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Abstract

This article pushes the role of sine and cosine functions beyond the traditional purpose of determining the sides of a right
triangle, into the realm of determining the lengths of the sides of any triangle with practically the same ease. Extended
functions are formulated dependent on two angles (instead of the traditional one) — sin∗(α, γ) and cos∗(α, γ) — that allow
(via direct application) the computation of the lengths of the two shorter sides of a scalene triangle, as a result of the
angular projection (from reference angle α and a variable obtuse angle γ) of the longer side or extended hypotenuse (for
right triangles, the obtuse angle is fixed to γ = 90 deg, allowing only the variation of α — a significant limitation). When
integrated into larger more complex mathematical formula, the extended sine and cosine functions add greater flexibility
and open the door for the mathematician or scientist to explore possibilities that are non-orthogonal. Solved exercises are
provided at the end, with the purpose of illustrating the robustness and advantage of the application of these new extended
sine and cosine functions to determine the normalized sides of a scalene triangle — a requirement that is present virtually
in any technical discipline.
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1. Introduction

Sine function sin(α) and cosine function cos(α) are used systematically by mathematicians when composing larger more
complex formula (Berndt et al 1997, Liu et al 2021). In science, these functions are used to define solutions for dif-
ferential equations that govern physical systems — e.g., vibration theory (Timoshenko & Young 1974, Gomes 2011),
electrical engineering (Hughes, 2006), telecommunications (Staelin 2014), acoustics (Rayleigh, 1945) and fluid dynam-
ics (Houghton & Carpenter, 2000), etc. They provide the ability to convert an angle into a projected normalized length
within the framework of a right triangle (a triangle that has an orthogonal obtuse angle γ = 90 deg). Once applied, this
orthogonal dependency is automatically imprinted into the larger and more complex formula — an implicit limitation
— restricting its field of application. Imagine now that those particular right triangles morph into more generic scalene
triangles. Here, this implicit limitation of orthogonality is invalid. One example of such numerical mathematics involving
scalene triangles is the field of computational fluid dynamics, in particular the making of triangular meshes that are used
to compute highly complex flow fields (Tomac and Eller, 2014) [Figure 1a]. The question becomes, what happens to the
sine sin(α) and cosine cos(α) functions when conditions arise where the implicit assumption of orthogonality (i.e., γ = 90
deg) is no longer valid (i.e., what is sin∗(α, γ) and cos∗(α, γ))[Figure 1b]?

2. Hypothesis

There must be an version of the sine and cosine functions extended to scalene triangles — sin∗(α, γ) and cos∗(α, γ) —
that would replace the original in providing the correct normalized project lengths of the longer to the two shorter sides
(of which a right triangle is a particular case).

3. Theory

Such extended functions would be very useful as they would open the realm of possibilities of complex formula con-
taining trigonometric functions to be applicable in environments other than orthogonal. Both the Pythagoras theorem
and trigonometry (in general) form part of most secondary education curricula around the world, including the Canadian
Curriculum (Canadian Ministry of Education, 2020), which makes this paper of interest to both students and professionals.

3.1 Formulating the Extended Functions

Let us begin by defining the problem geometrically, which will subsequently allow us to establish mathematical relations
between angles and distances. Following on the original foundation presented by Euclid in classical trigonometry (Euclid
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Figure 1. (a) Numerical mesh for fluid dynmics computations and (b) Extending the applicability of sine and cosine
functions to scalene triangles

et al, 1908), start by considering the scalene triangle 4ABC enclosed within the right-angled triangle 4ADC in Figure 2.
They both have a variable internal angle ∠CAB = ∠CAD = α, and have a different internal reference angle (opposing the
unit longest side z = 1) D ∠ABC = γ for the scalene triangle 4ABC, and angle ∠ADC = π/2 for the right-angled triangle
4ADC. When γ = 90 deg, the scalene triangle becomes the right-angled triangle 4ADC.

