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Abstract 

The Collatz conjecture (or Syracuse conjecture) states: all Syracuse sequences converge to 1. We present a Syracuse 

sequence, and we prove that the conjecture is true, first by using the fact that all convergent integer sequences are 

eventually constant. We then prove wrong 2 hypotheses: the case where the sequence tends to infinity, and the case 

where the sequence has no limit and is eventually periodic. We conclude by elimination, afterward.  
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1. Introduction 

Let's consider natural numbers, which set is ℕ. We define a sequence of numbers built this way: given any non-zero 

natural number c, the next term is 𝑐/ 2  if c is even, (3𝑐 + 1)/2 if c is odd; repeatedly, we can build as many terms as 

we want. As a result, we have a sequence of odd and even numbers, with c as the initial term. We call it a Syracuse 

sequence. 

Equivalently, one can introduce another sequence of odd numbers only, with c as the initial term if c is odd. If c is even, 

the initial term is obtained after dividing c by 2 enough times to obtain an odd number, say r times and the initial term 

is 𝑐′ =
𝑐

2𝑟
, 𝑟 non-zero natural number. If we consider a Syracuse sequence with c’ as the initial term, the next term 

is 𝑐′′ =
3𝑐′+1

2𝑠
; after c’’ we have 𝑐′′′ =

3𝑐′′+1

2𝑡
, . . . , the exponents s and t being the necessary times we divide by 2 to 

obtain odd numbers c’’ and c’’’, respectively. Generally, any Syracuse sequence (𝑈𝑛)𝑛∈ℕ has its 2 consecutive odd terms 

linked by the following expression:                                          

                                                                            𝑈𝑛+1 =
3𝑈𝑛 + 1

2𝑚𝑛
 ;   𝑚𝑛 non − zero natural number.                                  (1) 

It’s tempting to seek a general term of the sequence using (1). But we quickly notice in (1) that the exponent  𝑚𝑛 is not 

predetermined, and its value depends on 3𝑈𝑛 + 1, more specifically 𝑈𝑛.  

We have: 

 𝑈1 =
3𝑈0 + 1

2𝑚0
, 𝑈2 =

3𝑈1 + 1

2𝑚1
, … , 𝑈𝑛+1 =

3𝑈𝑛 + 1

2𝑚𝑛
; 𝑚𝑖 ∈ ℕ, 𝑖 = 1,2, … , 𝑛. 𝐴𝑙𝑠𝑜:𝑈2 =

32𝑈0 + 3
1 + 2𝑚0

2𝑚02𝑚1
      (2) 

By using mathematical induction, one can prove: 

                                                   𝑈𝑛 =
3𝑛𝑈0 + 3

𝑛−1 + ∑ ∏ 3𝑛−𝑘𝑘−2
𝑖=0

𝑛
𝑘=2 2𝑚𝑖

∏ 2𝑚𝑖𝑛−1
𝑖=0

, ∀𝑛 ≥ 2                                                     (3) 

The relation (3) gives the general term of the Syracuse sequence, given 𝑈0 the initial term. We notice in fact that the values 

of 𝑚𝑖 , 𝑖 = 0,1, . . . , 𝑛 − 1 are unknown. The only way to know them is to calculate one by one all the terms, from the 

second to the nth term, using the relation (1). This means, at infinity, the progression of the sequence is still a mystery. 

Since Lothar Collatz, the originator of the Collatz conjecture aroused in mathematicians interest in this problem, 

numerous researchers have been publishing papers on it. Some of them are gathered in a paper discussing the conjecture 

and related problems (Jeffey C. Lagarias, 2010). This is due  to the fact that, many connexions to this topic were found in 

other branches of mathematics, like for instance ergodic theory and Markov chains, in a survey paper by K. R. Matthews 

(Jeffey C. Lagarias, 2010, p. 79).  

Despite such abundance of publication, the conjecture has not been resolved yet. Recently, a significant progress was 
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made using probabilistic arguments ( Terrence Tao, 2019).  

The approach developped in this paper is new, and a deep study of syracuse sequences will be necessary so that, the tools 

proposed match the needs for the resolution of the conjecture. 

Since each 𝑚𝑖  can be known only between 2 consecutive odd terms; and based upon the particular property of a Syracuse 

sequence that, any odd term multiple of 3 cannot have a previous term, first we will establish all possible expressions of 

any previous term and its next one. Then, we will use the concept of onion-factorization, to test the consistency of the 

expression of the initial term, when we extend the sequence infinitely.  

TERMINOLOGY 

- In the following, we deal with only the odd terms of the Syracuse sequence. And we choose to refer to the odd terms by 

“terms” rather than “odd terms”; 

- We mean by previous terms in a Syracuse sequence, all the terms with the same rank n behind the term with rank n+1; by 

next term, we mean the term with rank n+1 after the term with rank n. n is an arbitrary natural number; 

- We mean by same form-previous terms, all previous terms with the same algebraic form 6m+1, 6m+3 or 6m+5, m 

natural number;  

- ”Initial term” refers to the first term of a Syracuse sequence, while “initial previous term” refers to the first term of a 

sequence of previous terms. 

2. Syracuse Sequences 

2.1 Previous Terms 

2.1.1 The General Expression of Previous Terms  

(𝑈𝑛)𝑛∈ℕ is a Syracuse sequence. By using the relation (1), we can write  

                                                                                    𝑈𝑛 =
2𝑚𝑛𝑈𝑛+1 − 1

3
                                                                              (4) 

By choosing any term 𝑈𝑛+1, expression (4) helps find its previous one in the Syracuse sequence. Since 𝑈𝑛 is an integer, 

3 has to divide the numerator 2𝑚𝑛𝑈𝑛+1 − 1. But, if any term has a next one in the Syracuse sequence, do all terms 

necessarily have previous ones? We quickly notice that if 2𝑚𝑛𝑈𝑛+1 is a multiple of 3, that is, 𝑈𝑛+1 multiple of 3, then 3 

cannot divide 2𝑚𝑛𝑈𝑛+1 − 1, since it is a subtraction between a multiple of 3 and a non-multiple of 3. This leads us to a 

property verified by all Syracuse sequences: 

Property. Given any random term 𝑈𝑛 , 𝑛 ≥ 1, in a Syracuse sequence, it doesn’t exist a previous term 𝑈𝑛−1 if and only 

if 𝑈𝑛 is a multiple of 3.                                                                            (5) 

Now, let's select some examples to see how the relation (4) works. Let 7; 7 is not a multiple of 3, and by trying 

which 𝑚𝑛 suits, we find 

  
22 × 𝟕 − 1

3
 =  9 

But, since we have tried at random, is there any other 𝑚𝑛 that can work too? How many? 

We find for 𝑚𝑛 = 4: 

24 × 𝟕 − 1

3
 =  37 

If we continue, we figure out different values of 𝑈𝑛−1 for 𝑚𝑛  =  6,8,10, . .., all being previous terms of 𝑈𝑛  =  7 in the 

Syracuse sequence. 

In comparison, to determine the next term to 7, we have 

3 × 7 + 1

22
 =  11, 

and 𝑚𝑛  =  2 is the only choice here; 11 is then the unique term that follows 7 in the Syracuse sequence. 
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Let any 𝑈𝑖+1 in the Syracuse sequence with rank i+1. We note (𝑈𝑖,𝑝)𝑝∈ℕ the monotonically increasing sequence of its 

previous terms: i is there to signify that behind 𝑈𝑖+1 in the Syracuse sequence, all the previous terms have the same rank 

i, and p is to put order among them. Let 𝑈𝑖,0 the initial previous term, and 𝑈𝑖,𝑝 the (p+1)th; we have the following 

expressions: 

                                                      𝑈𝑖,𝑝 =
2𝑏𝑝𝑈𝑖+1 − 1

3
, 𝑈𝑖,0 =

2𝑏𝑈𝑖+1 − 1

3
   ,                                                            (6) 

 b fixed; and for 𝑝 ≥ 1, 𝑏𝑝 > 𝑏 > 0. 

Since 𝑈𝑖+1 has previous terms, it can’t be a multiple of 3.  

We have the difference: 

ℕ ∋ (𝑈𝑖,𝑝 − 𝑈𝑖,0)  =  
2𝑏𝑝𝑈𝑖+1 − 1

3
−
2𝑏𝑈𝑖+1 − 1

3
 =  

𝑈𝑖+1(2
𝑏𝑝 − 2𝑏)

3
 

Then, 3 necessarily divides 2𝑏𝑝 − 2𝑏 = 2𝑏(2(𝑏𝑝−𝑏) − 1), hence it should exist a natural number d, non-zero, such 

that 2(𝑏𝑝−𝑏) − 1 = 4𝑑 − 1.  

We then have 𝑏𝑝 − 𝑏 = 2𝑑, 𝑏𝑝 = 𝑏 + 2𝑑, and the (p+1)th previous term of 𝑈𝑖+1 becomes: 

𝑈𝑖,𝑝 =
2𝑏4𝑑𝑈𝑖+1 − 1

3
 , 

with d an arbitrary non-zero positive integer.  

