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Abstract

The main purpose of this paper is to make the connexion between stochastic analysis, the Bayesian Statistics, and time
series analysis for policy analysis. This approach solves the problem of mathematical modelling - the presence of un-
certainties in the models and parameters - that reduces the policy analysis and forecasting effectiveness. By using the
multiple It6 integral, the multidimensional Ornstein - Uhlenbeck process can be written as a Vector Autoregressive with
lag 1 (VAR(1)) that is the generalization of Vector Autoregressive process. The limit of this approach is in fact it requires
the strong foundations of stochastic analysis, the Bayesian Statistics, and time series analysis.
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1. Introduction

In the last six decades and in mathematical modelling, the stochastic analysis and time series analysis are more used by
many scientists and policy-makers. Indeed, the stochastic differential equations(SDEs) have plaid a major role in the fields
of Finance and Financial econometrics. The Ornstein - Uhlenbeck process is a stochastic process that represents the real
- world in the stochastic differential Equation.

The Vector Autoregressive models are one of the most successful statistical modelling ideas that have came up in the last
forty years. They take into account the dynamic behaviour of the real-world. The VAR model is the multivariate of the
autoregressive model. The use of Bayesian estimation methods makes the VAR models generic enough to handle a variety
of complex real - world time series Hamilton| (1994), |[Lutkepohl and Kratzig| (2004)/Lutkepohl (2005)), Sim|(1990).

Bayesian vector autoregressive (BVARs) models are standard multivariate autoregressive models estimated with Bayesian
methods and are used in empirical macroeconomic analysis and finance for the forecasting, structural analysis, and sce-
nario analysis. The Bayesian VAR is the application of Bayes theorem that was laid down in a revolutionary paper
written by British mathematician and Reverend Thomas Bayes (1702 - 1761), which appeared in print in 1763 but was
not acknowledged for its significance Berger| (1985)), [Kadiyala and Karlsson! (1997)),/Amemiya (1985). Bayesian statistics
provides a rational theory of personal beliefs compounded with real world data in the context of uncertainty. In the last
three decades, Bayesian Statistics has emerged as one of the leading paradigms in which all of this can be done in a unified
fashion. There has been tremendous development in Bayesian theory, methodology, (Chin and Li/(2019), computation and
applications in the past several years |Robert| (2007),Koop| (2003)/Zellner| (1971)), [Kelly and Smith| (201 1)), (Gelman et al.
(2004), |Geweke| (2005).

These problems of uncertainties modelling are resolved by the use of the stochastic differential equations models and the
Bayesian method. These two tools are less used and understood because of their more complex mathematical foundations
and implementation Robert| (2007)/Prakasa Rao|(2010), Oksendal (2000),

Basawa et al.|(2001) /Karatzas and E.Shreve|(1988)), Kutoyants| (1998)), Kutoyants|(2004), Kushner and Yin|(2003), Kush-
ner and P.Dupuis| (2001).

For scientists with little or no formal statistical background, Bayesian methods are being discovered as the only viable
method for approaching their problems. For many of them, statistics has become synonymous with Bayesian statistics
O’Hagan| (2000), O’Hagan and West| (2010). The Bayesian Vector Autoregressive models are one of the most successful
statistical modelling ideas that have came up in the last four decades. The use of Bayesian methods makes the models
generic enough to handle a variety of complex real - world time series.

The purpose of Bayesian inference is to provide a mathematical machinery that can be used for modelling systems, where
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the uncertainties of the system are taken into account and the decisions are made according to rational principles|Gelman
et al.| (2004), Robert (2007).

The rest of this paper is organized as follows. Section 2 gives the preliminaries and notations that constitute the mathe-
matical foundations of the stochastic differential equations and time series analysis. The Section 3 presents the multidi-
mensional Ornstein - Uhlenbeck process. The Section 4 gives the Bayesian vector autoregressive models. And the last
section gives the results of empirical analysis from the Democratic Republic of the Congo’s data.

2. Preliminaries and Notations

The following notation is used in relation to a matrix A: transpose A’, inverse A™!, trace tr(A), and determinant | A |,
estimated A respectively. For an n X m matrix A of full column rank (n ; m), an orthogonal complement is denoted by
A*. The zero matrix is the orthogonal complement of a non-singular square matrix, and an identity matrix of suitable
dimension is the orthogonal complement of a zero matrix. The vec(A) denotes the column-stacking vector of matrix A,
® signifies the Kronecker product, and I7 is an T X T identity matrix. Also C is a complex set and i means imaginary ,
i= V-1

Definition 2.1. (Brownian motion) A Brownian motion is a continuous, adapted processB = {B;, F; : 0 < s < oo, defined
on some probability space (Q, T, P), with the properties that By = 0 a.s. and for 0 < s < oo, the increment B, — By is
independent of | and is normally distributed with mean zero and variable t — s.

Definition 2.2. (Brownian motion with respect to a filtration) A vectorial (d — dimensional) Brownian motion on T with
respect to a filtration T = (F;).er such that (i) Wy = 0; (ii)For all 0 < s < t in T, the increment W, — W is independent of
Fs and follows a centred Gaussian distribution with variance - covariance matrix (t — s)I,.

One can state a classical property of Brownian motion as follows.