Figure 2. Parameterization of the projections of a scalene triangle ABC from a right-angled triangle ADC

Just as the vertical and horizontal projections of the hypotenuse z = AC = 1 are X = AD = cos(α) and Y = CD = sin(α)
for the right-angled triangle 4ADC, the corresponding oblique and horizontal projections of the hypotenuse z = AC = 1
for the scalene triangle 4ABC are x = AB = cos∗(α, γ) and y = BC = sin∗(α, γ). The traditional sine and cosine functions
for the particular case of a right-angled triangle (governed by the internal angles α and γ = π/2) are commonly used in
mathematics and science (Curtis 2010, Howard & Workman 2018, Parisher & Rhea 2012, Rawlings 2000), hence it is
expected that the new expressions for the generic case of a scalene triangle (encompassing two variable internal angles
— α and γ) will be equaly useful. We start by finding the generalized sine function y = BC = sin∗(α, γ). The vertical
projection Y = DC of the hypotenuse is given as

Y = y cos(θ) (1)

Which is further expanded with Y = sin(α) and y = sin∗(α, γ) [according to Fig.(2)] as
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sin(α) = sin∗(α, γ) cos(θ) (2)

Knowing that the angle ∠CBD is π − γ, and from the sum of angles within triangle 4CBD gives the following relation

θ = γ −
π

2
(3)

Applying the angle difference identity for cosine gives

cos(θ) = cos
(
γ −

π

2

)
= cos(γ) cos

(
π

2

)
+ sin(γ) sin

(
π

2

)
= sin(γ) (4)

Substituting Eq.(4) back into Eq.(2), while re-arranging, gives the desired extended sine function as

sin∗(α, γ) =
sin(α)
sin(γ)

(5)

We move our attention to defining the extended cosine function x = AB = cos∗(α, γ). The horizontal projection X = AD
(of the hypotenuse z = AC = 1) is given as

X = x + ∆ (6)

The value of ∆ is found by projecting the oblique side of triangle 4ABC – i.e., y = BC = sin∗(α, γ) – onto the horizontal
axis, forming ∆ = BD as

∆ = sin∗(α, γ) sin(θ) (7)

Replacing Eq.(7) into Eq.(6), while knowing that X = cos(α) and x = cos∗(α, γ) [according to Figure 2], gives

cos(α) = cos∗(α, γ) +
sin(α)
sin(γ)

sin(θ) (8)

Re-arranging Eq.(8) gives

cos∗(α, γ) = cos(α) −
sin(α)
sin(γ)

sin(θ) (9)

Applying the angle difference identity for sine to θ = γ − π/2 [from Eq.(3)] gives

sin(θ) = sin
(
γ −

π

2

)
= sin(γ) cos

(
π

2

)
− cos(γ) sin

(
π

2

)
= − cos(γ) (10)

Substituting Eq.(10) in Eq.(9), and re-arranging, gives the desired extended cosine function as

cos∗(α, γ) = cos(α) +
cos(γ)
sin(γ)

sin(α) (11)

Making sin(γ) a common denominator, and using the angle sum identity sin(α+ γ) = cos(α) sin(γ) + sin(α) cos(γ) further
reduces the expression to

cos∗(α, γ) =
sin(γ) cos(α) + cos(γ) sin(α)

sin(γ)
=

sin(α + γ)
sin(γ)

(12)

The formulation of a generalized tangent function is obtained by dividing sin∗(α, γ) in Eq.(5) by cos∗(α, γ) in Eq.(11),
resulting in
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tan∗(α, γ) =
sin∗(α, γ)
cos∗(α, γ)

=

sin(α)
sin(γ)

sin(α+γ)
sin(γ)

=
sin(α)

sin(α + γ)
(13)

3.2 Proving Their Universal Validity

The law of cosines [written below in Eq.(14)] is a broad expression that relates the lengths of the three sides x, y and z of
any triangle (Maor 2007, Pickover 2012), which not only covers the particular case of the Pythagoras theorem x2 +y2 = z2

(where orthogonality defines the obtuse angle γ = π/2 resulting in a right-angled triangle), but also all other possibilities
for values of γ, that result in a scalene triangle.

z2 = y2 + x2 − 2xy cos(γ) (14)

The particular case of the Pythagoras theorem is satisfied by replacing x = cos(α), y = sin(α), z = 1 and γ = π/2. We
will now prove that the general case of the law of cosines in is fullfilled by the extended expressions of sine or sin∗(α, γ)
[given by Eq.(5)] and cosine or cos∗(α, γ) [given by Eq.(11)], which together imply a scalene triangle with the following
sides x, y and z.

