/pR[X]. Furthermore we have (pR[X])?2 = p?1 R[X] = pR[X]. This shows
that pR[X] is a ?2-prime ideal of R[X]. Therefore, by hypothesis, the ring extension (R[X])[pR[X]] ⊆ S [X] is Prüfer. But by
(Paudel & Tchamna, 2021b, Lemma 2.6), we have (R[X])[pR[X]] = R[p][X]. Hence R[p][X] ⊆ S [X] is a Prüfer extension.
It follows from Lemma 2.19 that R[p] ⊆ S is a Prüfer extension. This shows that R ⊆ S is ?1-Prüfer extension. �

In Proposition 2.21, we give some conditions under which the converse of the statement of Proposition 2.20 is true. More
precisely, we study conditions under which the ring extension R[X] ⊆ S [X] is ?2-Prüfer when R ⊆ S is a ?1-Prüfer
extension, where ?1 and ?2 are star operations on R ⊆ S and R[X ⊆ S [X] respectively, and X an indeterminate over S .
We consider a ring extension R ⊆ S for which

(
R[X] :S [X] Q

)
, R[X] for each proper ideal Q of R[X]. An example of

such ring extensions is given in (Tchamna, 2020, Example 3.10).

Proposition 2.21. Let R ⊆ S be a tight ring extension for which
(
R[X] :S [X] Q

)
, R[X] for each proper ideal Q of R[X], where X

is an indeterminate over S . Let ?1 be a star operation on R ⊆ S , and let ?2 be a star operation on R[X] ⊆ S [X] such that
A?1 R[X] = (AR[X])?2 . If the ring extension R ⊆ S is ?1-Prüfer, then the ring extension R[X] ⊆ S [X] is a weak P?2ME.

Proof. Let q be an S [X]-regular ?2-maximal ideal of R[X], and let p = q ∩ R. There exist f1, . . . , f` ∈ q and g1, . . . , g` ∈

S [X] such that 1 =
∑̀
k=1

figi. Since R ⊆ S is a tight extension, there exists an S -invertible ideal Ii of R such that giIi ⊆ R[X]

for each i with 1 ≤ i ≤ `. The ideal I =
∏̀
k=1

Ii is S -invertible, and for 1 ≤ i ≤ `, we have giI ∈ R[X]. Furthermore, I , 0

since I is S -invertible. Let 0 , r ∈ I. Then r =
∑̀
k=1

fi(rgi) ∈ q∩R = p. It follows from (Tchamna, 2020, Lemma 3.9) that p

is a ?1-maximal ideal of R such that q = pR[X]. Furthermore, by hypothesis, the extension R[p] ⊆ S is Prüfer. Therefore,
by Lemma 1.1,

(
R[p], p[p]

)
is a Manis pair in S . Thus R[p][X] ⊆ S [X] is a Manis extension (Paudel & Tchamna, 2018,

Remark 2.11). But by (Paudel & Tchamna, 2021b, Lemma 2.6), we have R[p][X] = (R[X])[pR[X]] = (R[X])[q]. Therefore,
(R[X])[q] ⊆ S [X] is a Manis extension. It follows that R[X] ⊆ S [X] is P?2ME. �

Lemma 2.22. ((Paudel & Tchamna, 2021b, Lemma 2.6)) Let R ⊆ S be a ring extension, and let T be a multiplicatively
closed subset of R.

(1) R[X][T [X]] = R[T ][X], where X is an indeterminate over S .

(2) If N is a multiplicatively closed subset of R such that N ⊆ T, and A is an R-submodule of S , then T[N] is a
multiplicatively closed subset of R[N] and

(
A[N]

)
[T[N]] = A[T ].

Lemma 2.23. ((Paudel & Tchamna, 2021b, Proposition 3.4)) Let ?1 be a star operation of finite type on a ring extension
R ⊆ S , and let ?2 be a star operation of finite type on R[X] ⊆ S [X], where X is an indeterminate over S . Let T be a
multiplicatively closed subset of R[X]. If I is an ideal of R such that I?1 R[X] = (IR[X])?2 , then

(
I?1 [X]

)
[T ] =

(
I[X][T ]

)?2 .

For a star operation ? on a ring extension R ⊆ S , consider the set

N(?) =
{
f ∈ R[X] : cR( f )? = R?

}
where X is an indeterminate over S and cR( f ) is the ideal of R generated by the coefficient of f . Proprieties of N(?) have
been studied in Paudel and Tchamna (2021b). In particular, it was shown that N(?) is a multiplicatively closed subset of
R[X] (Paudel & Tchamna, 2021b, Lemma 3.5).

Theorem 2.24. Let R ⊆ S be a ring extension, and let X be an indeterminate over S . Let ?1 be a star operation on
R ⊆ S and ?2 a star operation on R[X] ⊆ S [X] such that A?1 R[X] = (AR[X])?2 for each R-submodule A of S . If
R[X][N(?1)] ⊆ S [X] is a ?2-Prüfer extension, then R ⊆ S is a ?1-Prüfer extension.

Proof. Let m be a ?1-maximal ideal of R. By assumption on ?2, we have (mR[X])?2 = mR[X]. It follows from Lemma
2.23 that mR[X][N(?1)] is a ?2-ideal of R[X][N(?1)]. Furthermore, mR[X][N(?1)] is a prime ideal of R[X]N(?1) since mR[X]
is a prime ideal of R[X] (Paudel & Tchamna, 2021b, Proposition 3.7(2)). It follows from the hypothesis that the ring
extension

(
R[X][N(?1)]

)
[mR[X][N(?1)]] ⊆ S [X] is a Prüfer. But by Lemma 2.22, we have(

R[X][N(?1)]
)
[mR[X][N(?1)]] = R[X][mR[X]] = R[m][X].

So, the ring extension R[m][X] ⊆ S [X] is Prüfer. It follows from Lemma 2.19 that R[m] ⊆ S is a Prüfer extension. This
shows that ring extension R ⊆ S is ?1-Prüfer. �
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