Proposition 2.0.1. Let (W,)er be a Brownian motion with respect to (F;)ier, as follows (1) symmetry: (W;)er is also a
Brownian motion; (2) scaling: for all 1 > 0, the process is also a Brownian motion; (3)Invariance by translation: for all
s > 0, the process W,y — Wy) is a standard Brownian motion independent of F.

In statistics, the expression ~ (u,X) abbreviates a distribution with mean vector u and covariance matrix X. N(u,X)
denotes a multivariate normal distribution with mean vector u and covariance matrix £. Convergence in distribution and is
asymptotically distributed are denoted as d and plim abbreviates the probability limit. The random variable independent
and identically distributed is abbreviated is in short i.i.d.. A stochastic process u, is called white noise if the u, are i.i.d.
with mean zero, E(u,) = 0, positive definite covariance matrix X = E(u,, u,), and finite fourth-order moments.

Definition 2.3. ? A process X is called adapted to the filtration F(F,), if for all t, X(¢) is F - measurable.

The literature of the theory of stochastic differential equations is very large |[Kushner and P.Dupuis| (2001),0Oksendal
(2000),?,?,

Malliavin and Thalmaien|(2006),?, ?/Gawarecki and Mandrekar|(2011)). Let X(7) be a diffusion in n dimensions described
by the multi - dimensional stochastic differential equation

dX(t) = D(X(1), Hdt + P (X(1), HdB(t), X(0) = xo, (1)

where W is n X d matrix valued function, B is d-dimensional Brownian motion and and X and ® are vector n- dimensional
vector valued functions. The vector (X, ¢) and the matrix (X, ¢) are the coefficients of the stochastic differential equation.

Theorem 2.1. (Unique and Existence of Solution) If the coefficients are locally Lipschitz in X with a constant independent
of t, that is, for every N, there is a constant K depending only on T and N such that forall | x|, | y|I< Nand all0 <t < T,

| O(x,0) = D, 0) [+ | ¥(x,) =¥, [ K| x =y, 2

for for any given X(0) the strong solution to stochastic differential equation|[I]is unique. If in addition to condition 2] the
linear growth condition holds

| O(x, ) | + [ P(x, 1) < K (1+ | x|), 3)
X(0) is independent of B, and E | X(0) [>< oo, then the strong solution exists and is unique on [0, T], moreover,
E(sup | X() ) < C(1 + E | X(0) 1),

where constant C depends only on K and T.
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The following theorem gives the solution of stochastic differential equations as Markov processes.

Theorem 2.2. ? (The solution of SDEs as Markov processes) If equation|l| satisfies the conditions of the existence and
uniqueness theorem the solution X, of the equation for arbitrary initial values is a Markov process on the interval
[to, T] whose initial probability distribution at the instant to is the distribution of C and whose transition probabilities are
given by

P(s,x:, B) = P(X; € B| X, = x) = P(X/(s, x) € B] “4)
where X,(s, x) is the solution of equation.

Theorem 2.3. ? Let X(t) be a regular adapted such that with probability one J(;T X%(H)dt < oo. Then Ito integral
fOT X(1)dB(t) is defined and has the following properties.

1. Linearity. If Ito integrals of X(t) and Y (t) are defined and a and 8 are some constants then fOT(a/X O +BY()dB(t) =
T T
@ [ X(dB(@) + B [, Y(t)dB(r)

2. fOT X ap(HdB(t) = fa b X()dB(t). The following two properties hold when the process satisfies an additional
assumption

T
f E(X?(t))dt < co. 5)
0

3. Zero mean property. If condition (El) holds then E( fOT X(t)dB(t)) =0.

4. Isometry property. If condition (B) holds. Then
T ) T
E( f X()dB(1)) = f E(X*(0))dB(1)
0 0

Corollaire 2.3.1. If X is a continuous adapted process then the Ité integral fOT X()dB(t) exists. In particular, fOT f(B(1))dB(r)
where f is a continuous function on R is well defined.

A consequence of the isometry property is the expectation of the product of two It6 integrals.

Theorem 2.4. Let X(¢) and Y(t) be regular adapted processes, such that fOT X(1)%dt < co and fOT Y(#)? < oo. Then,
T T T
E( f X(HdB(?) f Y()dB(1)) = f E(X(0)Y(0))dt. (6)
0 0 0

We denote by R all real - valued m x n matrices and by W(¢) = (W, (¢), ..., W,(t)) .t > 0. Let [a, b] € [0, oo[ and we put
Cw(la,b]) = {f : [a,b] X Q - R™|

VY1<i< m,\/l < ] <n: ﬁj S ij([d,b])} and C1w([a,b]) = {f . [a’b] x O — Rmn|
Y1<i<mVl<j<n:fij€ Cwila b))} and Ci([a,b]) respectively. If f : [a,b] Xx Q@ — R™ belongs to

Ciw([a, b)), then the stochastic integral with respect to W is the m - dimensional vector defined by fa b fOHdwW () =
( Z’}:] fa b fi J-(t)de(t))’1 <i<m Where each of the integrals on the right - hand side is defined in the sense of Itd.

Definition 2.4. ? If f : [a,b] X Q — R™ belongs to Cry([a, b]), then the stochastic integral with respect to W is the m -
dimensional vector defined by

b n b
f Fodwmn = (Y f FlOAW D) iz ©)
a j=1va

where each of the integrals on the right - hand side is defined in the sense of Ito.