Also, we can write 𝑈𝑖,0 =
2𝑏40𝑈𝑖+1−1

3
  according to (6), and d can take any non-zero number in the set ℕ. Then the 

general term of (𝑈𝑖,𝑝)𝑝∈ℕ, sequence of previous terms of 𝑈𝑖+1 is: 

                                                                     𝑈𝑖,𝑝 =
2𝑏4𝑝𝑈𝑖+1 − 1

3
, ∀𝑝 ∈ ℕ,   b fixed.                                                         (7) 

Every 𝑈𝑖+1 is either 3m, 3m+1, or 3m+2, m natural number. Since we consider the terms of a Syracuse sequence to be 

odds, we have 3(2a+1) for the multiple of 3, 3(2a)+1, and 3(2a+1)+2, a natural number. 𝑈𝑖+1 is not a multiple of 3, then 

it could only be either 6a+1 or 6a+5.  

VALUE OF b 

b is the exponent to determine the initial previous term of a monotonically increasing sequence. It is then the minimum 

positive integer needed to obtain 𝑈𝑖,0. Then we can try in the expression of 𝑈𝑖,0 the lower possible value of b: 1, then 

add 1 if the test fails (𝑈𝑖,0 is not a natural number), and try the new value of b, till the test is valid (𝑈𝑖,0 is a natural 

number). 

- Case 1: 𝑈𝑖+1 = 6𝑎 + 1 

We use 

 𝑈𝑖,0 =
2𝑏40(6𝑎 + 1) − 1

3
 

b=1, 
2(6𝑎+1)−1

3
=

12𝑎+1

3
= 4𝑎 +

1

3
∉ ℕ;  b=2, 

22(6𝑎+1)−1

3
=

24𝑎+3

3
= 8𝑎 + 1 ∈ ℕ. The expression (7) becomes:  

                                                    𝑈𝑖,𝑝 =
224𝑝(6𝑎 + 1) − 1

3
=
4𝑝+1(6𝑎 + 1) − 1

3
, ∀𝑝 ∈ ℕ.                                           (8) 

- Case 2: 𝑈𝑖+1 = 6𝑎 + 5 

The initial previous term here is 

 𝑈𝑖,0 =
2𝑏40(6𝑎 + 5) − 1

3
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b=1, 
2(6𝑎+5)−1

3
=

12𝑎+9

3
= 4𝑎 + 3 ∈ ℕ. Hence 

                                                                     𝑈𝑖,𝑝 =
2 × 4𝑝(6𝑎 + 5) − 1

3
, ∀𝑝 ∈ ℕ .                                                             (9) 

2.1.2 Connexions Among Previous Terms 

Now, for a given term 6a+1 or 6a+5, we can thanks to (8) and (9), easily list without omission all the p+1 first previous 

terms. Furthermore, we know that 𝑈𝑖,𝑝 can be expressed as either 6m+1, 6m+3 or 6m+5, m natural number.  

Let's take two previous terms, both in the same algebraic form: 6𝑚1 + 1 and 6𝑚2 + 1, both previous to 6a+5. 

Assume 6𝑚2 + 1 > 6𝑚1 + 1. We then have:  

2 × 4𝑝1(6𝑎 + 5) − 1

3
= 6𝑚1 + 1;  

2 × 4𝑝2(6𝑎 + 5) − 1

3
= 6𝑚2 + 1, 

and the difference: 

                                   6𝑚2 + 1 − (6𝑚1 + 1) = 6(𝑚2 −𝑚1) =
2(4𝑝2 − 4𝑝1)(6𝑎 + 5)

3
                                           (10) 

We have 4𝑝2 − 4𝑝1 = 4𝑝1(4𝑠 − 1) with 𝑠 + 𝑝1 = 𝑝2, s non-zero natural number. The product of the means equals the 

product of the extremes, and (10) becomes:  

                                                             9(𝑚2 −𝑚1) = 4
𝑝1(4𝑠 − 1)(6𝑎 + 5),                                                                  (11) 

and  4𝑠 − 1 = 3∑ 4𝑘𝑠−1
𝑘=0 .                                            

In order to make the second member 4𝑝1(4𝑠 − 1)(6𝑎 + 5) a multiple of 9, so to match the first member 9(𝑚2 −𝑚1), s 

must take the value that makes ∑ 4𝑘𝑠−1
𝑘=0  a multiple of 3. For instance, s = 3.  

We notice that such a condition on s is the same if we replace 6a+5 by 6a+1, even if in addition we choose the algebraic 

form 6m+5 or 6m+3 for the two previous terms. In fact, (11) in this case becomes 

9(𝑚2 −𝑚1) = 2 × 4
𝑝1(4𝑠 − 1)(6𝑎 + 1), 

and we still have the condition mentioned above on s. Also, nothing changes about s no matter the value of 𝑝1. Finally, 

whatever the two previous terms are, it only requires them to have the same algebraic form, for the condition on s to be 

applied. 

CONDITION ON s 

The number s is such that ∑ 4𝑘𝑠−1
𝑘=0  is a multiple of 3.  

- For 𝑠 = 3𝑛, n non-zero natural number, let's prove that 𝑆𝑛 = ∑ 4𝑘3𝑛−1
𝑘=0  is always a multiple of 3.  

n=1, 𝑆1 = 21 is a multiple of 3. Let's suppose 𝑆𝑛is a multiple of 3, and let's prove it at order n+1.  

We have 

 𝑆𝑛+1 = ∑ 4𝑘
3(𝑛+1)−1

𝑘=0

= ∑ 4𝑘
3𝑛+2

𝑘=0

= 𝑆𝑛 + ∑ 4𝑘
3𝑛+2

𝑘=3𝑛

= 𝑆𝑛 + 4
3𝑛(1 + 4 + 42) = 𝑆𝑛 + 21 × 4

3𝑛  

which is a multiple of 3. In conclusion, 𝑆𝑛 is a multiple of 3.  

- For cases s=3n+1 and s=3n+2, we respectively have 

∑4𝑘
3𝑛

𝑘=0

= ∑ 4𝑘
3𝑛−1

𝑘=0

+ 43𝑛 = 𝑆𝑛 + 4
3𝑛 , 

and   

∑ 4𝑘
3𝑛+1

𝑘=0

= ∑ 4𝑘
3𝑛−1

𝑘=0

+ 43𝑛 + 43𝑛+1 = 𝑆𝑛 + 4
3𝑛 + 43𝑛+1 . 

.  
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We know that 𝑆𝑛 is a multiple of 3, while 43𝑛 + 43𝑛+1 = 43𝑛 × 5 and 43𝑛 aren’t. Then, ∑ 4𝑘3𝑛
𝑘=0  and ∑ 4𝑘3𝑛+1

𝑘=0  are 

both not multiples of 3. 

Finally, s=3n, n non-zero natural number, is the only possibility that validates the condition. This means, between two 

consecutive same form-previous terms, the gap is s = 3. 

2.1.3 Previous Terms of 𝑈𝑖+1 = 6𝑎 + 1 

The general term is 

𝑈𝑖,𝑝 =
4𝑝+1(6𝑎 + 1) − 1

3
, ∀𝑝 ∈ ℕ 

Case 1: a=3k 

The initial previous term is 

  
40+1(6(3𝑘) + 1) − 1

3
= 6(4𝑘) + 1 

the second previous term is  

41+1(6(3𝑘)+ 1) − 1

3
= 6(16𝑘) + 5  

and the third 

 
42+1(6(3𝑘) + 1) − 1

3
= 6(64𝑘 + 3) + 3. 

Since s=3 between two consecutive same form-previous terms, we have in general: 

𝑉𝑛 = 6𝑗 + 1 =
43𝑛+1(6(3𝑘)+ 1) − 1

3

𝑊𝑛 = 6𝑗 + 5 =
43𝑛+2(6(3𝑘)+ 1) − 1

3

𝑋𝑛 = 6𝑗 + 3 =
43𝑛+3(6(3𝑘)+ 1) − 1

3

     ∀ 𝑛 ∈ ℕ . 

𝑉𝑛, 𝑊𝑛 , 𝑋𝑛 are general terms of monotonically increasing sequences (𝑉𝑛)𝑛∈ℕ, (𝑊𝑛)𝑛∈ℕ, (𝑋𝑛)𝑛∈ℕ, respectively. Notice 

that the three sequences are sub-sequences of (𝑈𝑖,𝑝)𝑝∈ℕ. 

𝑉𝑛 = 6𝑘 × 43𝑛+1 +
43𝑛+1 − 1

3
= 6𝑘 × 43𝑛+1 +∑ 4𝑝

3𝑛

𝑝=0

= 6𝑘 × 43𝑛+1 +∑ 4𝑝
3𝑛

𝑝=1

+ 1;  

  ∑4𝑝
3𝑛

𝑝=1

= 4 + 42+. . . +43𝑛 ;  𝑛 ≠ 0 

and 

4 + 42 + 43 = 21 × 4

44 + 45 + 46 = 21 × 44

⋮

43𝑛−2 + 43𝑛−1 + 43𝑛 = 21 × 43𝑛−2

 

Then by adding members of the same side, we get: 

∑ 4𝑝
3𝑛

𝑝=1

= 21 × 4 + 21 × 44 + ⋯+ 21 × 43𝑛−2 = 21(4 + ⋯+ 43𝑛−2) = 21 × 4(1 + 43 +⋯43𝑛−3) 
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             = 6 × 14∑43𝑝
𝑛−1

𝑝=0

 ; 

Finally, we have: 

𝑽𝒏 = 𝟔 [𝟒𝟑𝒏+𝟏𝒌 + 𝟏𝟒∑𝟒𝟑𝒑
𝒏−𝟏

𝒑=𝟎

] + 𝟏 ∀ 𝒏 ≥ 𝟏; 𝑽𝟎 = 𝟔(𝟒𝒌)+ 𝟏 ; 

