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Abstract

The well-known Broken Spaghetti Problem is a geometric problem which can be stated as: A stick of spaghetti breaks
into three parts and all points of the stick have the same probability to be a breaking point. What is the probability that
the three sticks, putting together, form a triangle?

In this note, we describe a hidden geometric pattern behind the symmetric version of this problem, namely a fractal that
parametrizes the sample space of this problem. Using that fractal, we address the question about the probability to obtain
a δ-equilateral triangle.
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1. Introduction

The Broken Spaghetti Problem, also called the broken stick problem, is an old mathematical problem. It goes back to
British mathematicians and it has interested mathematicians like E. Lemoine [7], H. Poincaré [8], de Finetti [2, 3]. There
are several equivalent ways to formulate this problem but we are interested in the version stated above. The solution to
the problem is

P̃ =
1
4

;

and it was already known to British mathematicians. This problem has been generalized to higher dimensional objects,
see for instance [1, 4, 6]. In [6], the authors addressed a variant of the Broken Spaghetti Problem by changing triangles
to other geometric objects. But, let us stay on the original problem. As mentioned in [5], E. Lemoine was the first to
publish an article on this problem and he used an exhaustion process to come out with the answer (see [7]). There is also a
geometric approach given by H. Poincaré in Calcul des Probabilités [8] where the space of all possibilities is adequately
described: an equilateral triangle. Then the probability turns to be a relative area. The geometric approach was known
before Poincaré but what he did better is the proof of why the fact that the broken points are equally likely translates to
a uniform distribution on the sample space. The latter allows one to compute the probability as the relative area and it
was assume to be obvious by other authors. In [5], G. S. Goodman gave another proof of why the samples are uniformly
distributed using a beautiful argument from elementary geometry. Since Lemoine method uses uniform distribution on a
discretized version of the problem and a limit process, his result combine with Poincaré’s one could be interpreted like a
convergence of a discrete uniform distribution to a continuous one.

Goodman also raised the question about the choice on how to sample this problem and how it affects the outcome of the
probability. In general, the problem is mostly sample as followed (see Figure 1):

• l1, l2 and l3 are the length of the three sticks;

• l1 l2 and l3 are ordered in such a way that l1 is the length of the stick on the left, l2 is the length of the middle stick
and l3 is the length for the one on the right.

l1 l2
l3

Figure 1. Sampling of the (non symmetric) spaghetti problem
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Using this way, the sample l1 = 3/4, l2 = 1/8, l3 = 1/8 is considered to be different to l1 = 1/8, l2 = 3/4, l3 = 1/8.
Although, one can consider a symmetric way to sample this problem and in this case, the order on which the three sticks
appears does not matter. Let us call this problem the Symmetric Broken Spaghetti Problem.

In these notes, we describe the geometric shape of the sample space for the Symmetric Broken Spaghetti Problem. It
happens that it is a fractal and the probability for the symmetric version is:

P =
1
8
.

The interpretation of the fractal enable to give the probability to obtain a δ-equilateral triangle.

Nowadays, the Broken Spaghetti Problem is also used to introduce the notion of probability to high school students.
The authors have presented this problem during the BRIS-NLAGA 2022 held in Ziguinchor/Senegal. The goal was to
introduce the notion of probability to students and the notion of fractal as well.

As one can see, the symmetric version of the Broken Spaghetti Problem does note have the same probability like the
original problem. This brings to mind the Bertrand paradox in which a problem have different probability depending on
the way the sampling is made. Nonetheless, our goal was not to insist on the paradoxical behavior of the Broken Spaghetti
Problem but rather to attach a fractal to this problem and thereby to show to students how rich this simple problem is. We
end this introduction with a quote from G. S. Goodman [5] on this problem:

...”Because of this, the problem of the Broken Stick, often snubbed as a mere mathematical diversion by those who forget
that probability theory had its origins in mathematical diversions, deserves to occupy a more dignified place in the

hierarchy of mathematical though.”

2. Geometric Approach Reviewed

In this section, we set up some materials and we recall the geometric proof of the Broken Spaghetti Problem. Without
lost of generality we can assume that the stick has length 1, and it breaks randomly at two points. Let l1, l2 and l3 be the
(ordered) list of lengths of the three sticks. Therefore, the following equation holds:

l1 + l2 + l3 = 1 (1).

So, a sample here is a vector v := (l1, l2, l3) ∈ R3 such that (1) is satisfied. It follows that the set of all possibilities

Ẽ = {(l1, l2, l3) ∈ R∗+ × R∗+ × R∗+, l1 + l2 + l3 = 1},

is an equilateral triangle: the two dimensional simplex in R3. There is an another way to represent Ẽ just by drawing it in
R2. In this case, Ẽ is an equilateral triangle in R2 with side-length equal to 2

√
3

3 and the coordinates of a point M in Ẽ are
given by the distance between M and each of the three sides (Figure 2).

l1

l3

l2

Figure 2. The sample space and its representation in R2

Moreover l1, l2 and l3 in Ẽ are sides of a triangle if and only if they satisfy the triangle inequalities:

l2 + l3 ≤ l1, l1 + l3 ≤ l2, l1 + l2 ≤ l3 (2).