Definition 2.5. (Multiple It integral) Assuming that W(t) is a standard Brownian motion,

1 ! Iy 153 an m
ﬁfofo fo dW(t))...dW(t,) = t H,,( «/i) 8)

where H,(x) = (—1)”6*2/2%67"‘2/2 andn! =nX(n—-1)X(n—2)X...x 1. Here H, is the Hermite polynomial.
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It is important to get in mind that

T
fo W(HdW (1) = %(WZ(T) -T), )

where dW(tj) = AWj = W(tj+1) - W(lj) and dt = Atj =1ty — 1.
3. Multidimensional Ornstein - Uhlenbeck Process

In mathematics, the Ornstein - Uhlenbeck process is a stochastic process with applications in the physical sciences and
financial mathematics. Its original application in physics was as a model for the velocity of a massive Brownian par-
ticle under the influence of friction [Uhlenbeck and Ornstein| (1930), Wang and Uhlenbeckl (1945)). It is named after a
Dutch physicist Leonard Salomon Ornstein (1880 - 1941) and a Dutch - American theoretical physicist George Eugene
Uhlenbeck (1900 - 1988).

Also, the Ornstein-Uhlenbeck process is a stationary Gauss - Markov process, which means that it is a Gaussian process,
a Markov process, and is temporally homogeneous. In fact, it is the only nontrivial process that satisfies these three
conditions, up to allowing linear transformations of the space and time variables. Over time, the process tends to drift
towards its mean function: such a process is called mean-reverting.

3.1 Model Specification

Let define the multivariate Ornstein - Uhlenbeck process as follows As mentioned in ?,

dX (1) = —AX(t)dt + BAW(?), (10)
where
X, (1) Wi (1)
X(t) = W) = ,
Xu(1) Win(1)
ay ... dim bll blm
A=|.. . . |,B=].. . .
anl -« Adum bnl bnm

The matrices A and B are called the matrix of diffusion and volatility respectively and supposed to be positive definite
matrices.

Theorem 3.1. Let dX(t) = —AX()dt+BdW(t) be an n-dimensional It0 process as above. Let g(t, x) = (81(t, X), ..., g,(t, X))
be a C* map from [0, 00) x R" into RP. Then the process Y(t,w) = g(t, X(¢)) is again an Ité process, whose component
number k, Yy, is given by

1 2
dYy = %0, Xydt + )" 08¢ (1, 3y, + = 3 T8 1 xpaxax, an

8x,» 2 (9)6[(9)(}
where dB,dBj = (Sl‘jdt and dB;dt = dtdB; = 0.

3.2 Assumptions

Suppose that the R"- valued function f and the (dxm) matrix - valued function G are assumed to be defined and measurable
on [fy, T] X R". and have the following properties: there exists a constant K > 0 such that

Al. (Lipschitz condition ).For all t € [ty, T], x € R4,

lf (. x) = .0 +1GE x) = G, y)| = Klx - )
The Lipschitz condition guarantees that f(z, x) and G(#, x) do not change faster with change in x than does the
function X itself. This implies in particular the continuity of f(¢, x) and G(t, x) for all r € [#,, T].

A2. (Restriction on growth). For all t € [ty, T, x € R?
lf (@ 0P =G, 0 < K*(1+ 1.

A3. Suppose that the process X = {X,};5¢ satisfies the following condition. For all 7 > 0 there exist positive constants
a, 3, D such that
EllX,-X,°<D|t-s|";0<s1<T.

Then there exists a continuous version of X.
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Then, equation (16) has on [fy, T] a unique R¢-valued solution X;, continuous with probability 1, that satisfies the initial
condition X;, = C; that is, if X; and Y, are continuous solution of the equation @ with the same initial value C, then

PlsuplX; = Y| >0]=0, as to St < T < oo,

3.3 Multiple It6 Integral

Definition 3.1. Ler B,(w) be n-dimensional Brownian motion. Then we define ¥, = 7—'[(") to be the o - algebra generalized
by the random variables By(.); s < t. In other words,F, is the smallest o - algebra containing all sets of the form

{W’ Bf(W) € 7:1’ sy Blk(w) € Fk},

where t; <t and F; C R" are Borel sets, j <k = 1,2, ... (We assume that all sets of measure zero are included in F,).

Let {(W(t), F1)}iefo,r be an m - dimensional Brownian motion with components W;(1),i = 1, ..., m. Let {(X(¢), F;)}sef0,r] be
an R™" - valued progressively measurable process with each component X;; € L2[0, T]. Then the multidimensional Itd
integral of X with respect to W is defined in KornKornKroisandt2010 by

o o Xi,()dW,(s)

f X(s)dW(s) := ,t€[0,7T], (12)
0

™o Jo Xui()AW(s)

where all single integrals inside the sums of the right - hand side are one - dimensional It6 integrals.