𝑊𝑛 = 6𝑘 × 43𝑛+2 +
43𝑛+2 − 1

3
= 6𝑘 × 43𝑛+2 + 1 + 4 + 42+. . . +43𝑛+1 = 6𝑘 × 43𝑛+2 + 5 + 42+. . . +43𝑛+1 

We have: 

42 + 43 + 44 = 42 × 21

45 + 46 + 47 = 45 × 21
⋮

43𝑛−1 + 43𝑛 + 43𝑛+1 = 43𝑛−1 × 21

 

Adding same side members and reporting it into the general term, it follows: 

𝑊𝑛 =  6𝑘 × 4
3𝑛+2 + 5 + 42 × 21+. . . +43𝑛−1 × 21 =  6𝑘 × 43𝑛+2 + 5 + 21 × 4 × 4(1 + 43+. . . +43𝑛−3), 

then 

𝑾𝒏 = 𝟔 [𝟒𝟑𝒏+𝟐𝒌 + 𝟏𝟒∑𝟒𝟑𝒑+𝟏
𝒏−𝟏

𝒑=𝟎

]+ 𝟓 ∀ 𝒏 ≥ 𝟏; 𝑾𝟎 = 𝟔(𝟏𝟔𝒌)+ 𝟓 ; 

𝑋𝑛 = 6𝑘 × 43𝑛+3 +
43𝑛+3 − 1

3
= 6𝑘 × 43𝑛+3 + ∑ 4𝑝

3𝑛+2

𝑝=0

 ;  ∑ 4𝑝
3𝑛+2

𝑝=0

= 1 + 4+. . . +43𝑛+2 ; 

    1 + 4 + 42 = 21

        43 + 44 + 45   = 43 × 21
⋮

43𝑛 + 43𝑛+1 + 43𝑛+2 = 43𝑛 × 21 ;

 

This implies: 

𝑋𝑛 = 6𝑘 × 43𝑛+3 + 21(1 + 43+. . . +43𝑛) = 6𝑘 × 43𝑛+3 + 21∑ 43𝑝
𝑛

𝑝=0

21∑ 43𝑝
𝑛

𝑝=0

= 6 × 3∑ 43𝑝
𝑛

𝑝=0

+ 3∑ 43𝑝
𝑛

𝑝=1

+ 3 = 6 × 3∑ 43𝑝
𝑛

𝑝=0

+ 3 × 4∑43𝑝−1
𝑛

𝑝=1

+ 3

 

Then, 

𝑿𝒏 = 𝟔 [𝟒𝟑𝒏+𝟑𝒌 + 𝟑∑𝟒𝟑𝒑
𝒏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑−𝟏
𝒏

𝒑=𝟏

] + 𝟑 ∀ 𝒏 ≥ 𝟏; 𝑿𝟎 = 𝟔(𝟔𝟒𝒌 + 𝟑) + 𝟑 ; 

Case 2: a=3k+1 

The initial previous term is 

40+1(6(3𝑘 + 1) + 1) − 1

3
= 6(4𝑘 + 1) + 3 

then 
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𝑉𝑛 = 6𝑗 + 3 =
43𝑛+1(6(3𝑘 + 1) + 1) − 1

3
 ; 

𝑉𝑛  =  6𝑘 × 43𝑛+1 +
7 × 43𝑛+1 − 1

3
= 6𝑘 × 43𝑛+1 +

6 × 43𝑛+1

3
+
43𝑛+1 − 1

3
= 6𝑘 × 43𝑛+1 + 2 × 43𝑛+1 +∑ 4𝑝

3𝑛

𝑝=1

+ 1

𝑊𝑒 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑘𝑛𝑜𝑤∑4𝑝
3𝑛

𝑝=1

= 21∑ 43𝑝+1
𝑛−1

𝑝=0

= 6 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 3∑ 43𝑝+1
𝑛−1

𝑝=0

⇒ 𝑉𝑛 = 6𝑘 × 43𝑛+1 − 43𝑛+1 + 3∑ 43𝑝+1
𝑛

𝑝=0

+ 6 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 1;  1 − 43𝑛+1 = −3∑4𝑝
3𝑛

𝑝=0

= −3 − 3∑4𝑝
3𝑛

𝑝=1

⇒ 𝑉𝑛 = 6𝑘 × 43𝑛+1 + 6 × 2∑43𝑝
𝑛

𝑝=0

+ 6 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

− 6 + 3 − 3∑4𝑝
3𝑛

𝑝=1

 

Finally, 

𝑽𝒏  =  𝟔 [𝟒𝟑𝒏+𝟏𝒌 + 𝟑∑𝟒𝟑𝒑+𝟏
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑
𝒏

𝒑=𝟎

− 𝟐∑𝟒𝒑−𝟏
𝟑𝒏

𝒑=𝟏

− 𝟏] + 𝟑, ∀ 𝒏 ≥ 𝟏; 𝑽𝟎 = 𝟔(𝟒𝒌 + 𝟏)+ 𝟑 ; 

𝑊0 =
41+1(6(3𝑘 + 1) + 1) − 1

3
= 6(16𝑘 + 6) + 1 

then: 

𝑊𝑛 = 6𝑗 + 1 =
43𝑛+2(18𝑘 + 7) − 1

3
= 6𝑘 × 43𝑛+2 + 2 × 43𝑛+2 + ∑ 4𝑝

3𝑛+1

𝑝=0

∑ 4𝑝
3𝑛+1

𝑝=0

= 1 + 4+. . . +43𝑛+1 = 5 + 21 × 42∑ 43𝑝
𝑛−1

𝑝=0

= 5 + 21 × 42∑ 43𝑝−3
𝑛

𝑝=1

= 5 + 42 × 6 × 3∑ 43𝑝−3
𝑛

𝑝=1

+ 3∑43𝑝−1
𝑛

𝑝=1

2 × 43𝑛+2 = 3 × 43(𝑛+1)−1 − 43𝑛+2; 5 − 43𝑛+2 = 1 + 4(1 − 43𝑛+1) = 1 − 4 × 3∑4𝑝
3𝑛

𝑝=0

 

⇒ 𝑊𝑛 = 6𝑘 × 4
3𝑛+2 + 1 − 6 × 2∑4𝑝

3𝑛

𝑝=0

+ 6 × 3∑43𝑝−1
𝑛

𝑝=1

+ 6 × 2∑43𝑝−2
𝑛+1

𝑝=1

 

In conclusion,  

𝑾𝒏  =  𝟔 [𝟒𝟑𝒏+𝟐𝒌 + 𝟑∑𝟒𝟑𝒑−𝟏
𝒏

𝒑=𝟏

+ 𝟐∑𝟒𝟑𝒑−𝟐
𝒏+𝟏

𝒑=𝟏

− 𝟐∑𝟒𝒑
𝟑𝒏

𝒑=𝟎

] + 𝟏, ∀ 𝒏 ≥ 𝟏; 𝑾𝟎 = 𝟔(𝟏𝟔𝒌 + 𝟔) + 𝟏 ; 

𝑋0 =
42+1(18𝑘 + 7) − 1

3
= 6(64𝑘 + 24) + 5  

and it follows: 
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𝑋𝑛 =
43𝑛+3(18𝑘 + 7) − 1

3
= 6𝑘 × 43𝑛+3 + 2 × 43𝑛+3 + ∑ 4𝑝

3𝑛+2

𝑝=0

∑ 4𝑝
3𝑛+2

𝑝=0

= 21∑ 43𝑝
𝑛

𝑝=0

= 21∑ 43𝑝
𝑛

𝑝=1

+ 42 + 5;∑ 43𝑝
𝑛

𝑝=1

= 6 × 3∑43𝑝
𝑛

𝑝=1

+ 3∑43𝑝
𝑛

𝑝=1

; 2 × 43𝑛+3 = 3 × 43(𝑛+1) − 43𝑛+3

⇒ 𝑋𝑛 = 6𝑘 × 43𝑛+3 + 42 + 5 + 6 × 3∑43𝑝
𝑛

𝑝=1

+ 3∑43𝑝
𝑛+1

𝑝=1

− 43𝑛+3

42 − 43𝑛+3 = 42(1 − 43𝑛+1) = −42 × 3∑4𝑝
3𝑛

𝑝=0

⇒ 𝑋𝑛 = 6𝑘 × 43𝑛+3 + 5 + 6 × 3∑43𝑝
𝑛

𝑝=1

+ 3 × 4∑ 43𝑝−1
𝑛+1

𝑝=1

− 6 × 8∑4𝑝
3𝑛

𝑝=0

 

In conclusion, 

𝑿𝒏  =  𝟔 [𝟒𝟑𝒏+𝟑𝒌 + 𝟑∑𝟒𝟑𝒑
𝒏

𝒑=𝟏

+ 𝟐∑𝟒𝟑𝒑−𝟏
𝒏+𝟏

𝒑=𝟏

− 𝟐∑𝟒𝒑+𝟏
𝟑𝒏

𝒑=𝟎

] + 𝟓, ∀ 𝒏 ≥ 𝟏; 𝑿𝟎 = 𝟔(𝟔𝟒𝒌 + 𝟐𝟒)+ 𝟓 ;  

Case 3: a=3k+2 

The initial previous term is 

40+1(6(3𝑘 + 2) + 1) − 1

3
= 6(4𝑘 + 2) + 5 

then: 

