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Abstract

The present article extends the applicability of the angle sum and difference identity rules sin(A ± B) and cos(A ± B)
beyond the particular case of a right-angled triangle into the general case of scalene triangles as sin∗(A ± B, γ) and
cos∗(A ± B, γ), adding the effect of independently varying both the reference angle α = A ± B and the obtuse angle γ.
Accompanied by appropriate theorems and proofs, the mathematical end result are four updated equations that supersede
the traditional expressions sin(A ± B) = sin(A) cos(b) ± cos(A) sin(B) and cos(A ± B) = cos(a) cos(B) ∓ sin(A) sin(B),
where the conventional sin(α) and cos(α) functions are replaced by the [already proven] extended versions sin∗(α, γ) and
cos∗(α, γ) enclosing modifications including two angles α and γ. An open-source program scripted in Octave is provided
for the verification of the derived expressions, including plotting the geometric results as a figure for both the cases of
angle summation and subtraction.
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1. Introduction

The discovery of the identity rules is intimately tied to the development of Trigonometry — a branch of mathematics that
studies the relationships between lengths and angles of sides of triangles. The etymology of the word trigonometry is
Trigonon (triangle) plus Metron (measure), both expressions originating from Latin derivatives of Greek words (Johnson,
2016). The angle sum and difference identity rules essentially establish an arithmetic expression between the normalized
sides (i.e. expressed in terms of sines and cosine functions) of two triangles superimposed in such a way that their
individual reference angles A and B add to form the reference angle A + B of the larger triangle resulting from the
superposition. The opposite is true when the angles are subtracted. Ptolomy theorem offers probably one of the oldest and
most well-known proof of the angle sum and difference formulas for sines and cosines (Joyce 2013). The identity rules
are a mathematical cornerstone in the Canadian educational system (Canadian Ministry of Education, 2020), making
this subject of interest to students and professionals alike. Other popular proofs are also widely available (Ren 1999,
Kung 2008, Smiley 2018, Smiley et al 2018), some presenting all six trigonometric angle sum and difference identities
in one drawing (Nelsen 2000). Research in this topic is still ongoing in modern mathematics, with new geometrical
developments of these trigonometric angle sum and difference identities being presented today (Ollerton 2018). For a
right-angled triangle, the angle sum and difference identity rules for α = A ± B are

sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B) (1)
cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B) (2)

All existing proofs share one common restrictive assumption — they all apply only to right-angle triangles comprising of
one variable reference angle α and one fixed obtuse angle of γ = π/2, invoking inherently the traditional forms of sin(α)
and cos(α) functions to establish a relation between the sides [governed by the Pythagoras theorem sin2(α)+cos2(α) = 1].
On the other hand, the sides of a scalene triangle (Figure 1) are interrelated by the extended expressions for the sin∗(α, γ)
and cos∗(α, γ) that were proved to be

sin∗(α, γ) =
sin(α)
sin(γ)

; cos∗(α, γ) = cos(α) +
cos(γ)
sin(γ)

sin(α) =
sin(α + γ)

sin(γ)
(3)

satisfying the more general governing equation that is the Law of Cosines sin∗(α, γ)2 − 2 sin∗(α, γ) cos∗(α, γ) cos(γ) +

cos∗(α, γ)2 = 1 (of which the Pythagoras theorem is a particular case with γ = π/2). From this outcome, the inher-
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ent question to ask is, how will the angle sum and difference identity rules look like when applied to scalene triangles
(governed by reference angle α = A ± B and obtuse angle γ)?

Figure 1. Extending the applicability of sine and cosine functions to scalene triangles [1].

2. Hypothesis

Just as there are angle sum and difference identity rules for sine and cosine functions that govern (the particular case
of) right-angled triangles, there must exist an equivalent set of identity rules for the extended sine and cosines functions
governing (the general case of) scalene triangles, which should naturally be derived from evolutive modifications into the
existing proofs of angle sum and difference identity rules.

3. Theory

Start with geometrical relations to define mathematical equations. Prove that they reduce back to the original form. First
this is done for the sum of angles, and second for the difference between angles.

