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Abstract

An equivalent form to an + bn = cn in Fermat’s Last Theorem (FLT) is proposed and proved for any odd prime exponent
n. Some specific cases, n = 3, 5, 7, 11, are provided to demonstrate the outcomes of the equivalent form. It is our hope
that the equivalent form will lead to more insightful viewpoints of FLT.
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1. Introduction

Fermat’s Last Theorem (FLT) states that there are no positive integer solutions a, b, c to an + bn = cn if n ≥ 3. “This
problem had been unsolved by mathematicians for 300 years. It looked so simple, and yet all the great mathematicians in
history couldn’t solve it. Here was a problem, that I, a 10 year old, could understand, and I knew from that moment that
I would never let it go. I had to solve it.” said by Andrew Wiles in 1965 [1]. Amazingly, Wiles remained steadfast in his
goal, and thirty years later, at age 40, he stated that he had a proof. The proof, published in 1995, is over 100 pages long,
and uses methods of modern mathematics that did not exist at the time of Fermat [1607-1665].

During those hundreds of years in which the quest for a proof was ongoing, numerous mathematicians came up with clever
ideas and new mathematics in support of this endeavor. A nice summary of the major accomplishments made towards a
proof of the FLT during this time is given in [2]. Any student who studies these past achievements will not only gain in
their mathematical knowledge of many areas of mathematics, but will also learn of many related questions that remain
unanswered.

Our goal in this paper is to follow up on one of the so called naive approaches [4] for a proof of FLT. We will present an
identity equivalent to FLT that illuminates relationships between solutions a, b, and c, and the power n in FLT. Our hope
is that students will learn some mathematics and enjoy this historical approach.

2. Some Factoring Results Related to FLT

As noted in [4], since
an + bn = (a + b)(an−1 − an−2b + an−3b2 − · · · − abn−2 + bn−1)

for odd positive integers n, attention was given to results related to this factorization beginning with the earliest attempts
at proofs of FLT. We now present two results of this type that will be utilized in later sections.

Proposition 1. Assume n is an odd prime and there are positive integer solutions to an + bn = cn with gcd(a, b, c)=1.
Then a + b, c − b, and c − a are relatively prime integers.

Proof. Since

cn = an + bn = (a + b)
n∑

k=1

an−k(−b)k−1

bn = cn − an = (c − a)
n∑

k=1

cn−kak−1

an = cn − bn = (c − b)
n∑

k=1

cn−kbk−1 ,

it follows that if there is a factor p of two of a + b, c − b and c − a, then p would be a factor of two of a, b and c. This
would contradict that a, b and c are relatively prime. �
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Theorem 2. Suppose n is an odd prime and a + b, c − b and c − a are relatively prime, then n(a + b)(c − a)(c − b) is a
factor of (a + b − c)n + cn − an − bn and we define

Rn(a, b, c) =
(a + b − c)n − an − bn + cn

n(a + b)(c − b)(c − a)
. (1)

Proof. Let’s first rewrite the numerator of Rn(a, b, c).

(a + b − c)n − (an + bn) + cn = [(a + b) − c]n − (an + bn) + cn

=

n∑
k=0

(
n
k

)
(a + b)n−k(−c)k − (a + b)

n∑
l=1

an−l(−b)l−1 + cn

= (a + b)n +

n−1∑
k=1

(
n
k

)
(a + b)n−k(−c)k + (−c)n − (a + b)

n∑
l=1

an−l(−b)l−1 + cn

= (a + b)n +

n−1∑
k=1

(
n
k

)
(a + b)n−k(−c)k − (a + b)

n∑
l=1

an−l(−b)l−1

Hence,

Rn(a, b, c) =
(a + b)n +

∑n−1
k=1

(
n
k

)
(a + b)n−k(−c)k − (a + b)

∑n
l=1 an−l(−b)l−1

n(a + b)(c − b)(c − a)