Let X and Y be two real - valued Itd processes with representations
X() = X(0) + [y G(s)ds + [} H(s)dW(s) and Y(r) = Y(0) + [} N(s)ds + [} M(s)dW(s), then, the quadratic covariation of
X and Y is defined by

m !
X, Y) = Z f Hi(s)M;(s)d(s). (13)
i=0 V0
Theorem 3.2. (Multidimensional Ité6 Formula) Let X(t) = (X(?), Xo2(?), ..., X, (t)) be an n-dimensional Itd process with

Xi(t) = X(0) + f K,-(s)ds+z f Hij()dWi(s), i =1,...n, (14)
0 ‘o Jo

where W(t) an m-dimensional Brownian motion. Let further f : [0, 00) x R" — R be a C'*—function, i.e. f is continuous,
continuously differentiable with respect to the first variable (time) and twice continuously differentiable with respect to
the last n variables(space). We then have

S, X1(0), Xa(1), ... Xu(1) = f(0, X1(0), X2(0), ..., X,,(0))

+ff,(s,Xl(s),Xz(s),...,Xn(s))ds+Ki(s)ds
0

+Zf fu (s, X1(5), X2(5), .., Xn(5))d Xi(s)
7 Jo

1 [
+3 Z fo Fox (8, X1(5), Xa(8), -ver Xa(8))d(Xi, X ). (15)

i,j=0

3.4 From Multidimensional Ornstein - Uhlenbeck Process to VAR Process

In the economics analysis, the results of observations are usually interpreted as values of random variables. Thus the
total data or the overall observation X is an n-dimensional random vector. In general, an observation is a random variable
X with values in a measurable space. This means that there exists a probability space (2, ¥, P). where n is the set of
elementary outcomes;¥ is a o — algebra of events and P is the probability measure) and X is a measurable mapping of
{Q,F} — {X,U)}. The basic characteristic of a random variable X is its distribution which is the measure PX, given by
PX{A} = P{X € A} defined on U.
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dX(H) = ~AX()dt + BAW(?). (16)

As mentioned above, A and B are n X n constant matrices, positive definite matrices, and symmetric matrices with all
positive eigenvalues. W denotes the vector of Brownian process for which the solution is

X(®) = X(0)exp(—Ar) + Bf exp[-A(t — $)1dW(s), (17
0

where exp denotes exponential symbol. By using backward - looking analysis, we write this model as follows:

X, = X_1exp(—-A) + Bf exp[—-A(t — s)|dW(s). (18)
0

Here we say that the coefficient matrix of n X n, IT = exp(—A), can be a real or complex constant matrix and positive
definite matrix and the stochastic part of this model, U, = B fol exp[—A(t — s)]dW(s). Thus, the VAR(1) model derived in
our analysis is given as follows

Xt = HXI—I + Ut, U{ ~ N(OnXanXn)' (19)

In the time series analysis, the vector U, is the vector of shocks so called innovations [Lutkepohl| (2005),?, Hamilton
(1994). In our analysis, we will estimate the coefficients of the model (IEI)

4. Bayesian Vector Autoregressive Model

In time series analysis, the Vector Autoregressive models attract interest of many researchers in many fields such as Eco-
nomics, Econometrics, Finance, Geoscience, Physics, Biology, etc. Berger| (1985), Zellner| (1971)), [Koop and Korobilis
(2013)/Koop and Korobilis| (2013). The Bayesian vector autoregressive models are standard multivariate autoregressive
models estimated by Bayesian estimation methods and are used in empirical investigations — structural analysis, and sce-
nario analysis — and forecasting [Litterman| (1986)/Sims| (1980). The most commonly used multivariate time series model
is the vector autoregressive model, particularly so in the econometric literature for good reasons. First, the estimation
of model is very easy. Second, the literature the properties of BVAR models have been studied and developed. Finally,
BVAR models are similar to the multivariate multiple linear regressions widely used in multivariate statistical analysis.

For example, in Economics, the pioneering work of [Sims| (1980) proposed to replace the large scale macroeconomic
models popular in the 1960s with VARs, and suggested that Bayesian methods could have improved upon frequentist
ones in estimating the model coefficients. Bayesian methods are increasingly becoming attractive to researchers in many
fields such as Econometrics Koop2003. Bayesian VARs (BVARs) with macroeconomic variables were first employed in
forecasting by [Litterman| (1986) but now it is one of the most policy analysis tools used by scholars and policy makers
such as research institutions, central banks,and governments.

Suppose X, is a zero mean, stationary Gaussian VAR(1) process of the form
X, =IIX,_1 + U;, U; ~ N(Opyns ann)’ (20)

where U, is a vector of innovations and the prior distribution for ® := vec(Il) is a multivariate normal with known
mean ®* and covariance matrix Qg. For the reasons of simplicity and practice, stationary, stable VAR(1) process has
been considered. As well known in time series literature, a process is stationary if it has time invariant first and second
moments. Since X, follows a VAR(1) model, the condition for its stationariness is that all solutions of the determinant
equation | I, —®B |= 0 must be greater that 1 in modulus or they are outside the unit circle Lutkepohl| (2005)), ?,[Hamilton
(1994), citeSims1980.

The multivariate time series X; follows a vector autoregressive model of order p, VAR(p), that is a generalization of a
vector autoregressive model of order 1, VAR(1), if

P
X =®o+ ) DX i+ € €&~ NOpns Zcn), 1)

i=1

where @ is a k-dimensional constant vector and ®; are k X k matrices for i > 0; ®, # 0, and ¢ is a sequence of
independent and identically distributed (i.i.d.) random vectors with mean zero and covariance matrix X, which is positive
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- definite. Also,the necessary and sufficient condition for the weak stationary of the VAR(p) series is that all solutions of
the determinant equation | ¥(B) |= 0 must be greater than 1 in modulus.