3.1 Extended Angle Sum Identity Rule

Theorem 1 (Angle Sum Identity Rule for Scalene Triangles). If the extended sin∗(α, γ) and cos∗(α, γ) functions are the
normalized projected side lengths of a scalene triangle — where angle α is the reference angle formed between the unit
side and the projected extended diagonal or vertical sine side of the triangle, and the angle γ is the obtuse angle formed
between the two projected sine and cosine sides of the triangle — then, for the particular case where the reference angle
α is the result of the sum between smaller angles A and B such that α = A + B, the relationship between lengths given for
this particular case by the extended sine and cosine are given as

sin∗(A + B, γ) = sin∗(A, γ) cos∗(B, γ) + cos∗(A, π − γ) sin∗(B, γ) (4)
cos∗(A + B, γ) = cos∗(A, γ) cos∗(B, γ) − sin∗(A, π − γ) sin∗(B, γ) (5)

Proof. In addition to proving Theorem 1, it will also be shown that the extended functions sin∗(α, γ) and cos∗(α, γ) given
by Eqs.(4-5) reduce back, for the particular case of a right-angled triangle (where γ = π/2), to the original form and sin(α)
given cos(α) by Eqs.(3). Let us start by formulating the extended sine function sin∗(A + B, γ) from first principles.

Consider the scalene triangle 4ADB in Figure 2 that presents a reference angle ∠BAD ≡ α = A and an obtuse angle
∠ADB ≡ γ. A second scalene triangle 4ABC is also seen on top of the first 4ADB having as a reference angle CAB ≡ α =

B and obtuse angle ∠ABC ≡ γ. Here, the side AB of triangle 4ABC equals the longest side of triangle 4ADB. Together,
the triangles 4ABC and 4ADB define the larger triangle 4AFC, which has a reference angle ∠CAF ≡ α = A + B and
obtuse angle ∠AFC ≡ γ. The longest side AC of triangle 4AFC has a unit length. Overall, all the diagrams in this
article were drawn with the open-source software Geogebra (Feng 2014). Concerning triangle 4ABC, the side adjacent to
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α = B is AB = cos∗(B, γ), while its opposing side is BC = sin∗(B, α). For triangle 4ADB, the side adjacent to α = A is
AD = cos∗(B, γ) cos∗(A, γ), while its opposing side is

EF = BD = cos∗(B, γ) sin∗(A, γ) (6)

Figure 2. An angle summation within a scalene triangle and associated projections.

An important triangle formed by the interference between 4ADB and 4ABC is that of 4CEB at the top right corner, which
possesses an internal reference angle ∠ECB ≡ A and opposing angle between CE and EB of ∠CEB ≡ ∠ ≡ π − γ. For
triangle 4ABC, the side opposing angle α = B is CB = sin∗(B, γ). This means that the triangle 4CEB, which is defined
by angles α = A and π − γ, the length of the side CE adjacent to angle α = A is

CE = sin∗(B, γ) cos∗(A, π − γ) (7)

Now, the projection of the longest side AC of the triangle 4AFC opposing angle α = A + B is

CF = sin∗(A + B, γ) = EF + CE (8)

This means that when replacing the aforementioned expressions for CF [in Eq.(8)], CE [in Eq.(7)] and EF = BD [in
Figure 2 to the right], while at the same time re-arranging, the resulting expression for the extended angle sum identity
rule for sine — previously defined in Eq.(4) — is given as

sin∗(A + B, γ) = sin∗(A, γ) cos∗(B, γ) + cos∗(A, π − γ) sin∗(B, γ) (9)

where the extended functions sin∗(α, γ) and cos∗(α, γ) are defined in Eq.(3). This completes the first part of the proof. It
will now be shown that Eq.(9) reduces back to the already proven form of Eq.(3) with the reference angle being replaced
directly with α = A + B, or

sin∗(A + B, γ) =
sin(A + B)

sin(γ)
(10)

Start by defining the extended sine function sin∗(α, γ) for each of the two angles A and B

sin∗(A, γ) =
sin(A)
sin(γ)

; sin∗(B, γ) =
sin(B)
sin(γ)

(11)

At the same time, define the extended cosine function cos∗(α, γ) for angle B
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cos∗(B, γ) = cos(B) +
cos(γ)
sin(γ)

sin(B) (12)

Both Eq.(11) and Eq.(12) will be replaced in Eq.(9) at a later stage. For triangle 4CEB, the extended cosine function for
angle reference A and obtuse angle is π − γ has the expression

cos∗(A, π − γ) = cos(A) +
cos(π − γ)
sin(π − γ)

sin(A) (13)

where the angle difference identities between π and γ for sine and cosine are given by the following relations

sin(π − γ) = sin(π) cos(γ) − cos(π) sin(γ) = + sin(γ) (14)
cos(π − γ) = cos(π) cos(γ) + sin(π) sin(γ) = − cos(γ) (15)