x = sin∗(α, γ) ; y = cos∗(α, γ) ; z = 1 (15)

Begin by first conviniently expanding separetely — based on the expressions given by Eq.(5) and Eq.(11) — each term in
Eq.(14). Squaring x and substituting cos∗(α, γ) [from Eq.(11)] results in

x2 = cos∗(α, γ)2 =

(
cos(α) +

cos(γ)
sin(γ)

sin(α)
)2

(16)

Note that the longer expanded version of cos∗(α, γ) is applied here for conveninence. The above equation expands further
to

x2 = cos2(α) + 2 cos(α)
cos(γ)
sin(γ)

sin(α) +

(
cos(γ)
sin(γ)

)2

sin2(α) (17)

In a similarly manner, squaring y and substituting sin∗(α, γ) [from Eq.(5)] gives

y2 = sin∗(α, γ)2 =
sin(α)2

sin(γ)2 (18)

The remainder term [from Eq.(14)] −2xy cos(γ) becomes

− 2xy cos(γ) = −2
[
sin∗(α, γ) cos∗(α, γ)

]
cos(γ) (19)

Which is expanded using Eq.(5) and Eq.(11) to

− 2xy cos(γ) = −2
(

sin(α)
sin(γ)

)(
cos(α) +

cos(γ)
sin(γ)

sin(α)
)

cos(γ)

Elaborating further gives

− 2
cos(γ)
sin(γ)

sin(α) cos(α) − 2
1

sin(γ)
sin2(α)

cos(γ)
sin(γ)

cos(γ) (20)

This concludes in the final expression

− 2xy cos(γ) = −2
cos(γ)
sin(γ)

sin(α) cos(α) − 2
(

cos(γ)
sin(γ)

)2

sin2(α) (21)
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The terms given Eq.(17), Eq.(18) and Eq.(21) are respectively replaced in the law of cosines [given by Eq.(14)] resulting
in

z2 = y2 + x2 − 2xy cos(γ) =
sin2(α)
sin(γ)2 + cos2(α) + 2 cos(α)

cos(γ)
sin(γ)

sin(α) +

(
cos(γ)
sin(γ)

)2

sin2(α) −

− 2
cos(γ)
sin(γ)

sin(α) cos(α) − 2
(

cos(γ)
sin(γ)

)2

sin2(α)

(22)

Grouping all terms that multiply sin2(α) in Eq.(22) gives

sin2(α) ×
[

1
sin2(γ)

− 2
cos2(γ)
sin2(γ)

+
cos2(γ)
sin2(γ)

]
(23)

The term between brackets simplifies to

1 − 2 cos2(γ) + cos2(γ)
sin2(γ)

=
1 − cos2(γ)

sin2(γ)
= 1 (24)

Grouping all terms that multiply sin(α) cos(α) in Eq.(22) gives

sin(α) cos(α) ×
[
− 2

cos(γ)
sin(γ)

+ 2
cos(γ)
sin(γ)

]
= 0 (25)

Replacing the above simplifications from Eq.(23) and Eq.(25) back into Eq.(22) results in

12 =
[
1
]
× sin2(α) +

[
0
]
× sin(α) cos(α) + cos2(α) (26)

That further reduces to the following true relation, valid for any value of α and γ

sin2(α) + cos2(α) = 1 (27)

This completes the proof, confirming that the extended sine function sin∗(α, γ) [given by Eq.(5)], the extended cosine
function cos∗(α, γ) [given by Eq.(11)] and the normalized extended hypotenuse, are given respectively as

x = cos∗(α, γ) = cos(α) +
cos(γ)
sin(γ)

sin(α) =
sin(α + γ)

sin(γ)
; y = sin∗(α, γ) =

sin(α)
sin(γ)

; z = 1 (28)

successfully satisfy the law of cosines z2 = y2 + x2 − 2xy cos(γ). In a practical sense, these expressions determine the
normalized (that is, when z = 1) lengths of the sides x and y of any scalene triangle, when the two internal angles —
reference α and obtuse γ — are known. It is worth noting that, since x2 + y2 = 1 yields the known relation sin2(α) +

cos2(α) = 1 (often usefull in simplifying trigonometric algebra), the law of cosines [re-written as y2−2xy cos(γ)+ x2 = z2]
yields an extended version of the same relation as

sin∗(α, γ)2
− 2 sin∗(α, γ) cos∗(α, γ) cos(γ) + cos∗(α, γ)2

= 1 (29)