We can express a VAR(p) model in a stationary VAR(1) form by using an expanded series.
Define ¥, = (X, X _,... X

,
t—1° " r—p+1

), which is pk- dimensional time series. The VAR(p) in Equation [19|can be written as
Y, =2Y, 1 + A, (22)
where A, = (U,,0) with 0 being a k(p — 1) - dimensional zero vector, and

b Y Ypr Yy
0

I 0 .. 0
E={o 1 .. 0 o0, (23)
0 0 I 0

where it is understood that I and O are the kx k identity and zero matrix, respectively. The matrix Z is called the companion
matrix of the matrix polynomial W(B) = Iy — ¥B; — ... — ¥, B,. The covariance matrix of A; has a special structure; all
of its elements are zero except those in the upper-left corner that is Z..

In multivariate time series analysis and econometric analysis, the useful tools used by policy-makers are the forecast error
variance decomposition and the impulse response functions.

The Moving Average with the infinity lags (M A (o)) representation of the VAR(p) model is given by

Xi=u+ Ve, 24)

i=1

where ¥; denotes the coefficients matrix that measures the impact of innovations on X; at time ¢ and ¢ is a vector of
innovations so-called in literature ’shocks’. In economic analysis, we have many shocks that influence the economy’s
fluctuations like demand shock, supply shock, monetary policy shock, fiscal policy shock, energy shock, war shock,
political instability shock, population shock, health shock, environment shock and so on.

4.1 Bayesian Estimation Methods for VAR Models

In the Bayesian approach, as mentionned in|Litterman|(1986), Lutkepohl and Kratzig|(2004), Lutkepohl| (2005)/Koop and
Korobilis| (2013)), let us assume that (i) the non sample or prior information is available in the form of a density. Denoting
the parameters of interest by 0, (ii) the prior information is given in the prior probability density function (p.d.f.) g(®);
(ii1) the sample information is in the sample, say f(y | ®), which is algebraically identical to the likelihood function
L(® | X), The two types of information are combined in the Bayes’ theorem states

J(X]©)g(®)
JX)
where f(X) denotes the unconditional sample density which, for a given sample, is just a normalizing constant. In other

words the distribution of ®, given the sample information contained in X, can be summarized by g(® | X). This function
is proportional to the likelihood function times the prior density g(®),

8O@1X) = (25)

8@ ] X) e f(X]0)g(0) = LO]X)g(0) (26)

The conditional density g(® | X) is the posterior p.d.f.. It contains all the information available on the parameter vector
0. Point estimators of ® may be derived from the posterior distribution. That is,

posterior distribution « likelihood X prior distribution. 27

The normal prior for the parameters of a Gaussian VAR model, © := vec(A) = vec(Ay, ...,Ap) is a multivariate normal
with known mean ®* and covariance matrix €2y,

1

KZP/Z - 1 N\ y— *
g(®) = (ﬂ) | Q2 exp] - 5@ -0 Q;'©-0")] (28)
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The Gaussian likelihood function

© = ()" 1oz,
X exp[ - %(X ~-Z IO IreT,H(X - (Z ® IT)®)]. (29)

Combining the prior information with the sample information summarized in the Gaussian likelihood function gives the
posterior density

8(®) o« L(O | X)g(©)

_ %[(Q;l/z((a _ ®*)/(Qe—l/2(® _ @*)]
+Hr @ T,HX - (Z © 3,0} ((r 0 2,)X - (Z © 3,0}, (30)

oc exp{

Here le/ 2 and £, '/ denote the symmetric square root matrices of le and X!, respectively. The white noise covariance
matrix X, is assumed to be known for the moment. Defining w’ := [Q;m@* (Ir ®Z;1)X]/ and W' := [le/2 VA ®2;1],,
the exponent in (30) can be rewritten as

- %(w - WO) (w - WO)
= —%[(@ — @) WW®O-0)+(w- W) (w- W@)],
where

O:=(WW)Ww=[Q;'+ZZ 9ZH]'[Q,'0" + (Z ®X;")X]

The final values of the parameters obtained in the computation are called the posterior mean of VAR(1) coeflicients
estimated by using Minnesota.

4.1.1 Asymptotic Properties of Bayesian Estimators

We describe the asymptotic properties of the Bayesian estimators with the help of another general result.

Theorem 4.1. Let 91 be a family of Bayesian estimators and prior density p(.) € P.. Assume that the normalized
likelihood ratio Zt 4(.) possess the following properties:

1. For any compact K C 0 there correspond numbers a(K) = a and B(K) = B and /<$ = kr(.) C @, such that For
some q > 0, all luj| < R|up| < R and any R > 0 sup Eg|Zr o(u2)? — Zr.0(u1)2 > < B(1 + Ry — uy|4 for all u € Urg
1
sup EglZro(u)? < exp(—kr(Jul).

2. The marginal distributions of the random Zr g(u) uniformly in 0 € K convergence to marginal distributions of the
random functions Zg(u).