Conditions (1) and (2) are equivalent to the following:

l1 ≤
1
2
, l2 ≤

1
2
, l3 ≤

1
2
, l1 + l2 + l3 = 1.
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Then, the sample that give a positive answer to the problem are:

T̃ = {(l1, l2, l3) ∈ Ẽ; l1 ≤
1
2
, l2 ≤

1
2
, l3 ≤

1
2
}.

The set T̃ is also an equilateral triangle: the one that joins the middle points of the side of Ẽ.

By Poincaré [8], the fact that the sticks broke randomly at two points translates to a uniform distribution Ẽ. So, the
probability P̃ is the amount of T̃ we have in Ẽ (relative area):

P̃ =
Area(T̃ )

Area(Ẽ)
=

1
4
.

Now, let us turn to the Symmetric Broken Spaghetti Problem. For that, we consider samples (l1, l2, l3) up to the action of
the symmetric group S3:

σ.(l1, l2, l3) = (lσ(1), lσ(2), lσ(3));

where σ ∈ S3.

Therefore, the sample space E of the Symmetric Broken Spaghetti Problem is:

E = Ẽ/S3.

3. The Geometry of the Sample Space

In this section, we describe the sample space E. Since S3 is generated by (12), (13) and (23), the action of S3 on Ẽ allows
one to consider the points up to symmetries along the three bisectors of Ẽ. Using this, we describe E inductively.

−→

Figure 3. Sample space after one step

Step 1: Let A1 be the triangle joining the middle points of the side of Ẽ. Then, Ẽ − A1 is the union of three triangles T1,
T2 and T3 as depicted in Figure 3-left. The triangle Ti is the set of points (l1, l2, l3) ∈ Ẽ such that li ≥ 1/2. So a point in Ti

is equivalent to a point in T j; that is we can delete two of the three triangles (let us say T1 and T2) from Ẽ. In T3, a point
(l1, l2, l3) is equivalent to (l2, l1, l3). So, we can delete half the triangle T3. At this step, we obtain a space Ẽ1 made with
two triangles one of which is free from relations (see Figure 3-right).

Step 2: From Ẽ1, let A2 be the triangle joining the middle points of the sides of A1. Then, A1 splits into four triangles
A2, T1, T2 and T3. Again by applying symmetries, we have T1 ∼ T2 ∼ T3. So, one can remove two of the three triangles
and also half of the last one to obtained Ẽ2 (see Figure 4).

Step n: At this step, we divide An−1 into four triangles by drawing An: the triangle that connects the middle points of
the sides of An−1. Thefore, An−1 = An ∪ T1 ∪ T2 ∪ T3 and T1 ∼ T2 ∼ T3. We construct Ẽn by deleting T2 and T3 and by
removing half of T1.

The Sample space is then given by:
E := lim

−→
n

Ẽn.

25



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 6; 2022

−→

Figure 4. Sample space after two steps

−→

Figure 5. Sample space after three steps

Depending on the pieces one delete during the induction, we obtain different shapes of the sample space. In Figure 6, we
draw two examples of the sample space.

Figure 6. Sample space of the Symmetric Broken Spaghetti Problem represented in two different ways

4. Interpretation of the New Sample Space

Since the sample space changed, a natural question is to know if the probability of the Symmetric Broken Spaghetti
Problem changed as well. Actually, it changes as we will see right away. The sample space E is the union of infinitely
many triangles (Ti)i=1,...,∞. Then,

Area(E) =

∞∑
i=1

Area(Ti).

The first triangle is one-eight of Ẽ, and each triangle Ti is also one-eight of Ti−1. Therefore, we have Area(Tn) =

( 1
8 )nArea(Ẽ). It follows that:

Area(E) = (
1
8

+
1
82 + · · · +

1
8n + . . . )Area(Ẽ) =

1
7

Area(Ẽ)
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The area of the set T of samples that satisfies the three triangles inequalities is:

Area(T ) = (
1
82 + · · · +

1
8n + . . . )Area(Ẽ) =

1
7 × 8

Area(Ẽ)

The probability to obtain a triangle for the Symmetric Broken Spaghetti Problem is now:

P =
1
8
.

As one can see, E is a sequence of triangular pieces converging to the point

G := (
1
3
,

1
3
,

1
3

).

This agree with what one expected to have that is the probability to obtain an equilateral triangle is 0. Let us give the
interpretation of triangular pieces in E. A triangle τ given by (l1, l2, l3) is δ-equilateral (respectively (δ, δ′)-equilateral) if
max{|l1 − l2|, |l1 − l3|, |l2 − l3|} ≤ δ (respectively δ ≤ max{|l1 − l2|, |l1 − l3|, |l2 − l3|} ≤ δ′).

For each triangle Ti, set:
δi := sup{max{|l1 − l2|, |l1 − l3|, |l2 − l3|}, (l1, l2, l3) ∈ Ti}.

Then, each triangular piece Ti (i ≥ 2) in E represents the sample of points that give a (δi+1, δi)-equilateral triangle and the
truncated sequence starting from a piece Ti represents the sample of points that give a δi-equilateral triangle.

So,

Pi+1,i =
1

7 × 8i , Pi =
1

8i−1 ;

where Pi+1,i and Pi are the probabilities to obtained a (δi+1, δi)-equilateral triangle and a δi-equilateral triangle, respectively.
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