𝑉𝑛 = 6𝑗 + 5 =
43𝑛+1(6(3𝑘 + 2) + 1) − 1

3
= 6𝑘 × 43𝑛+1 + 4 × 43𝑛+1 +∑4𝑝

3𝑛

𝑝=0

∑ 4𝑝
3𝑛

𝑝=0

= 1 +∑ 4𝑝
3𝑛

𝑝=1

= 1 + 21∑ 43𝑝+1
𝑛−1

𝑝=0

= 1 + 6 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 3∑ 43𝑝+1
𝑛−1

𝑝=0

; 4 × 43𝑛+1 = 3 × 43𝑛+1 + 43𝑛+1

⇒ 𝑉𝑛 = 6𝑘 × 43𝑛+1 + 6 × 3∑43𝑝+1
𝑛−1

𝑝=0

+ 3∑43𝑝+1
𝑛

𝑝=0

+ 43𝑛+1 + 1; 43𝑛+1 + 1 = 43𝑛+1 − 1 + 2 = 5 + 3∑ 4𝑝
3𝑛

𝑝=1

 

⇒ 𝑽𝒏 = 𝟔[𝟒𝟑𝒏+𝟏𝒌 + 𝟑∑𝟒𝟑𝒑+𝟏
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑
𝒏

𝒑=𝟎

+ 𝟐∑𝟒𝒑−𝟏
𝟑𝒏

𝒑=𝟏

] + 𝟓∀ 𝒏 ≥ 𝟏; 𝑽𝟎 = 𝟔(𝟒𝒌 + 𝟐) + 𝟓 ; 

41+1(6(3𝑘 + 2) + 1) − 1

3
= 6(16𝑘 + 11) + 3  

then it follows: 
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𝑊𝑛 = 6𝑗 + 3 =
43𝑛+2𝑘(18𝑘 + 13) − 1

3
= 6𝑘 × 43𝑛+2 + 4 × 43𝑛+2 + ∑ 4𝑝

3𝑛+1

𝑝=0

∑ 4𝑝
3𝑛+1

𝑝=0

= 1 + 4 + ∑ 4𝑝
3𝑛+1

𝑝=2

= 5 + 21∑43𝑝−1
𝑛

𝑝=1

= 5 + 6 × 3∑ 43𝑝−1
𝑛

𝑝=1

+ 3∑ 43𝑝−1
𝑛

𝑝=1

4 × 43𝑛+2 + 5 = 6 + 3 × 43𝑛+2 + 43𝑛+2 − 1 = 6 + 3 × 43𝑛+2 + 3∑ 4𝑝
3𝑛+1

𝑝=0

= 6 + 3 × 43(𝑛+1)−1 + 3∑ 4𝑝
3𝑛+1

𝑝=1

+ 3

 

⇒ 𝑾𝒏  =  𝟔 [𝟒
𝟑𝒏+𝟐𝒌 + 𝟑∑𝟒𝟑𝒑−𝟏

𝒏

𝒑=𝟏

+ 𝟐∑𝟒𝟑𝒑−𝟐
𝒏+𝟏

𝒑=𝟏

+ 𝟐 ∑ 𝟒𝒑−𝟏
𝟑𝒏+𝟏

𝒑=𝟏

+ 𝟏] + 𝟑 ∀ 𝒏 ≥ 𝟏; 𝑾𝟎 = 𝟔(𝟏𝟔𝒌 + 𝟏𝟏) + 𝟑 ; 

42+1(6(3𝑘 + 2) + 1)− 1

3
= 6(64𝑘 + 46) + 1  

and we have: 

𝑋𝑛 = 6𝑗 + 1 =
43𝑛+3(18𝑘 + 13) − 1

3
= 6𝑘 × 43𝑛+3 + 4 × 43𝑛+3 + ∑ 4𝑝 ; 

3𝑛+2

𝑝=0

 

∑ 4𝑝
3𝑛+2

𝑝=0

= 21∑43𝑝
𝑛

𝑝=0

= 6 × 3∑43𝑝
𝑛

𝑝=1

+ 3∑ 43𝑝
𝑛

𝑝=1

+ 1 + 4 + 42 

4 × 43𝑛+3 = 3 × 43(𝑛+1) + 43𝑛+3 

1 + 4 + 42 + 43𝑛+3 = 1 + 4 + 42(43𝑛+1 − 1 + 2) = 1 + 4 + 42 × 3∑4𝑝
3𝑛

𝑝=0

+ 2 × 42 

= 1 + 62 + 6 × 2∑4𝑝+1
3𝑛

𝑝=0

 

⇒ 𝑿𝒏  =  𝟔 [𝟒𝟑𝒏+𝟑𝒌 + 𝟑∑𝟒𝟑𝒑
𝒏

𝒑=𝟏

+ 𝟐∑𝟒𝟑𝒑−𝟏
𝒏+𝟏

𝒑=𝟏

+ 𝟐∑𝟒𝒑+𝟏
𝟑𝒏

𝒑=𝟎

+ 𝟔] + 𝟏 ∀ 𝒏 ≥ 𝟏; 𝑿𝟎 = 𝟔(𝟔𝟒𝒌 + 𝟒𝟔) + 𝟏 . 

2.1.4 Previous Terms of 𝑈𝑖+1 = 6𝑎 + 5 

The general term is 

𝑈𝑖,𝑝 =
2 × 4𝑝(6𝑎 + 5) − 1

3
, ∀𝑝 ∈ ℕ . 

Case 1: a=3k 

The initial previous term is 

2 × 40(6(3𝑘)+ 5)− 1

3
= 6(2𝑘)+ 3 . 

So: 
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𝑉𝑛 = 6𝑗 + 3 =
2 × 43𝑛(6(3𝑘)+ 5) − 1

3
= 12𝑘 × 43𝑛 +

9 × 43𝑛 + 43𝑛 − 1

3
= 12𝑘 × 43𝑛 + 3 × 43𝑛 + ∑ 4𝑝

3𝑛−1

𝑝=0

∑ 4𝑝
3𝑛−1

𝑝=0

= 21∑ 43𝑝
𝑛−1

𝑝=0

= 6 × 3∑ 43𝑝
𝑛−1

𝑝=0

+ 3∑43𝑝
𝑛−1

𝑝=1

+ 3

 

⇒ 𝑽𝒏  =  𝟔 [𝟐 × 𝟒
𝟑𝒏𝒌 + 𝟑∑𝟒𝟑𝒑

𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑−𝟏
𝒏

𝒑=𝟏

] + 𝟑 ∀ 𝒏 ≥ 𝟏; 𝑽𝟎 = 𝟔(𝟐𝒌) + 𝟑 ; 

The second previous term is 

2 × 41(18𝑘 + 5) − 1

3
= 6(8𝑘 + 2) + 1  

then 

𝑊𝑛 = 6𝑗 + 1 =
2 × 43𝑛+1(18𝑘 + 5) − 1

3
= 12𝑘 × 43𝑛+1 + 3 × 43𝑛+1 +∑ 4𝑝

3𝑛

𝑝=0

 ; 

∑4𝑝
3𝑛

𝑝=0

= 1 +∑4𝑝
3𝑛

𝑝=1

= 1 + 21∑43𝑝+1
𝑛−1

𝑝=0

= 16 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 3∑ 43𝑝+1
𝑛−1

𝑝=0

⇒ 𝑊𝑛 = 12𝑘 × 43𝑛+1 + 1 + 6 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 3 × 4∑43𝑝
𝑛−1

𝑝=0

+ 3 × 4 × 43𝑛

 

Finally, 

𝑾𝒏  =  𝟔 [𝟐 × 𝟒𝟑𝒏+𝟏𝒌 + 𝟑∑𝟒𝟑𝒑+𝟏
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑
𝒏

𝒑=𝟎

] + 𝟏 ∀ 𝒏 ≥ 𝟏; 𝑾𝟎 = 𝟔(𝟖𝒌 + 𝟐) + 𝟏 ; 

The third previous term is 

2 × 42(18𝑘 + 5) − 1

3
= 6(32𝑘 + 8) + 5 

and it implies 

𝑋𝑛 = 6𝑗 + 5 =
43𝑛+2(18𝑘 + 5) − 1

3
= 12𝑘 × 43𝑛+2 + 3 × 43𝑛+2 + ∑ 4𝑝

3𝑛+1

𝑝=0

∑ 4𝑝
3𝑛+1

𝑝=0

= 1 + 4 + ∑ 4𝑝
3𝑛+1

𝑝=2

= 5 + 21∑ 43𝑝+2
𝑛−1

𝑝=0

⇒ 𝑋𝑛 = 12𝑘 × 43𝑛+2 + 5 + 6 × 3∑43𝑝+2
𝑛−1

𝑝=0

+ 3 × 4∑ 43𝑝+1
𝑛

𝑝=0

 

⇒ 𝑿𝒏  =  𝟔 [𝟐 × 𝟒
𝟑𝒏+𝟐𝒌 + 𝟑∑𝟒𝟑𝒑+𝟐

𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑+𝟏
𝒏

𝒑=𝟎

] + 𝟓 ∀ 𝒏 ≥ 𝟏; 𝑿𝟎 = 𝟔(𝟑𝟐𝒌 + 𝟖) + 𝟓 ; 