4. Exercises

4.1 Direct Application

To demonstrate the robustness of the extended sine and cosine equations, various scalene triangles are drawn in Figure 3
superimposed on a common extended hypotenuse as side AB. Since the term ”hypotenuse” is commonly associated with
the longest side of a right triangle, the denomination for the equivalent longest side in a scalene triangle is by extension
hereforth defined as ”extended hypotenuse”. The drawing was created with the open-source software Geogebra (Eaton
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et al, 2021), with all the sides being measured by the inbuilt tool as per Figure 3. The obtuse angle γ for all triangles is
defined in purple (being ∠ACB that for the right triangle), and the reference internal angle α in green (being ∠CBA that
for the right triangle). It will be shown that by applying the values of these angles and the common extended hypotenuse
to Eqs.(28) that all the smaller sides of the various scalene triangles can be calculated with one application of the formulas.
This is the equivalent application to a scalene triangle, of the use of the sine and cosine functions to determine the sides
of a right triangle.

Figure 3. Various scalene triangles and their respective side lengths and internal angles

The following calculations are to be made using a calculator or any other means of computation (e.g. tablet, laptop, etc),
with the formation of a spreadsheet in open-source LibreOffice Calc as one possibility. Starting from the top right to the
bottom left, for the scalene triangle 4AFB the sides AF and FB are computed as follows

4AFB =

 x = FB = 1.72 cos∗(17.491, 149.233) = 1.72 sin(17.491+149.233)
sin(149.233) = 0.772

y = AF = 1.72 sin∗(17.491, 149.233) = 1.72 sin(17.491)
sin(149.233) = 1.011

(30)

4AEB =

 x = EB = 1.72 cos∗(33.271, 123.541) = 1.72 sin(33.271+123.541)
sin(123.541) = 0.813

y = AE = 1.72 sin∗(33.271, 123.541) = 1.72 sin(33.271)
sin(123.541) = 1.132

(31)

4ADB =

 x = DB = 1.72 cos∗(44.287, 106.092) = 1.72 sin(44.287+106.092)
sin(106.092) = 0.885

y = AD = 1.72 sin∗(44.287, 106.092) = 1.72 sin(44.287)
sin(106.092) = 1.250

(32)

4ACB =

 x = CB = 1.72 cos∗(54.462, 90) = 1.72 sin(54.462+90)
sin(90) = 1.000

y = AC = 1.72 sin∗(54.462, 90) = 1.72 sin(54.462)
sin(90) = 1.400

(33)

4AGB =

 x = GB = 1.72 cos∗(64.902, 73.242) = 1.72 sin(64.902+73.242)
sin(73.242) = 1.199

y = AG = 1.72 sin∗(64.902, 73.242) = 1.72 sin(64.902)
sin(73.242) = 1.627

(34)

4AHB =

 x = HB = 1.72 cos∗(70.675, 63.757) = 1.72 sin(70.675+63.757)
sin(63.757) = 1.369

y = AH = 1.72 sin∗(70.675, 63.757) = 1.72 sin(70.675)
sin(63.757) = 1.810

(35)
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4.2 Using a Circle to Find Projections

It’s common practice to determine sine and cosine values from a triangle by drawing a circle with the radius at a given
angle α to the horizontal axis, and measuring the vertically and horizontally projected lengths of its hypotenuse/radius
(Figure 4a). For example, in electrical engineering this is known as a phase vector diagram assessment applicable to
transformers, generatos and motors (Hava et al, 1999). However, until now this was restricted to an orthogonal axes
system (i.e., when γ = 90 deg). The extended sine and cosine functions allow one to corroborate the measured projections
drawn in a system of axes other than orthogonal (like for example, in Figure 4b for γ = 120 deg). Let us start by looking
at the conventional application of Figure 4a.