= _ 2o
3. ¥y) = fL(v u)f“zzﬁby)dydu

with probability 1 attains its absolute minimum value at the unique point w(6) = . Then the Bayesian estimator Or is
consistent uniformly in 6 € Kise;, for any v > 0 lim supP(eT){léT -6 > u} = 0, the distribution of the random variables
it = 907(0)‘1(9T — 8) converge uniformly in 6 € K to the distribution of #(0) = it and for any loss function L(.) € W, we
have uniformly in 6 € K limEg L(¢7(0)" (97 — 9)) = Eg.L(i).

Theorem 4.2. Under some conditions. The Bayesian estimator O7 is uniformly consistent on compacts K C 0,i.e., for
any v > 0, lim sup ]P’I(?T){ | 197 -9 > v} = 0, uniformly asymptotically normal, L{){T%({?T - 19)} = N, I®™"), and

the moment converge: for any p > 0 uniformly on compact K limEy | T8, — P |P=E | I(ﬂ)’l/zf |7, & ~ N(O,J), as
T — oo, where J is a unit d X d matrix. Moreover the Bayesian estimator is asymptotically efficient for loss functions
leW,.
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4.1.2 Selection of Bayesian VAR Model

Before estimating VAR(p) model, see par example some works Koop|(2003)) \Sims|(1980), it is important to determine the
optimal lag of this model. In practice, we use some information criteria like the Akaike information Criterion (AIC), the
Schwarz information Criterion (SC), and the Hannan - Quinn information Criterion (HQ). These criteria may be used in
this formula AIC = In 62 + %(k), HQ=Ind&*+ M(k), SC=Ind&*+ %(k). Here G stands for the sum of squared
estimation residuals divided by the sample size T and k is a number of estimated parameters.

4.2 Structural Analysis

For policy-making decisions, we use the forecast error variance decomposition and the impulse response functions to
analyze the impact of the innovations of one variable on another variable.

4.2.1 Forecast Error Variance Decomposition
Using the MA representation of a VAR(p) model and the fact that Cov(z,) = I, we see that the [ — step ahead error of Z,;

at the forecast origin # = h can be written as

en(D) = Yonper + Yilpai=1 + oo WM, 3D

and the covariance matrix of the forecast error is

-1

Covley(D] = > vl (32)

v=0

From Equation @]), the variance of the forecast error e;, ;(I), which is the ith component of e;(/) is

-1 k ko i-1
VarleniD1 = D" D 00,,= >, > Wl (33)
v=0 j=1 j=1 v=0
Using Equation (), we define
-1
w;i(h) = Z Vi 34
v=0
and obtain
k
Varleni(D] = ), wiy). (35)

J=1

Therefore, the quantity w;;(/) can be interpreted as the contribution of the jth shock 7, to the variance of the / - step ahead
forecast error of Z;. Equation () is referred to as the forecast error decomposition. In particular, w;;(l)/Varle;;(1)] is the
percentage of contribution from the shock 7.

4.2.2 Impulse Response Functions

In multivariate time series analysis like in [Lutkepohl and Kratzig| (2004), [Hamilton! (1994)/Tsay| (2014) , we use the
impulse response function when we need to know the impact of one variable on another. For example, one might be
interested in knowing the effect on the monthly inflation rate if the monthly exchange rate growth will increase or decrease.
In this analysis, the impulse response functions are used in the statistical and econometric literature. The coefficient
matrix 'P; of the MA representation of a VAR(p) model is referred to as the coefficients of impulse response functions.
The summation ®, = >}, '¥; denotes the accumulated responses over n periods to a unit shock to Z;. From the MA
representation of Z, and using the Cholesky decomposition of X, we have

Z, = [®y+ DB+ DB + .1, (36)

where ®; = V,U', %, = U U, and 5, = (U )" ', for I > 0. Thus, components of 7, are uncorrelated and have unit variance.
The total accumulated responses for all future periods are defined as @, = 37> '¥; and called the total multipliers or long
- run effects.

4.3 Forecasting

Forecasting is one of the most activities of policy-makers because it informs them how the policy decisions are and helps
them to maintain a forward-focused mindset. In time series analysis, the VAR(p) models are used for this goal.
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5. Empirical Analysis

In mathematical modeling, stochastic differential equations and vector autoregressive models are used in many fields
such as Meteorology, Physics, Biology, Hydrology, Finance, and Economics. This section uses the Bayesian Vector
Autoregressive model to analyze and forecast the three macroeconomic variables.

5.1 Economic Intuitions Behind the BVAR(1) Model

Macroeconometric modeling grew rapidly in importance during the late 1950S and the 1960s, going on to achieve a very
influential role in macroeconomic policy-making during the 1970s. Its failure to deliver the detailed economic control
that it had seemed to promise then led to a barrage of attacks, ranging from disillusion and skepticism on the part of
policymakers to detailed and well-argued academic criticism of the basic methodology of the approach.