Case 2: a=3k+1 

The initial previous term is 

 
2 × 40(6(3𝑘 + 1) + 5) − 1

3
= 6(2𝑘 + 1) + 1 
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then 

𝑉𝑛 =
2 × 43𝑛(6(3𝑘 + 1) + 5)− 1

3
= 12𝑘 × 43𝑛 + 7 × 43𝑛 + ∑ 4𝑝

3𝑛−1

𝑝=0

, 𝑛 ≥ 1 

∑ 4𝑝
3𝑛−1

𝑝=0

= 21∑ 43𝑝
𝑛−1

𝑝=0

; 7 × 43𝑛 = 4 × 43𝑛 + 3 × 43𝑛

⇒ 𝑉𝑛 = 12𝑘 × 43𝑛 + 6 × 3∑ 43𝑝
𝑛−1

𝑝=0

+ 3∑ 43𝑝
𝑛

𝑝=1

+ 4 × 43𝑛 + 3;

4 × 43𝑛 + 3 = 43𝑛+1 − 1 + 4 = 4 + 3∑ 4𝑝
3𝑛

𝑝=0

= 4 + 3 + 3∑ 4𝑝
3𝑛

𝑝=1

= 6 + 1 + 3 × 4∑4𝑝−1
3𝑛

𝑝=1

 

⇒ 𝑽𝒏  =  𝟔 [𝟐 × 𝟒
𝟑𝒏𝒌 + 𝟑∑𝟒𝟑𝒑

𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑−𝟏
𝒏

𝒑=𝟏

+ 𝟐∑𝟒𝒑−𝟏
𝟑𝒏

𝒑=𝟏

+ 𝟏] + 𝟏 ∀ 𝒏 ≥ 𝟏; 𝑽𝟎 = 𝟔(𝟐𝒌 + 𝟏) + 𝟏 ; 

The second previous term: 

2 × 41(18𝑘 + 11) − 1

3
= 6(8𝑘 + 4) + 5 

then  

𝑊𝑛 =
2 × 43𝑛+1(18𝑘 + 11) − 1

3
= 12𝑘 × 43𝑛+1 + 7 × 43𝑛+1 +∑4𝑝

3𝑛

𝑝=0

                     = 12𝑘 × 43𝑛+1 + 7 × 43𝑛+1 + 1 + 21∑ 43𝑝+1    ;                  

𝑛−1

𝑝=0

                          

7 × 43𝑛+1 = 43𝑛+2 + 3 × 43𝑛+1

 ⇒ 𝑊𝑛 = 12𝑘 × 43𝑛+1 + 43𝑛+2 + 1 + 6 × 3∑43𝑝+1
𝑛−1

𝑝=0

+ 3∑43𝑝+1
𝑛

𝑝=1

+ 12 ;    

43𝑛+2 + 1 + 12 = 43𝑛+2 − 1 + 9 + 5 = 3∑ 4𝑝
3𝑛+1

𝑝=1

+ 12 + 5

 

⇒ 𝑾𝒏  =  𝟔 [𝟐 × 𝟒
𝟑𝒏+𝟏𝒌 + 𝟑 ×∑𝟒𝟑𝒑+𝟏

𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑
𝒏

𝒑=𝟏

+ 𝟐 ∑ 𝟒𝒑−𝟏
𝟑𝒏+𝟏

𝒑=𝟏

+ 𝟐] + 𝟓 ∀ 𝒏 ≥ 𝟏;𝑾𝟎 = 𝟔(𝟖𝒌 + 𝟒) + 𝟓 ; 

The third previous term is 

2 × 42(18𝑘 + 11) − 1

3
= 6(32𝑘 + 19) + 3 

then 

𝑋𝑛 =
2 × 43𝑛+2(18𝑘 + 11) − 1

3
= 12𝑘 × 43𝑛+2 + 7 × 43𝑛+2 + ∑ 4𝑝

3𝑛+1

𝑝=0
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∑ 4𝑝
3𝑛+1

𝑝=0

= 5 + 21∑43𝑝+2
𝑛−1

𝑝=0

= ,7 × 43𝑛+2 = 43𝑛+3 + 3 × 43𝑛+2

⇒ 𝑋𝑛 = 12𝑘 × 43𝑛+2 + 43𝑛+3 − 1 + 6 + 6 × 3∑ 43𝑝+2
𝑛−1

𝑝=0

+ 3∑ 43𝑝+2
𝑛

𝑝=0

𝑋𝑛 = 12𝑘 × 43𝑛+2 + 6 × 3∑ 43𝑝+2
𝑛−1

𝑝=0

+ 6 × 2∑ 43𝑝+1
𝑛

𝑝=0

+ 3∑ 4𝑝
3𝑛+2

𝑝=1

+ 3 + 6

 

In the end, 

𝑿𝒏  =  𝟔 [𝟐 × 𝟒𝟑𝒏+𝟐𝒌 + 𝟑∑𝟒𝟑𝒑+𝟐
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑+𝟏
𝒏

𝒑=𝟎

+ 𝟐 ∑ 𝟒𝒑−𝟏
𝟑𝒏+𝟐

𝒑=𝟏

+ 𝟏] + 𝟑 ∀ 𝒏 ≥ 𝟏; 𝑿𝟎 = 𝟔(𝟑𝟐𝒌 + 𝟏𝟗)+ 𝟑 ; 

Case 3: a=3k+2 

The initial previous term is 

2 × 40(6(3𝑘 + 2) + 5) − 1

3
= 6(2𝑘 + 1) + 5 ; 

We then have 

𝑉𝑛 = 6𝑗 + 5 =
2 × 43𝑛(6(3𝑘 + 2) + 5) − 1

3
= 12𝑘 × 43𝑛 + 11 × 43𝑛 + ∑ 4𝑝

3𝑛−1

𝑝=0

;∑ 4𝑝
3𝑛−1

𝑝=0

= 21∑ 43𝑝
𝑛−1

𝑝=0

𝑉𝑛 = 12𝑘 × 43𝑛 + 8 × 43𝑛 + 6 × 3∑ 43𝑝
𝑛−1

𝑝=0

+ 3∑ 43𝑝
𝑛

𝑝=0

= 12𝑘 × 43𝑛 + 2(43𝑛+1 − 1) + 5 + 6 × 3∑43𝑝
𝑛−1

𝑝=0

+ 3∑43𝑝
𝑛

𝑝=1

 

⇒ 𝑽𝒏  =  𝟔 [𝟐 × 𝟒𝟑𝒏𝒌 + 𝟑∑𝟒𝟑𝒑
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑−𝟏
𝒏

𝒑=𝟏

+∑𝟒𝒑
𝟑𝒏

𝒑=𝟎

] + 𝟓 ∀ 𝒏 ≥ 𝟏; 𝑽𝟎 = 𝟔(𝟐𝒌 + 𝟏) + 𝟓 ; 

The second previous term is 

2 × 41(18𝑘 + 17) − 1

3
= 6(8𝑘 + 7) + 3 

then  

𝑊𝑛 = 6𝑗 + 3 =
2 × 43𝑛+1(18𝑘 + 17) − 1

3
= 12𝑘 × 43𝑛+1 + 11 × 43𝑛+1 +∑4𝑝

3𝑛

𝑝=0

∑4𝑝
3𝑛

𝑝=0

= 1 + 21∑43𝑝+1
𝑛−1

𝑝=0

⇒ 𝑊𝑛 = 12𝑘 × 43𝑛+1 + 2 × 43𝑛+2 + 3 − 2 + 6 × 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 3∑ 43𝑝+1
𝑛

𝑝=0

 

Finally 

𝑾𝒏  =  𝟔 [𝟐 × 𝟒𝟑𝒏+𝟏𝒌 + 𝟑∑𝟒𝟑𝒑+𝟏
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑
𝒏

𝒑=𝟎

+ ∑ 𝟒𝒑
𝟑𝒏+𝟏

𝒑=𝟎

] + 𝟑 ∀ 𝒏 ≥ 𝟏; 𝑾𝟎 = 𝟔(𝟖𝒌 + 𝟕)+ 𝟑 ; 

The third previous term is  

2 × 42(18𝑘 + 17) − 1

3
= 6(32𝑘 + 30) + 1 ; 
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It follows 

𝑋𝑛 = 6𝑗 + 1 = 12𝑘 × 43𝑛+2 + 11 × 43𝑛+2 + ∑ 4𝑝
3𝑛+1

𝑝=0

= 12𝑘 × 43𝑛+2 + 11 × 43𝑛+2 + 5 + 21∑43𝑝+2
𝑛−1

𝑝=0

𝑋𝑛 = 12𝑘 × 43𝑛+2 + 2 × 43𝑛+3 − 2 + 1 + 6 + 6 × 3∑ 43𝑝+2
𝑛−1

𝑝=0

+ 3∑ 43𝑝+2
𝑛

𝑝=0

 

In conclusion,  

𝑿𝒏  =  𝟔 [𝟐 × 𝟒𝟑𝒏+𝟐𝒌 + 𝟑∑𝟒𝟑𝒑+𝟐
𝒏−𝟏

𝒑=𝟎

+ 𝟐∑𝟒𝟑𝒑+𝟏
𝒏

𝒑=𝟎

+ ∑ 𝟒𝒑
𝟑𝒏+𝟐

𝒑=𝟎

+ 𝟏] + 𝟏 ∀ 𝒏 ≥ 𝟏; 𝑿𝟎 = 𝟔(𝟑𝟐𝒌 + 𝟑𝟎)+ 𝟏 . 