Figure 4. Circle approach to find sine and cosine values: (a) traditional [γ = 90 deg] and (b) extended [γ = 120 deg]

The conventional process of inscribing a right triangle into a circle, where the hypotenuse is the radius of the circle, allows
measurement of its sides. Such system enables a visual comparison of the sides of the different triangles, and the effect of
rotating the hypotenuse around the circle (i.e., as triangle’s internal reference angle changes) has on the triangle’s shape.
The tipical result shown in Figure 4a for an orthogonal base system (i.e., when γ = 90 deg) is computed as follows

γ = 90 deg


x = cos(20) = 0.940 y = sin(20) = 0.342 4AOO′′′

x = cos(45) = 0.707 y = sin(45) = 0.707 4BOO′′

x = cos(60) = 0.5 y = sin(60) = 0.866 4COO′

x = cos(90) = 0 y = sin(90) = 1 4DOO

(36)

When the axis system changes, where the y-axis rotates to 120 degree (for example) in quadrant II and IV, the sides of
the triangles also change accordingly. When thinking of the usefullness of such a system, one must consider the recently
published extended versions of the Pythagoras theorem (using triangles [Teia, 2021a] and using hexagons [Teia, 2021b])
and how these versions depart from the original Pythagoras theorem. If the triangles in Figure 4a are governed by the
Pythagoras theorem (i.e., γ = 90 deg), then the triangles in Figure 4b are governed by the extended Pythagoras theorem
using triangles (i.e., γ = 120 deg). As discussed in a previous publication (Teia, 2021a), the extended version differs from
the original in that it has a coupling area given by the term xy. In science, such a coupling term translates into an energetic
buffer that generates a lag in transformation of kinetic into potential energy and vice versa [e.g. refer to the workings of
the mass-spring system (Rayleigh 1945) and RLC electrical circuit (Rawlins 2000)]. These are extended topics which will
be discussed in a following publication. For the present study, the axes system of γ = 120 deg in Figure 4b, the sides of
the triangles are found the same way as above, except the functions used are Eqs.(28). Measuring the sides of the triangles
would result in the predicted values of

γ = 120 deg


x = cos∗(20, 120) =

sin(20+120)
sin(120) = 0.742 y = sin∗(20, 120) sin(20)

sin(120) = 0.395 4AO′O′′′

x = cos∗(45, 120) =
sin(45+120)

sin(120) = 0.299 y = sin∗(45, 120) sin(45)
sin(120) = 0.816 4BO′O′′

x = cos∗(60, 120) =
sin(60+120)

sin(120) = 0 y = sin∗(60, 120) sin(60)
sin(120) = 1 4CO′O′

x = cos∗(90, 120) =
sin(90+120)

sin(120) = −0.577 y = sin∗(90, 120) sin(90)
sin(120) = 1.155 4DO′O

(37)
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5. Conclusion

Trigonometry is — in its great majority — implicitly conditioned by orthogonality. This occurs via the inherent exclusive
connection of sine and cosine functions to the lengths of the two shorter sides of the (hypotenuse) normalized right-angled
triangles (defined by reference angle α and a fixed obtuse angle γ = π/2), and no others. This orthogonal expression of
trigonometry precludes the existance of a more general non-orthogonal counter-part of these same functions. Thus, the
goal of this article is to open doors for a new more expanded foundation by providing a wider perspective of the role
and definition of the functions sine and cosines, as they are extended to scalene triangles (defined by reference angle α
and a variable obtuse angle γ) — this in turn leads also to the formulation of extended expressions for their derivatives,
extended exponential functions, extended identity rules, extended hyperbolic sine and cosine functions, etc. From an
applied mathematics perspective, the extended sine and cosine functions and their solutions of the general governing
equation (of which the Pythagoras theorem is a particular case), allows a wider interpretation and modeling of cornerstone
physical systems like the spring-mass-damper system in mechanical engineering (encompassing vibration theory), and the
RLC (Resistance-Induction-Capacitance) circuit in electrical engineering — both being taught as part of the syllabus in
engineering at Universities worldwide. The usefullness of such extended functions reaches beyond these two systems into
other field of science that employ sine and cosine functions and right triangles. Some other possibilities are now briefly
described:

• In civil engineering, structures that are not perfectly vertical (e.g., a tower of a suspenssion bridge that inclined with
time) offer an ideal example where traditional sine and cosine functions cease to be valid (i.e., angle to horizontal
is no longer 90 degrees), and must be replaced by their extended sine and cosine versions.