=

1
n (a + b)n−1 +

∑n−1
k=1

(n
k)
n (a + b)n−k−1(−c)k − 1

n
∑n

l=1 an−l(−b)l−1

(c − b)(c − a)

=

∑n−1
k=1

(n
k)
n (a + b)n−k−1(−c)k + 1

n [(a + b)n−1 −∑n
l=1 an−l(−b)l−1]

(c − b)(c − a)

Let

P(−c) =
n−1∑
k=1

(
n
k

)
n
σn−k−1(−c)k +

1
n

[σn−1 −
n∑

l=1

an−l(−b)l−1]

where σ = (a + b). Then using long division to divide P(−c) by

(c − a)(c − b) = [(−c)2 + σ(−c) + ab]

we obtain that Rn(a, b, c) is a polynomial in a, b and c of degree (n − 3) which we will write in the form

Rn(a, b, c) =
n−2∑
k=1

sk(−c)n−2−k, k = 1, 2, 3, . . . , n − 2 (2)

where each coefficient sk is a function of a + b and ab. We have also used the fact [3] that if n is prime, then
(

n
1

)
,
(

n
2

)
, · · · ,(

n
n−1

)
are divisible by n. It is easier to define sk as follows according to whether k is even or odd. Recall again that n is an

odd prime.

• For k being odd with k = 2m − 1,

sk = s2m−1 =

m∑
ℓ=1

t2m−1,ℓ(a + b)2m−2ℓ(ab)ℓ−1, m = 1, 2, 3, · · · , n − 1
2
. (3)

• For k being even with k = 2m,

sk = s2m =

m∑
ℓ=1

t2m,ℓ(a + b)2m−2ℓ+1(ab)ℓ−1, m = 1, 2, 3, · · · , n − 3
2
. (4)
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The last step is to describe each coefficient tk, j for j = 1, 2, 3, . . . , n − 2, and k = 1, 2, 3, . . . ,
⌈

k
2

⌉
, where

⌈ ⌉
denotes the

ceiling function. The coefficients tk, j obey the following recursive relations.
(i) For j = 1,

t1,1 = 1 , , tk,1 =
1
n

(
n
k

)
− tk−1,1 , where k = 2, 3, · · · , n − 2 .

(ii) For j ≥ 2,

t2ℓ−1, j = (−1)ℓ−1 , where ℓ = 1, 2, · · · , n − 1
2
,

tk, j = −tk−2, j−1 − tk−1, j , otherwise. (5)

�

Let’s consider the case n = 7. Following the notation of Theorem 2, it can be verified that

R7(a, b, c) = a4 + 2a3b − 2a3c + 3a2b2 − 5a2bc + 3a2c2 + 2ab3 − 2ac3

−5ab2c + 5abc2 + b4 − 2b3c + 3b2c2 − 2bc3 + c4 . (6)

Moreover, the recursive relationship (5) of the coefficients tk, j in the polynomial R7(a, b, c) can be illustrated, as shown in
Figure 1.

5,1t

4,1t

3,1t

5,2t

4,2t

5,3t

3,2t

1,1t

=1

=2

= −2

= −1

=1

=3

t

= −1

2,1=2

=1

Figure 1. Coefficients tk, j for n = 7. The numbers inside the boxes are 1 or −1, alternately

Additionally, the recursive relationship (5) of the coefficients tk, j in the polynomial R11(a, b, c) is shown in Figure 2.

3. FLT equivalent identity

We now combine our results to determine an identity that is equivalent to FLT.

Theorem 3. Let n be an odd prime, and a, b and c be positive relatively prime integers, then an + bn = cn if and only if

n(a + b)(c − b)(c − a)Rn(a, b, c) = (a + b − c)n , (7)

where Rn(a, b, c) is the homogeneous polynomial in a, b and c of degree n − 3 that satisfies

Rn(a, b, c) =
(a + b − c)n − an − bn + cn

n(a + b)(c − b)(c − a)
.