Perhaps, the most powerful and influential of these academic arguments came from [Sims| (1980) in his article "Macroe-
conomics and Reality’. Sims argued, on three quite separate grounds, against the basic process of model identification,
which lies at the heart of the Cowles Commission methodology. Firstly that economic theory gives rise to identification
restrictions which are typically more complex than those traditionally applied in macroeconometric models. In particular,
he said that theory normally implies complex cross-equation restrictions that require system estimation and which cannot
be imposed on a single equation basis. Secondly, traditional identification conditions are often met simply because of
the presence of dynamics in the models. |Sims|(1980) argued that this identification is spurious and technically invalid,
as purely dynamic terms cannot help in structural identification in the conventional sense. Finally, he said that the im-
portance of expectations effects and the interaction of policy regimes and agents’ expectations make identification very
difficult Sims| (1980) argued that any one of these problems would form a challenging, but feasible, research agenda, but
that "Doing all of these at once would be a program which is so challenging as to be impossible in the short run’. He
then proposed a methodology based on vector autoregressive (VAR) models ?. As argued by Christopher Sims, most
economists would agree that there are many macroeconomic variables whose cyclical fluctuations are of interest, and
would agree further that fluctuations in these series are interrelated [Sims| (1980).

5.2 Model Specification

To illustrate this approach, we assume that the stationary BVAR(1) process, time - invarying parameters, and the economy
is stayed in same cycle during the period of analysis takes the matrix form as follows

Ve Y Y Yz Yua T Uy
e Yar Yo Yoz Y €1 Uet

= X + . 37
m Y31 W3 Y3z Y my— Ut 37
hy Va1 Ya Va3 Y hi—t Upy

where m;, my,e;, and h, denote the monthly CPI inflation rate, the change of exchange rate, money growth, and the change
of the cooper price, respectively.

5.3 Data Analysis

To illustrate Bayesian VAR(1) model using some of the informative priors such as Minnesota. We use monthly data from
Democratic Republic of the Congo data set on inflation rate 7;, the change of exchange rate e,, money growth m;, and the
change of the cooper price /,. The sample runs from january 2004 to september 2018.

Table 1. Summary Statistics

I e; m; hy

Mean 0.0 0.0 0.0 00
Median 0.0 -0.0 0.0 0.0
Max. 0.1 0.1 02 02
Min. -0.1 -0.1 -0.1 -04
Std. Deyv. 0.0 0.0 0.1 0.1
Skewness 1.6 0.6 02 -0.8
Kurtosis 94 6.9 3.1 7.7
Jarque - Bera Stat.  366.8 120.6 1.3  181.6
Prob.(JB) 0.0 0.0 0.5 0.0
Sum 2.2 1.5 34 09
Observations 176 176 176 176
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5.4 Selection of BVAR(1) Model

By using the software Eviews 11 and the data, the maximum lag of estimated BVAR model is 1. Therefore, the structural
analysis and forecasting will be done with the BVAR(1)process.

Table 2. Selection of optimal lag

Lag logL AIC SC HQ
12809 -15.2 -15.1 -15.2
1370.7 -16.1* -15.7* -15.9*
1379.7 -16.0 -15.3 -15.7
1387.8 -159 -14.9 -15.5
13947 -15.8 -14.5 -15.3

ENGNOS I S N )

(*) indicates the maximum calculated lag of the VAR(p) model.
5.5 Estimated Posterior Mean Coefficients of BVAR Model
Like other VAR models, the BVAR(1) has many estimated coefficients and is hard to interpret.

Table 3. Posterior mean of BVAR(1) model

e e m; h,
oy 0.3 0.2 0.3 0.2
[571 [24] [1.9] [0.9]
e 03 0.3 0.1 0.2
[5.8] [4.3] [0.5] [1.4]
my_; 0.1 0.1 -0.1 0.0
[3.0] [3.11 [-2.4] [04]
hiy 0.0 -0.0 -0.0 0.3
[1.0] [-2.2] [-0.9] [4.9]

Table 3] presents posterior means of all the VAR coefficients for Minnesota and [...] denotes Student statistics used for
testing the statistical significance of estimated parameters. Our results can be given in matrix form as mentioned above by

03 03 01 00
02 03 01 -00
03 01 -0.1 -0.0
02 02 00 03

ﬁ:

5.6 Derivation of Drift and Stochastic Volatility Coefficients Matrices

For calculating drift matrix of the model,(??), we use the MATLAB R2016a Software to compute these matrices because
it is difficult to do so manually. Recall exp(—A) := exp(Cf)) = I1, we calculate the logarithm of matrix 11, [n(IT). For matrix
theory, see (Gentle (2007), ?/Magnus and Neudecker| (2007 Turkington| (2002)),Graham!| (1981)), [Higham| (2008)),Lewis
(2001),Seber| (2008) ,?, \Gantmacher (2000), we get

o0 ok
® = In(IT) ~ Z(—l)’”‘%,
k=1

where [ is an identity matrix, and by using this powerful algebraic computing Software

-12+0.0; -13+0.00i -2.79+0.0i -4.09 +0.0i
-1.8+0.0; -14+0.00 -25+00; -3.10+3.1i
-1.2+00i -27+0.0i -2.0+3.1i -3.15+3.1i|
-1.8+0.0; -15+0.0i -4.0+0.0; -1.28+0.0i
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As mentioned above, the matrix of the drift coefficient can be gotten by A = —®

12400 13+0.0; 2.8+0.0i 4.1+0.0i
1.84+0.0i 14+00; 25+40.0i 3.1-3.1i
1.3+0.0i 2.7+0.0i 20-3.1i 3.2-3.1i|
1.8+0.0i 15400 4.0+0.0i 1.3+0.0i