Let's summarize: 

𝑷𝑹𝑬𝑽𝑰𝑶𝑼𝑺 𝑻𝑬𝑹𝑴𝑺 𝑶𝑭 𝑼𝒊+𝟏  =  𝟔𝒂 + 𝟏:

𝑎 = 3𝒌

{
 
 
 
 

 
 
 
 

𝑉𝑛 = 6 [43𝑛+1𝒌 + 14∑43𝑝
𝑛−1

𝑝=0

] + 1 ∀ 𝑛 ≥ 1; 𝑉0 = 6(4𝒌)+ 1

𝑊𝑛 = 6 [43𝑛+2𝒌 + 14∑43𝑝+1
𝑛−1

𝑝=0

] + 5 ∀ 𝑛 ≥ 1;𝑊0 = 6(16𝒌)+ 5

𝑋𝑛 = 6 [43𝑛+3𝒌 + 3∑43𝑝
𝑛

𝑝=0

+ 2∑43𝑝−1
𝑛

𝑝=1

] + 3 ∀ 𝑛 ≥ 1; 𝑋0 = 6(64𝒌 + 3) + 3

𝑎 = 3𝒌 + 1

{
 
 
 
 

 
 
 
 
𝑉𝑛  =  6 [43𝑛+1𝒌 + 3∑43𝑝+1

𝑛−1

𝑝=0

+ 2∑43𝑝
𝑛

𝑝=0

− 2∑4𝑝−1
3𝑛

𝑝=1

− 1] + 3 ∀ 𝑛 ≥ 1; 𝑉0 = 6(4𝒌 + 1) + 3

𝑊𝑛  =  6 [43𝑛+2𝒌 + 3∑ 43𝑝−1
𝑛

𝑝=1

+ 2∑ 43𝑝−2
𝑛+1

𝑝=1

− 2∑ 4𝑝
3𝑛

𝑝=0

] + 1 ∀ 𝑛 ≥ 1;𝑊0 = 6(16𝒌 + 6) + 1

𝑋𝑛  =  6 [43𝑛+3𝒌 + 3∑ 43𝑝
𝑛

𝑝=1

+ 2∑ 43𝑝−1
𝑛+1

𝑝=1

− 2∑ 4𝑝+1
3𝑛

𝑝=0

] + 5 ∀ 𝑛 ≥ 1; 𝑋0 = 6(64𝒌 + 24) + 5

𝑎 = 3𝒌 + 2

{
 
 
 
 

 
 
 
 

𝑉𝑛 = 6 [43𝑛+1𝒌 + 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 2∑43𝑝
𝑛

𝑝=0

+ 2∑4𝑝−1
3𝑛

𝑝=1

] + 5 ∀ 𝑛 ≥ 1; 𝑉0 = 6(4𝒌 + 2) + 5

𝑊𝑛  =  6 [43𝑛+2𝒌 + 3∑43𝑝−1
𝑛

𝑝=1

+ 2∑43𝑝−2
𝑛+1

𝑝=1

+ 2∑ 4𝑝−1
3𝑛+1

𝑝=1

+ 1] + 3 ∀ 𝑛 ≥ 1;𝑊0 = 6(16𝒌 + 11) + 3

𝑋𝑛  =  6 [43𝑛+3𝒌 + 3∑ 43𝑝
𝑛

𝑝=1

+ 2∑43𝑝−1
𝑛+1

𝑝=1

+ 2∑ 4𝑝+1
3𝑛

𝑝=0

+ 6] + 1 ∀ 𝑛 ≥ 1; 𝑋0 = 6(64𝒌 + 46) + 1
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𝑷𝑹𝑬𝑽𝑰𝑶𝑼𝑺 𝑻𝑬𝑹𝑴𝑺 𝑶𝑭 𝑼𝒊+𝟏  =  𝟔𝒂 + 𝟓:

𝑎 = 3𝒌

{
 
 
 
 

 
 
 
 

𝑉𝑛  =  6 [2 × 43𝑛𝒌 + 3∑43𝑝
𝑛−1

𝑝=0

+ 2∑43𝑝−1
𝑛

𝑝=1

] + 3 ∀ 𝑛 ≥ 1; 𝑉0 = 6(2𝒌)+ 3

𝑊𝑛  =  6 [2 × 43𝑛+1𝒌 + 3∑ 43𝑝+1
𝑛−1

𝑝=0

+ 2∑ 43𝑝
𝑛

𝑝=0

] + 1 ∀ 𝑛 ≥ 1;𝑊0 = 6(8𝒌 + 2)+ 1

𝑋𝑛  =  6 [2 × 43𝑛+2𝒌 + 3∑ 43𝑝+2
𝑛−1

𝑝=0

+ 2∑ 43𝑝+1
𝑛

𝑝=0

] + 5 ∀ 𝑛 ≥ 1; 𝑋0 = 6(32𝒌 + 8) + 5

𝑎 = 3𝒌 + 1

{
 
 
 
 

 
 
 
 

𝑉𝑛  =  6 [2 × 43𝑛𝒌 + 3∑43𝑝
𝑛−1

𝑝=0

+ 2∑43𝑝−1
𝑛

𝑝=1

+ 2∑4𝑝−1
3𝑛

𝑝=1

+ 1] + 1 ∀ 𝑛 ≥ 1; 𝑉0 = 6(2𝒌 + 1) + 1

𝑊𝑛  =  6 [2 × 43𝑛+1𝒌 + 3 ×∑43𝑝+1
𝑛−1

𝑝=0

+ 2∑43𝑝
𝑛

𝑝=1

+ 2∑ 4𝑝−1
3𝑛+1

𝑝=1

+ 2] + 5 ∀ 𝑛 ≥ 1;𝑊0 = 6(8𝒌 + 4) + 5

𝑋𝑛  =  6 [2 × 43𝑛+2𝒌 + 3∑43𝑝+2
𝑛−1

𝑝=0

+ 2∑43𝑝+1
𝑛

𝑝=0

+ 2∑ 4𝑝−1
3𝑛+2

𝑝=1

+ 1] + 3 ∀ 𝑛 ≥ 1; 𝑋0 = 6(32𝒌 + 19) + 3

𝑎 = 3𝒌 + 2

{
 
 
 
 

 
 
 
 

𝑉𝑛  =  6 [2 × 43𝑛𝒌 + 3∑43𝑝
𝑛−1

𝑝=0

+ 2∑43𝑝−1
𝑛

𝑝=1

+∑ 4𝑝
3𝑛

𝑝=0

] + 5 ∀ 𝑛 ≥ 1; 𝑉0 = 6(2𝒌 + 1) + 5

𝑊𝑛  =  6 [2 × 43𝑛+1𝒌 + 3∑43𝑝+1
𝑛−1

𝑝=0

+ 2∑43𝑝
𝑛

𝑝=0

+ ∑ 4𝑝
3𝑛+1

𝑝=0

] + 3 ∀ 𝑛 ≥ 1;𝑊0 = 6(8𝒌 + 7) + 3

𝑋𝑛  =  6 [2 × 43𝑛+2𝒌 + 3∑ 43𝑝+2
𝑛−1

𝑝=0

+ 2∑ 43𝑝+1
𝑛

𝑝=0

+ ∑ 4𝑝
3𝑛+2

𝑝=0

+ 1] + 1 ∀ 𝑛 ≥ 1; 𝑋0 = 6(32𝒌 + 30) + 1

 

The relations above, which we call “general relations” tell, for any random term 𝑈𝑖+1 in a Syracuse sequence, the 

expressions of all its previous terms with rank i, for all possible values of number a: 3k, 3k+1 or 3k+2, k natural number. 

In reverse, any random term 𝑈𝑖  is necessarily among 𝑉𝑛, 𝑊𝑛 or 𝑋𝑛, so to determine its next term 𝑈𝑖+1 using the same 

relations. In fact, let any odd natural number q; it can be written either 6m+1, 6m+3 or 6m+5, m natural number. Its 

next term in a Syracuse sequence is necessarily written 6𝑎 + 1 or 6𝑎 + 5, a natural number. Since the previous terms 

are formulated exhaustively, q is either 𝑉𝑛, 𝑊𝑛or 𝑋𝑛,𝑛 ∈ ℕ. 

2.2 Onion-Factorization 

2.2.1 Definition  

Let 𝐶1 a natural number. 

We call onion-factorization of 𝐶1 in ℚ, set of rational numbers, a development of 𝐶1 into an arbitrary given 𝑛 ∈
ℕ onion factors 𝐶2, . . . , 𝐶𝑛+1, all natural numbers, n non-zero, such that 𝐶1 = 𝐴1𝐶2 + 𝐵1, 𝐶2 = 𝐴2𝐶3 + 𝐵2 , … , 𝐶𝑛 =
𝐴𝑛𝐶𝑛+1 + 𝐵𝑛, 𝐴𝑖 ∈ ℚ, 𝐵𝑖 ∈ ℚ, 𝑖 = 1,2, … , 𝑛; 𝐶𝑖 ∈ ℕ, 𝑖 = 1,… , 𝑛 + 1 and: 

                    𝐶1  =  𝐴1(𝐴2(… (𝐴𝑛(𝐶𝑛+1) + 𝐵𝑛) … ) + 𝐵2) + 𝐵1 

About consecutive onion factors 𝐶𝑖  and 𝐶𝑖+1, we can look at them as respectively the (integer) dividend and the (integer) 

quotient of a division in which, the divisor 𝐴𝑖  and the remainder 𝐵𝑖 are rationals, 𝑖 = 1, … , 𝑛. 