Proof. The proof of the equivalent form follows from Proposition (1) and Theorem (2), which basically use the following
manipulation

(a + b − c)n − an − bn + cn = n(a + b)(c − b)(c − a)Rn(a, b, c)

combined with the assumption that an + bn = cn. �
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9,1t
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Figure 2. Coefficients tk, j for n = 11. The numbers inside the boxes are 1 or −1, alternately

4. Insight Gained From the Equivalent Identity

In the equivalent form (7), we observe that n is a multiplier on the left side of the equation and is an exponent on the right
side of the equation. How is this useful?

Let’s consider FLT for n = 3. If a3 + b3 = c3 where a, b, c are relatively prime integers, we obtain the equivalent identity

3(a + b)(c − b)(c − a) = (a + b − c)3. (8)

This identity tells us that n = 3 must be a factor of one of a, b, or c. We note that this is an alternative proof to previous
proofs of this case that use a congruence modulus relation [4]. Similar results are true for n = 5, and these are presented
in the next two propositions.

Proposition 4. Let a, b and c be positive relatively prime integers with a5 + b5 = c5, then 5 does not divide R5(a, b, c) =
a2 + b2 + c2 + ab − bc − ad. Therefore 5 must divide one of a, b or c.

Proof. The equivalent form is
5(a + b)(c − b)(c − a)R5(a, b, c) = (a + b − c)5 . (9)

Assume that none of the three terms (a + b), (c − a), or (c − b) has a factor 5. Equivalently, we have

5 ̸ |c , 5 ̸ |b , 5 ̸ |a , 5|(a + b − c) . (10)

This implies that
a ≡ 1 (mod 5) , b ≡ 1 (mod 5) , c ≡ 2 (mod 5) (11)

is one possibility. On the other hand, R5(a, b, c) can be expressed as

R5(a, b, c) = (a + b − c)2 + c(a + b − c) + c2 − ab ,

which is congruent to 3 (mod 5) under the congruences of a, b, c from equation (11). In Table 1 we list all possible
congruences for a, b, c, and c2 − ab after modulo 5.

For example, the numbers 1, 1, 2, 3, in the second row of Table 1 are to be read as: If a ≡ 1 (mod 5) , b ≡ 1 (mod 5), and
c ≡ 2 (mod 5), then R5(a, b, c) ≡ c2 − ab ≡ 3 (mod 5). Consequently, 5 does not divide R5(a, b, c) and so 5 must divide
one and only one of a, b or c. �
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Table 1. Congruence table for variables a, b, c, and c2 − ab after modulo 5

a ≡ b ≡ c ≡ R5(a, b, c) ≡ c2 − ab ≡
1 1 2 3
1 2 3 2
2 1 3 2
1 3 4 3
3 1 4 3
2 2 4 2
2 4 1 3
4 2 1 3
3 3 1 2
3 4 2 2
4 3 2 2
4 4 3 3

5. Cases for Higher Exponents

To reiterate the insight gained by the equivalent form, we move on to a higher exponent case n = 11, and the similar
insight provided by the equivalent form can be observed still. The details are addressed as follows.

5.1 Case n = 11

By using equation (2) and the recursive relation described in equations (3) and (4), we find the equivalent form for n = 11
to be:

11 (c − b) (a + b) (c − a) R11(a, b, c) = (a + b − c)11 , (12)

where (see also Figure 2)

R11(a, b, c) = −54 ab2c5 − 19 a3c5 + 84 a3bc4 + 123 a2b2c4 − 84 a3b4c − 54 a5b2c

− 159 a2b3c3 − 84 a4b3c + 21 abc6 + 123 a4b2c2 + 84 ab3c4 − 19 a3c5

− 159 a3b2c3 − 21 a6bc + 54 ab5c2 − 54 a2b5c − 84 a4bc3 − 4 b7c

− 54 a2bc5 + 54 a5bc2 − 84 ab4c3 − 21 ab6c + 11 a6b2 + 123 a2b4c2

+ 19 a5b3 + 23 a4b4 + 4 a7b + 19 a3b5 + 11 a6c2 − 19 a5c3 − 4 a7c

+ 11 a2b6 + 11 a2c6 + 4 ab7 − 4 ac7 + 11 b6c2 − 19 b5c3 + 23 b4c4

− 19 b3c5 + 11 b2c6 − 4 bc7 + a8 + b8 + c8 + 159 a3b3c2 + 23 a4c4 .