In statistics, the covariance matrix is a symmetric matrix, a;; = aj. Therefore the estimated Bayesian VAR residual
covariance matrix is also a symmetric matrix given by

0.0003 0.0001 0.0000 0.0000
0.0001 0.0005 0.0001 0.0000
0.0000 0.0001 0.0035 -0.0001}"
0.0000 0.0000 0.0001 0.0043

O, =

We get the matrix of stochastic volatility or the diffusion coefficient B by solving the stochastic integral fot exp[-A(t -
£))BAW(f), that is, B = [171Q),,

0.002 -0.003 -0.004 -0.009

-0.002 0.005 0.010 0.013

0.003 -0.005 -0.026 -0.016{"

0.000 -0.002 -0.004 0.012

B=

As mentioned the matrix B is the matrix of coefficients diffusion called the matrix of stochastic volatility in
5.7 Forecast Error Variance Decompositions

The variance decomposition of inflation shows that 82 % of its innovations are due to itself innovations and 13 %, 6 %,
and 41 % are due to exchange rate, money, and cooper price index innovations. With 13 % the exchange rate contributes
more the CPI inflation. The variance decomposition of exchange rate shows that 79 % of its innovations are due to itself
innovations and 15 %, 3 %, and 2 % are due to inflation rate, money growth, and cooper price index innovations. The
variance decomposition of money shows that 97 % of its innovations are due to itself innovations and 2 % , 1 % , and 27
points of percentage are due to inflation, exchange rate, and cooper price index innovations. The variance decomposition
of inflation shows that 98 % of its innovations are due to itself innovations and 1 % , 1 % , and 16 points of percentage
are due to inflation, exchange rate, and money innovations. For policy-makers, this results show that there is a close
connexion between inflation rate and exchange rate because of dollarization of economy and extra-version of economy.
This monetary phenomenon dated since 1990s where the Congolese economy fell down by the political and socio -
economical crises and army conflicts.

5.8 Macroeconomic Forecasting

For policy - makers, the forecasting the economy perform the policy - making decision but it costs much and is risky, often
humbling tasks. Unfortunately, they are the jobs that many statisticians, economists and others are required to engage in
as mentioned in many works |Litterman| (1986), Koop and Korobilis| (2013). Nowadays, in the most Central Banks and
other institutions , VARs models have become powerful tools of forecasting. The outputs from Bayesian VAR models
seem to be more accurate and robust than the outputs of other approaches.

Table 4. Macroeconomic Forecasts October 2018 - March 2019

Period Inflation Exchange rate money growth  Cooper price
October 2018 0.01 0.01 0.02 0.01
November 2018  0.01 -0.00 0.02 0.01
December 2018 0.11 0.11 0.18 0.23
January 2019 -0.07 -0.10 -0.12 -0.35
February 2019  0.02 0.02 0.05 0.07

March 2019 1.55 0.60 0.20 -0.75

6. Discussion of Results

The main job of the mathematicians is to improve the policy-making process by providing the best forecasting and anal-
ysis to policy-makers. By combining the stochastic analysis, the time series analysis, and the Bayesian inference, this
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approach is useful to mathematical modelling. The stochastic differential equations put the uncertainty in the model and
the Bayesian statistics puts it in the parameters. In the last six decades, the stochastic differential equations are more used
in mathematical modelling that are applied in many fields of science. Since the works of Black and Scholes in 1973, in
the Economics and Finance, the stochastic analysis is more used by the Econometricians for econometric analysis [Black
and Scholes|(1973), |Bergstrom and Nowman| (2007). Therefore, the new field is born called Financial Econometrics. To
move algebraical from the stochastic analysis to time series analysis is strong challenge. This approach asks the strong
foundation in these fields. In the last four decades, the BVAR models are used to forecast the economical and financial
data [Kadiyala and Karlsson| (1997), [Bikker| (1998)), [SIjiviC| (2017), Droumaguet et al.| (2016), [Kwon et al.| (2008)), |Peters
et al.| (2010), Chan et al. (2020). Among other methods, the BVARs are considered as powerful tools of forecasting
Carriero et al.[(2012), [Litterman! (1986)), [Doan et al.| (1984). The BVAR models are the ’a-theorical’ models so - called
"Black-boxes’ that because they do not have the theorical foundations.

7. Conclusion

This paper has shown the connexion between the multivariate stochastic differential equations and the Bayesian vector
autoregressive models thoroughly the It6 integrals. These stochastic continuous - time models are more used and applied
in financial econometrics because of their capacity to put together uncertainties that are inherent to real - world economic
problems. Also, the Bayesian vector autoregressive models are more attractive because they estimate the posterior mean
estimators that are the product of modelling knowledges and data behavioursSims| (1980).

Our methodology, however, is more general and could be applied to the analysis of factors driving misspecification and
uncertainties observed in real world. This double - counting of uncertainties - stochastic differential equations modelling
and Bayesian vector autoregressive models - that figure out the uncertainty in the models and the parameters is more
occurrence. Thus, this mix approach should not be considered useful in the modern econometrics but also in any applied
scientific field.

For next future research, there are many topics where someone can work and get the best results such as the Ornstein -
Uhlenbeck process with jump, the Ornstein - Uhlenbeck process with Markov switchning chains.
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