Example:  

We look for an onion-factorization in ℚ of 33. 
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We have 

 33 = 6 × 5 + 3;  5 = 4 × 1 + 1;  1 =
4

3
× 1 −

1

3
;  1 =

2

3
× 1 +

1

3
 

The first onion factor is 33, the second 5, the third 1, the fourth 1 and the fifth 1. We put them together and it follows: 

 33 =  6 (4 (
4

3
(
2

3
(1) +

1

3
) −

1

3
) + 1) + 3 ; 

We also have 

 33 = 2 × 16 + 1;  16 = 2 × 8;  8 = 2 × 4;  4 = 2 × 2;  2 = 2 × 1;  1 = 2 × 0 + 1 

The onion factors here are in order 33, 16, 8, 4, 2, 1 and 0. Then, another onion-factorization of 33 is:  

33 =  2(2(2(2(2(2(0) + 1))))) + 1 . 

Remark: An onion-factorization in ℕ is an onion-factorization in ℚ. 

2.2.2 Theorem 

Let's consider 𝑈0 the initial term of a Syracuse sequence (𝑈𝑛)𝑛∈ℕ. We define 𝑈0 as a previous term. Then it exists an 

onion-factorization in ℚ of the initial term such that, the more we extend the sequence by calculating new terms, the 

more onion factors we can append. Each of the appended onion factors is a value of k, found in the expression of any 

previous term and its next one. 

Proof: 

The general relations imply that, for any term  6𝑗 + 1, 6𝑗 + 3, 6𝑗 + 5 in a Syracuse sequence,  𝑗 is always equal 

to 𝐴𝑘 + 𝐵, 𝐴 non-zero and 𝐵 natural numbers. 

Since 𝑈0 is a previous term, the initial term is either 𝑉𝑛, 𝑊𝑛or 𝑋𝑛,𝑛 ∈ ℕ. The 2nd term is naturally a next term, then is 

either 6𝑎 + 1 or 6𝑎 + 5, 𝑎 ∈ ℕ, but is also a previous term to the third one. Except the initial term, every term in the 

Syracuse sequence is both a previous and a next term. 

∀ 𝑛 ≥ 1, 𝑈𝑛 is not expressed the same whether we consider it as a previous term or a next term. In fact, for any 6𝑎 +
1or 6𝑎 + 5 as a next term,𝑎 is either 3𝑘 , 3𝑘 + 1 or 3𝑘 + 2; but as a previous term, 𝑎 is expressed differently, and its 

expression tells straight on its parity. For instance we have for 𝑎 odd: 6(2𝑘 + 1) + 1 and 6(2𝑘 + 1) + 5.  

Let the initial term 𝑈0  =  6(𝐴0𝑘0 + 𝐵0) + 3 (one can replace 3 by 1 or 5, it changes nothing on what follows). As the 

general relations show it, like 𝑈0, the expression of the next term will contain 𝑘0. If 𝑈1 = 6𝑗1 + 1 or  

6𝑗1 + 5, we have 𝑗1  =  𝐴1𝑘0 + 𝐵1. With 𝑈1 as a previous term, 𝑗1 becomes 𝐴2𝑘1 + 𝐵2, that is, 

 𝐴1𝑘0 + 𝐵1  =  𝐴2𝑘1 + 𝐵2. We then have 𝑘0  =  
𝐴2

𝐴1
𝑘1 +

𝐵2−𝐵1

𝐴1
 and the initial term becomes 

 𝑈0  =  6 (𝐴0 (
𝐴2

𝐴1
(𝑘1)+

𝐵2−𝐵1

𝐴1
) + 𝐵0) + 3. If we move to the third term 𝑈2, as a next term its expression 

contains 𝑘1, and if 𝑈2  =  6𝑗
2
+ 1 or 6𝑗

2
+ 5, we have 𝑗2  = 𝐴3𝑘1 + 𝐵3; as a previous term,  𝑗

2
 turns  

𝐴4𝑘2 + 𝐵4 and 𝐴3𝑘1 + 𝐵3  =  𝐴4𝑘2 + 𝐵4. It follows 𝑘1  =  
𝐴4

𝐴3
𝑘2 +

𝐵4−𝐵3

𝐴3
 and the initial term becomes 

      𝑈0  =  6 (𝐴0 (
𝐴2
𝐴1
(
𝐴4
𝐴3
(𝑘2) +

𝐵4 − 𝐵3
𝐴3

) +
𝐵2 − 𝐵1
𝐴1

) + 𝐵0) + 3 . 

In general, let’s consider terms from 𝑈0 to 𝑈𝑛, 𝑛 ∈ ℕ, 𝑛 ≥ 3. We represent the move from a previous term to the next 

term by a right arrow. For a purpose of simplification, we just represent each term 6𝑗 + 1,6𝑗 + 3 or 6𝑗 + 5 by 𝑗 = 𝐴𝑘 +
𝐵, and it goes: 

                   𝐴0𝑘0 + 𝐵0  →  (𝐴1𝑘0 + 𝐵1 = 𝐴2𝑘1 + 𝐵2)  →  (𝐴3𝑘1 + 𝐵3 = 𝐴4𝑘2 + 𝐵2)  →  𝐴5𝑘2 + 𝐵5  …
(𝐴2𝑛−1𝑘𝑛−1 + 𝐵2𝑛−1 = 𝐴2𝑛𝑘𝑛 + 𝐵2𝑛)

          (12)  

𝐴𝑖 ∈ ℕ, 𝐵𝑖 ∈ ℕ, 𝑖 = 0, … ,2𝑛; 𝑘𝑖 ∈ ℕ, 𝑖 = 0,… , 𝑛; 𝑛 ∈ ℕ, 𝑛 ≥ 3. 

This representation displays 𝑛 + 1 terms in a Syracuse sequence. By exploiting any equality in brackets, 

linking 𝑘𝑖 and 𝑘𝑖+1, 𝑖 = 0,1, … , 𝑛 − 1 in (12), we have: 
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       𝑘0 =
𝐴2

𝐴1
𝑘1 +

(𝐵2 − 𝐵1)

𝐴1
; 𝑘1 =

𝐴4

𝐴3
𝑘2 +

(𝐵4 − 𝐵3)

𝐴3
; … ; 𝑘𝑛−1 =

𝐴2𝑛

𝐴2𝑛−1
𝑘𝑛 +

(𝐵2𝑛 − 𝐵2𝑛−1)

𝐴2𝑛−1
 .                     (𝟏𝟑)  

From (13), we can link directly 𝑘0and 𝑘𝑛with the following: 

                                       𝑘0  =  
𝐴2

𝐴1
(
𝐴4

𝐴3
(⋯ (

𝐴2𝑛

𝐴2𝑛−1
(𝑘𝑛)+

𝐵2𝑛 − 𝐵2𝑛−1

𝐴2𝑛−1
)⋯) +

𝐵4 − 𝐵3

𝐴3
) +

𝐵2 − 𝐵1

𝐴1
 . 

Finally, 

𝑈0  =  6 (𝐴0 (
𝐴2

𝐴1
(
𝐴4

𝐴3
(⋯ (

𝐴2𝑛

𝐴2𝑛−1
(𝑘𝑛) +

𝐵2𝑛 − 𝐵2𝑛−1

𝐴2𝑛−1
)⋯)+

𝐵4 − 𝐵3

𝐴3
) +

𝐵2 − 𝐵1

𝐴1
) + 𝐵0) + 3 . 

𝐴𝑖, 𝑖 𝑒𝑣𝑒𝑛 corresponds to previous terms, then it is a power of 2; 𝐴𝑖, 𝑖𝑜𝑑𝑑 corresponds to next terms, then equals 3. So 

𝐴𝑖(𝑖𝑒𝑣𝑒𝑛)

𝐴𝑖(𝑖𝑜𝑑𝑑)
 is rational.𝑈0 is an onion-factorization in ℚ.  

2.2.3 Corollary  

Let a convergent Syracuse sequence  (𝑈𝑛)𝑛∈ℕ , with  𝑈0 = 6(𝐴0𝑘0 + 𝐵0) + 3; 𝐴0, 𝐵0, 𝑘0 ∈ ℕ . Then the sequence 

converges to 1, and the initial term has an onion-factorization in ℚ such that, while we extend the sequence infinitely, 

we can append only a finite number of onion factors, the last onion factor corresponding to the limit of the sequence. 

The initial term is as follows: 

           𝑈0  =  6 (𝐴0 (
𝐴2
𝐴1
(
𝐴4
𝐴3
(⋯ (

𝐴2𝑛
𝐴2𝑛−1

(⋯ (0)⋯) +
𝐵2𝑛 − 𝐵2𝑛−1
𝐴2𝑛−1

)⋯) +
𝐵4 − 𝐵3
𝐴3

) +
𝐵2 − 𝐵1
𝐴1

) + 𝐵0) + 3 ; 

(𝑛 ≥ 3), 𝐴𝑖  𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜, 𝐴𝑖 ∈ ℕ, 𝐵𝑖 ∈ ℕ, 𝑖 ∈ ℕ. 

Proof: 

We got a convergent Syracuse sequence. Since we are dealing with a sequence of positive integers, it necessarily is 

eventually constant. This means, it exists a rank 𝑝 ∈ ℕ from which 𝑈𝑝 = 𝑈𝑝+1 = ⋯ =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. A closer look at the 

general relations, and we notice that this is possible only as soon as the previous term is 6(4𝑘) + 1 and its next 

term 6(3𝑘) + 1, with 𝑘 =  0. Then the sequence converges to constant = 1. 

Consequently, and since we can build an onion-factorization of the initial term, with as many onion factors as we want, 

we have from the rank 𝑝 on, an infinite number of onion factors, all equal to 0 while we extend the sequence infinitely. 