Proposition 5. In the factored form in equation (12), the four terms (a + b), (c − b), (c − a), and R11(a, b, c) are relatively
prime. That is, there is no common factor between any two of them.

Proof. It is sufficient to show that R11(a, b, c) does not have any common factor with either one of (a + b), (c − b), and
(c − a).

Let us assume there is a common factor between (a + b) and R11(a, b, c), say, p|(a + b) and p|R11(a, b, c). This implies
that p|c and p|R11(a, b, c). Let c = p k, for some positve integer k. Replacing c in R11(a, b, c) by pk, we get

R11(a, b, c) = (a2 + ab + b2)
(
b6 + 3ab5 + 7a2b4 + 9a3b3 + 7a4b2 + 3a5b + a6

)
+ p G11(a, b, k) , (13)

where G11(a, b, k) is some polynomial in terms of (a, b, k). We know that p ̸ |(a2 + ab + b2); otherwise, by

(a + b)2 − (a2 + ab + b2) = ab ,

the number p must divide either a or b.

It is sufficient to show that, in equation (13),

p ̸ |
(
b6 + 3 ab5 + 7 a2b4 + 9 a3b3 + 7 a4b2 + 3 a5b + a6

)
. (14)
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But claim (14) is clear from the fact that

(a + b)6 −
(
b6 + 3 ab5 + 7 a2b4 + 9 a3b3 + 7 a4b2 + 3 a5b + a6

)
= ab

(
b2 + ab + a2

) (
3 b2 + 5 ab + 3 a2

)
,

and 3(a + b)2 −
(
3 b2 + 5 ab + 3 a2

)
= ab. Therefore, there is no common factor between (a + b) and R11(a, b, c).

By the same token, suppose there is a common factor between (c − a) and R11(a, b, c), say, p|(c − a) and p|R11(a, b, c).
This means p|b and p|R11(a, b, c). Then b = p k, for some positive integer k. Replacing b in R11(a, b, c) by p k, one
gets

R11(a, b, c) =
(
c2 − ac + a2

) (
c6 − 3 c5a + 7 c4a2 − 9 c3a3 + 7 c2a4 − 3 ca5 + a6

)
+ p H11(a, c, k) , (15)

where H11(a, b, k) is some polynomial in terms of (a, c, k). But p ̸ |(c2 − ac + a2); otherwise, by

(c2 − ac + a2) − (c − a)2 = c a ,

the number p must divide either c or a, and this contradicts with the assumption that the triple (a, b, c) is relatively prime.

Furthermore, in equation (15) above,(
c6 − 3 c5a + 7 c4a2 − 9 c3a3 + 7 c2a4 − 3 ca5 + a6

)
− (c − a)6

= ac
(
c2 − ac + a2

) (
3 c2 − 5 ac + 3 a2

)
,

and
(
3 c2 − 5 ac + 3 a2

)
− 3(c − a)2 = ca. We conclude that there is no common factor between (c − a) and R11(a, b, c).

Similarly, if there is a common factor between (c − b) and R11(a, b, c), then the triple (a, b, c) is not relatively prime. �

Similar to the case n = 5 we have following observation for n = 11 by using the equivalent form.

Proposition 6. Let a, b and c be positive relatively prime integers with a11+b11 = c11, then 11 does not divide R11(a, b, c).
Therefore 11 must divide one of a, b or c.