• In aeronautics engineering, an horizontally flying aircraft being affected by a cross wind has a true air speed vector
tha differs from its ground speed vector. These three velocity components often form a scalene triangle from
which the normalized true and relative aircraft speed can be computed via their angles by employing the extended
sine and cosine functions. While if the absolute components could be determine trigonometrically otherwise, the
extended sine and cosine inherent their unique usefullness from the traditional sine and cosine in that they provide
a normalized relative size (which can then be scaled based on the extended hypotenuse) solely dependent on the
internal angles of the scalene triangle.

• In turbomachinery, velocity vector diagrams are tools used by aerospace engineers to design a turbine stage on
an aircraft engine. These diagrams link the relative and absolute air velocity vector exiting a stator to the spinning
velocity of the rotor, altogether forming a vectorial scalene triangle whose sides are governed by the Law of Cosines,
and can be determined by the direct application of the extended sine and cosine functions (when the magnitude of
the longest side is known along with two angles, alowing the determination of the projected smaller sides).

• In telecommunications, beamforming (and beam steering) of an antenna array is a capability computed via a wave
interference pattern that results in a signal directional high sensitivity or gain lobe. This mathematical process
comprises of sine functions measuring the time delay between antenna elements (via a right triangle of distances)
for beam forming, and also includes an artificial time delay for beam steering. The extended sine function could
replace this right triangle by a scalene triangle, whose difference to the aformentioned right triangle, would be
quantified by the departure of the angle γ from 90 degrees, which is the artificial delay quantified as an angle.

• In relativity physics, time dialation is expressed by an equation derived from the application of the Pythagoras
theorem to the example of a light clock on a train being withnessed by a stationary bystander. This establishes a
quadratic relation between the speed of light, the speed of the train and the relative stretched time interval, because
the train is displacing perpendicularly to the ”clock”s beam of light. If the vertical beam and train’s horizontal
velocity vectors can be altered, then a new variable γ (different from 90 degrees) can be added to the study of this
important problem, whose assessment can be readily assisted by the extended sine and cosine functions.

• In orbital mechanics, the relative position of three satellites (forming a scalene triangle between them) can be
tracked to have an optimum relative distance (which is known in its normalized form) by measuring their relative
angles using internal optical sensors (to be determined by employing the extended sine and cosine functions).

• In signal processing, the aerial transmission of data streams is often employed using quaternary signaling schemes,
like the quadrature phase-shift keying (QPSK). These make use of an in-phase signal I and a quadrature signal Q,
which are fixed at a phase of γ = 90 degrees to each other. By providing the ability to alter this angle γ between
the axis (to other than orthogonal), the present work provides the mathematical tools to alter the relative Q-I phase
to any angle, allowing therefore another degree of freedom that could insert more symbols per transmission, thus
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increasing the numbers of bits that can be combined (i.e., boost transmission bit rate without affecting bandwidth
requirements).

• In optical physics, Snell’s Law equates the ratio of refraction indexes of two mediums (i.e., n1/n2) to the ratio of
sines of the angles of an incident beam passing from one to the next (i.e., sin(θ2)/ sin(θ1)). In the new extended
trigonometric context, the ratio of sines could be combined into a single extended sine function [i.e., the ratio of
sine sin(θ2)/ sin(θ1) = sin∗(θ2, θ1)], where each refraction index is relatable to the internal acute and obtuse angles
of a scalene triangle.

Some of these examples are to be presented further in a separate article that is to be published in an engineering journal,
possibly The Journal of Open Engineering. The present paper offers the potential start of a new upgrade process of such
trigonometric functions (governed by the Pythagoras theorem — a particular case) into more general, and thus more
powerful and versatile versions of themselves (governed by the Law of Cosines — a general case). The present author
is on-track to present some of these upgrades, starting with the extended angle sum and difference identity rule for the
extended sine and cosine functions, followed by the explanation of the gamma derivative (which is a generalized version
of the classical derivative applicable to the extended sine and cosine functions). Both topics are expected to be published
in this journal, as extended articles in series to the present one.
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