Next term 6(3(0)) + 1 is equal to previous term 6(4(0)) + 1, then  

3 × 0 = 4 × 0 ⇔ 0 =
4

3
(0). It follows: 

0 =
4

3
(
4

3
(
4

3
( ⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

4

3
(0) ⋯⏟

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

))) 

This implies that, in the onion-factorization of 𝑈0, we can have only a finite number of onion factors, which equal 0 and 

are the last onion factors, including the 0 we express above as an onion-factorization, and of course a finite number of 

non-zero onion factors. 

Thanks to the theorem, The onion-factorization of 𝑈0 while we extend the sequence infinitely, can be expressed as 

follows: 

                                           𝑈0  =  6 (𝐴0 (
𝐴2

𝐴1
(
𝐴4

𝐴3
(⋯ (0)⋯) +

𝐵4 − 𝐵3

𝐴3
) +

𝐵2 − 𝐵1

𝐴1
) + 𝐵0) + 3 . 

Remark: The onion-factorization of 0 mentioned above implies that, the calculus is made from the last onion factor to 

the first one. Doing so is right since each onion factor 𝑘𝑖 is known if and only if we know 𝑘𝑖+1, 𝑖 ∈ ℕ. Operating in the 

opposite sense leads to an indeterminate result (∞ × 0).  

3. Results 

3.1 Hypothesis: The Syracuse Sequence Has No Limit and Is Eventually Periodic 

Let (𝑈𝑛)𝑛∈ℕ, 𝑈0 its initial term. Let 𝑁 ≥ 2 the number of terms in the cycle. Since the sequence is eventually periodic, 

it exists a previous term 𝑈𝑛0 = 6𝑗𝑛0 + 1 or 𝑈𝑛0 = 6𝑗𝑛0 + 5 or 𝑈𝑛0 = 6𝑗𝑛0 + 3, 𝑗𝑛0 = 𝐴𝑛0𝑘𝑛0 +𝐵𝑛0 , 𝑛0 ∈ ℕ, from which 𝑁 terms are 

repeated infinitely, one after the other. In the onion-factorization of 𝑈𝑛0 , let the onion factors follow the progression of 
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the sequence as we did in the corollary, that is, when we extend the sequence infinitely. The following representation is 

the same one we use in the proof of the theorem, and we have, when we make in the cycle a single turn from 𝑈𝑛0to 𝑈𝑛0:  

𝑨𝒏𝟎𝒌𝒏𝟎 + 𝑩𝒏𝟎  →  (𝐴𝑛0+1𝑘𝑛0 + 𝐵𝑛0+1 = 𝐴𝑛0+2𝑘𝑛0+1 + 𝐵𝑛0+2)  →  𝐴𝑛0+3𝑘𝑛0+1 + 𝐵𝑛0+3  …

(𝐴𝑛0+2𝑁−3𝑘𝑛0+𝑁−2 + 𝐵𝑛0+2𝑁−3 = 𝐴𝑛0+2𝑁−2𝑘𝑛0+𝑁−1 + 𝐵𝑛0+2𝑁−2)  →  (𝐴𝑛0+2𝑁−1𝑘𝑛0+𝑁−1 + 𝐵𝑛0+2𝑁−1 = 𝑨𝒏𝟎𝒌𝒏𝟎 + 𝑩𝒏𝟎)
 

The onion-factorization in ℚ of 𝑗𝑛0 , while we extend the sequence infinitely, goes: 

𝑗𝑛0 = 𝐴𝑛0 (
𝐴𝑛0+2

𝐴𝑛0+1
(⋯(

𝐴𝑛0
𝐴𝑛0+2𝑁−1

(
𝐴𝑛0+2

𝐴𝑛0+1
(

⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

(? ) ⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

) +
𝐵𝑛0+2 −𝐵𝑛0+1

𝐴𝑛0+1
) +

𝐵𝑛0 − 𝐵𝑛0+2𝑁−1

𝐴𝑛0+2𝑁−1
)⋯) +

𝐵𝑛0+2 − 𝐵𝑛0+1

𝐴𝑛0+1
) + 𝐵𝑛0 . 

The question mark is there for the sequence has no limit. According to the definition on onion-factorization, we must 

know the value of the onion factor at the limit of the sequence, on which all the remaining onion factors depend. 

Then,  𝑗𝑛0 couldn’t be calculated, the same case with 𝑈𝑛0 .  

In conclusion, 𝑈0 can’t be determined, which invalidates the existence of the sequence. 

3.2 Hypothesis: The Syracuse Sequence Diverges and Tends to Infinity 

Let(𝑈𝑛)𝑛∈ℕ, 𝑈0 = 6𝑗
0
+ 3, 𝑗

0
∈ ℕ its initial term, considered a previous term as well. By application of the theorem, we 

can build an onion-factorization of 𝑗0with an infinite number of onion factors, while we extend the sequence infinitely. 

The hypothesis implies that 𝑙𝑖𝑚𝑛→∞ 𝑈𝑛 = ∞, and 𝑈𝑛 is getting infinitely large if and only if, in the expression  6(𝐴𝑘 +

𝐵) + 1 or 6(𝐴𝑘 + 𝐵) + 5, k is getting infinitely large. In fact, 𝐴 and 𝐵 may get very bigger, but are always quantified 

values. Onion factors being values of k, it follows: 

𝑗
0
 =  𝐴0 (

𝐴2

𝐴1
(⋯ (

𝐴2𝑛

𝐴2𝑛−1
(

⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

(∞) ⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

) +
𝐵2𝑛 − 𝐵2𝑛−1

𝐴2𝑛−1
)⋯) +

𝐵2 − 𝐵1

𝐴1
) + 𝐵0 ; 

𝐴𝑖 ∈ ℕ, 𝐴𝑖  𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 ; 𝐵𝑖 ∈ ℕ, 𝑖 ∈ ℕ.  

Such an expression of 𝑗0 is quite unusual, and one can hardly understand what it may implicate. But, unlike the expression 

of the onion-factorization of 𝑗𝑛0 , there is no “question mark” here, and the onion factor corresponding to the limit of the 

Syracuse sequence, is infinitely large. Before rushing into any conclusion, let’s see how infinite can be dealt with in an 

onion-factorization. 

For this, we need to take a look at the following: 

1 =  
1

3
× 3 =  

1

3
(
1

3
× 9)  =  

1

3
(
1

3
(
1

3
× 27))  =  ⋯  =  

1

3
(
1

3
(⋯(

1

3
(

⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

(∞) ⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

))⋯)) 

This is strange, because the last expression alone doesn’t seem to equal 1. But since we know how it is obtained, we can 

write the following: 

1

3
(
1

3
(⋯ (

1

3
(

⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

(∞) ⋯⏟
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦

))⋯))  =  
3

3
×
3

3
×
3

3
× ⋯ =  1 

Notice that in this onion-factorization, 𝐵2𝑛−1 − 𝐵2𝑛  =  0, 𝑛 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 ∈ ℕ. 

The equality (12) shows that we can calculate such an onion-factorization with an infinite number of onion factors, once 

it can be written trough a classical operation on which calculus can be made. 

Generally, any onion-factorization with an infinite number of onion factors is calculable under the condition that, it 

exists an integer M such that ∀ 𝑛 ≥ 𝑀, 𝐵2𝑛−1 − 𝐵2𝑛  =  0.  

The onion-factorization of 𝑗
0
 is obtained, with onion factors obeying the general relations. We then need to check, in 

this case where the Syracuse sequence diverges, whether those general relations allow to have the condition of 

calculability. 

Since the sequence diverges, for all integer N, it exists integers 𝑛1, 𝑛2;  𝑛2 > 𝑛1 ≥ 𝑁, such that 𝑈𝑛2 > 𝑈𝑛1 .  

We make the hypothesis that, in the progression of the sequence, it exists an integer M such that  

∀𝑛 ≥ 𝑀,𝐵2𝑛−1 − 𝐵2𝑛  =  0. To illustrate this, let’s represent a move from a previous term to a next term by a right 

arrow, as we did in (12). When turning a next term into a previous term, the hypothesis must be locally respected. 
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Starting with one of the general relations that permit 𝑈𝑛2 > 𝑈𝑛1 , it follows: 

6(2𝑘0 + 1) + 5 →  (6(3𝑘0 + 𝟐)+ 5 = 6(4𝑘1 + 𝟐)+ 5)  →  (6(3𝑘1 + 𝟐)+ 1 = 6(8𝑘2 + 𝟐)+ 1)  →

 (6(3𝑘2 + 𝟎)+ 5 = 6(16𝑘3 + 𝟎)+ 5)  → (6(3𝑘3)+ 1 = 6(4𝑘4)+ 1)  →  (6(3𝑘4)+ 1 = 6(4𝑘5) + 1)  ⋯
 

This progression is undoubtedly decreasing to 1. Absurd. Then the condition of calculability is not fulfilled.  

Besides, we know that as an onion-factorization,𝑗0is inconsistent. In fact, by definition, infinite is not a quantifiable value. 

This means that, we can’t estimate the values of onion factors when the terms of the sequence are getting infinitely large. 

There is consequently an impossibility to know any onion factor with a finite rank.  

To conclude, 𝑗0 and 𝑈0 are impossible to calculate, and this makes the hypothesis impossible to realize. 

Only the hypothesis of a convergent Syracuse sequence remains at the table. 

4. Conclusion 

Almost all the numerical details in the general relations have not been used in the proof. That is exactly where the 

conjecture is too complex to address, and they have been skipped by choice, while we have built the proof on the notion 

of onion-factorization. Meanwhile, those details may tell us more about interesting properties of Syracuse sequences. 
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