Proof. The proof is essentially the same as the proof for the case n = 5. Here we break down R11(a, b, c) as

R11(a, b, c) = P(a, b) − c(a + b − c)Q(a, b, c) , (16)

where
P(a, b) = (b2 + ab + a2)(b6 + 3ab5 + 7a2b4 + 9a3b3 + 7a4b2 + 3a5b + a6)

and Q(a, b, c) is a 6-degree homogeneous polynomial in the variables a, b and c. Then a similar table to Table 1 can be
constructed with all possible congruences for a, b, c, and P(a, b) after modulo 11. See Table 2.

Table 2. Congruence table for variables a, b, c, and P(a, b) after modulo 11

a ≡ b ≡ c ≡ P(a, b) ≡
1 1 2 5
1 2 3 2
1 3 4 7
1 4 5 8
...

...
...

...

10 10 9 5

For example, the numbers 1, 1, 2, 5, in the second row are to be read: If a ≡ 1 (mod 11) , b ≡ 1 (mod 11) , c ≡ 2 (mod 11),
then P(a, b) ≡ 5 (mod 11). From Table 2 it follows that 11 cannot be a factor of R11(a, b, c), hence by the equivalent form
11 must divide one of a, b, or c. �
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5.2 Case n = 7

Though the FLT equivalent identity yields some good insight for the cases n = 3, 5, and 11—namely that if an + bn = cn

then n divides one of a, b or c—it does not provide the exact same outcome for the case n = 7. As shown for n = 3, 5 and
11, it still follows for n = 7 that (a + b), (c − b), (c − a) and Rn(a, b, c) are relatively prime, as shown in Proposition (7),
but the stronger result that 7 divides one of a, b or c can only be stated as a conjecture at this time.

Proposition 7. Let a, b and c be positive relatively prime integers with a7 + b7 = c7. Then in the equivalent form,
equation (7), the four terms (a+ b), (c− b), (c− a), and R7(a, b, c) are relatively prime. That is, there is no common factor
between any two of them.

Proof. We have already seen that the three terms (a+b), (c−b), and (c−a) are relatively prime in Proposition (1). Hence,
it suffices to show that R7(a, b, c) does not have a common factor with (a + b), (c − b) or (c − a).

Let’s assume there is a common factor between (a + b) and R7(a, b, c), say, p|(a + b) and p|R7(a, b, c). Then also p|c, and
so c = pk for some positive integer k. Replacing c by pk in R7(a, b, c), which is given in equation (6), we get

R7(a, b, c) = (a2 + ab + b2)2 + pG(a, b, k), (17)

where G(a, b, k) is a polynomial in terms of (a, b, k). But p ̸ | (a2 + ab + b2), since otherwise from

(a + b)2 − (a2 + ab + b2) = ab, (18)

the prime p must divide either a or b. This contradicts the assumption that the triple (a, b, c) is relatively prime.

Next, let’s assume there is a common factor between (c − a) and R7(a, b, c), say, p|(c − a) and p|R7(a, b, c). Then also p|b,
and so b = pk for some positive integer k. Replacing b in R7(a, b, c) by pk, one obtains

R7(a, b, c) = (c2 − ac + a2)2 + pH(a, b, k), (19)

where H(a, b, k) is a polynomial in terms of (a, b, k). But p ̸ | (c2 − ac + a2), since otherwise from

(c2 − ac + a2) − (c − a)2 = ca, (20)

the prime p must divide either c or a, and this contradicts the assumption that the triple (a, b, c) is relatively prime.

Similarly, if there is a common factor between (c − b) and R7(a, b, c), then the triple (a, b, c) is not relatively prime. �

Conjecture 8. If there are positive integer solutions to a7 + b7 = c7 with gcd(a, b, c) = 1, then one and only one of a, b or
c is divisible by 7.

6. A Big Conjecture

In summary, we have established that for a prime number n ≥ 3, an + bn = cn is equivalent to

n(a + b)(c − a)(c − b)Rn(a, b, c) = (a + b − c)n , (21)

where Rn(a, b, c) can be obtained according to the recursive relationship that we have derived in this paper. Here we list
the following three observations regarding the the equivalent form (21).

6.1 Consistency of the Equivalent Form

The first major observation we have is that the equivalent form (21) stays the same for all n. Particularly, the term
(a + b − c)n on the right hand side of the equivalent form (21) is the same for all n. Based on the fact (and assumption)
that (a + b), (c − a), (c − b), and Rn(a, b, c) are all relatively prime, it seems that the term (a + b − c) “takes up too many
factors”.

6.2 Too Many nth-power Terms

The second observation is that the equivalent form (21) tells us there are “too many nth-power terms”. For instance, for
n = 3, according to the equivalent form (8) and the assumption that 3 divides c, we have the following outcomes:

a = α1α2, b = β1β2, c = 32γ1γ2, a + b = 35γ3
1, c − b = α3

1, and c − a = β3
1 , (22)
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where the integers α1, α2, β1, β2, γ1, and γ2 are relatively prime. So, the terms c − a and c − b are both cubes, and a + b
contains a cube as a factor.

Similarly, for n = 5, according to the equivalent form (9) and the assumption that 5 divides c, then

a = α1α2, b = β1β2, c = 52γ1γ2, a + b = 59γ5
1, c − b = α5

1, c − a = β5
1 , and R5(a, b, c, ) = δ5 , (23)

where α1, α2, β1, β2, γ1, γ2, and δ are relatively prime integers. Among them c − a, c − b, and R5(a, b, c, ) are all of 5-th
power.

For a general prime n ≥ 3, we may see that at least two of the four terms (a + b), (c − a), (c − b), and Rn(a, b, c) are of
nth-power.

6.3 The Third Observation

The third observation does not have an easy name, and we describe it by different cases of n.

For n = 3, the combination of equations (8) and (22) leads to

3(a + b)(c − b)(c − a) = 3 × 35γ3
1 α

3
1 β

3
1 = (a + b − c)3 = (9α1β1γ1)3.

One interesting observation is that

(a + b) − (c − b) − (c − a) = 2(a + b − c) , or 35γ3
1 − α3

1 − β3
1 = 2 × 9α1β1γ1. (24)

Recall the fact that (a + b), (c − b), and (c − a) are all relatively prime. Therefore, equation (24) says that a linear
combination of three relatively prime cubes makes up a number being a product of the three numbers (α1β1γ1). Although
we cannot directly show it is not true, we cannot find any examples showing equation (24) is true.

For the cases n = 5 and higher exponents n, the argument is very similar. We reiterate the process for n = 5 here. The
combination of equations (8) and (23) leads to

5(a + b)(c − b)(c − a)R5(a, b, c) = 5 × 59γ5
1 α

5
1 β

5
1 R5(a, b, c) = (a + b − c)5 = (25α1β1γ1δ)5.

By the fact (a + b) − (c − b) − (c − a) = 2(a + b − c), that is,

59γ5
1 − α5

1 − β5
1 = 2 × 25α1β1γ1δ . (25)

Equation (25) says that a linear combination of three relatively prime fifth powers makes up a number being a product of
the three numbers (α1β1γ1) themselves. Again, we cannot find any number examples that support equation (25).

6.4 The Big Conjecture

Based on our three given observations, we propose a big conjecture:

The equivalent form (25) cannot be true.

Therefore, an + bn = cn cannot be true, either.

7. Conclusion

We have demonstrated an equivalent form (Theorem 3) to an + bn = cn in FLT. The equivalent form provides more
information about the relationships between a, b, c and n than FLT due to the fact that n appears both as a factor and
a power in the equivalent form. It is our hope that this equivalent form will be useful to others interested in answering
questions about the positive integers motivated by FLT.
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