Substituting these in Eq.(13) simplifies to

cos∗(A, π − γ) = cos(A) −
cos(γ)
sin(γ)

sin(A) (16)

Replacing Eq.(11), Eq.(12) and Eq.(16) into Eq.(9) gives

sin∗(A + B, γ) =

[
sin(A)
sin(γ)

][
cos(B) +

cos(γ)
sin(γ)

sin(B)
]

+

[
cos(A) −

cos(γ)
sin(γ)

sin(A)
][

sin(B)
sin(γ)

]
(17)

Expanding the terms between brackets

1
sin(γ)

sin(A) cos(B) +
1

sin(γ)
cos(γ)
sin(γ)

sin(B) sin(A) +
1

sin(γ)
cos(A) sin(B) −

1
sin(γ)

sin(A) sin(B)
cos(γ)
sin(γ)

(18)

And re-arranging, results in

1
sin(γ)

[
sin(A) cos(B) + cos(A) sin(B)

]
+

1
sin(γ)

cos(γ)
sin(γ)

[
sin(B) sin(A) − sin(B) sin(A)

]
(19)

The second term between brackets vanishes, reducing Eq.(17) to

sin∗(A + B, γ) =
1

sin(γ)

[
sin(A) cos(B) + cos(A) sin(B)

]
(20)

Knowing that the angle sum identity for sine is , further simplifies this expression to

sin∗(A + B, γ) =
sin(A + B)

sin(γ)
(21)

which is by definition the extended sine function sin∗(α, γ) with α = A + B [as stated in Eq.(10)]. The reduction of Eq.(9)
to Eq.(21) — a particular case of Eq.(3) that already proved to be true — implies that Eq.(9) is also inherently true. This
completes the first part of the proof concerning the extended sine function only.

Let us now advance to the extended cosine expression cos∗(A+B, γ) and in formulating its expression from first principles.
From Figure 2, the triangle 4CEB has a side opposing angle α = A equal to EB = FD = sin∗(B, γ) sin∗(A, π − γ). The
projection of the longest side AC of the triangle 4AFC adjacent to angle α = A + B is AF = cos∗(A + B, γ), which is also
the difference AF = AD − FD. Replacing the aforementioned expressions for AD [in Figure 2 at the bottom] and FD [in
Figure 2 to the right], while re-arranging, results in the required Eq.(5) [here conveniently renumbered as Eq.(22)]

cos∗(A + B, γ) = cos∗(A, γ) cos∗(B, γ) − sin∗(A, π − γ) sin∗(B, γ) (22)
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The extended cosine functions cos∗(A, γ) and cos∗(B, γ), and the extended sine function sin∗(B, γ), are defined in Eq.(12)
and Eq.(11), respectively. The remainder unknown term is the extended sine function sin∗(A, π − γ), which is defined by
the triangle 4CEB whose obtuse angle is π − γ (instead of the frequent γ), resulting in

sin∗(A, π − γ) =
sin(A)

sin(π − γ)
=

sin(A)
sin(γ)

(23)

Substituting Eq.(11), Eq.(12) and Eq.(23) into Eq.(22) gives

cos∗(A + B, γ) =

[
cos(A) +

cos(γ)
sin(γ)

sin(A)
][

cos(B) +
cos(γ)
sin(γ)

sin(B)
]
−

[
sin(A)
sin(γ)

][
sin(B)
sin(γ)

]
(24)

Expanding the terms betwen brackets

[
cos(A) cos(B) + cos(A)

cos(γ)
sin(γ)

sin(B) +
cos(γ)
sin(γ)

sin(A) cos(B) +
cos2(γ)
sin2(γ)

sin(A) sin(B)
]
−

[
sin(A) sin(B)

sin2(γ)

]
(25)

And with further re-arranging

[
cos(A) cos(B) + cos(A)

cos(γ)
sin(γ)

sin(B) +
cos(γ)
sin(γ)

sin(A) cos(B) +
cos2(γ)
sin2(γ)

sin(A) sin(B)
]
−

[
sin(A) sin(B)

sin2(γ)

]
(26)

Remembering that the sum traditional identity rule sin(A + B) = sin(A) cos(B) + cos(A) sin(B) and from the Pythagoras
Theorem cos2(γ) − 1 = − sin2(γ), the above expression further simplifies to

cos(A) cos(B) +
cos(γ)
sin(γ)

sin(A + B) − sin(A) sin(B) (27)

Knowing the other sum traditional identity rule cos(A + B) = cos(A) cos(B) − sin(A) sin(B) simplifies Eq.(27), with the
end result for Eq.(24) to be the desired outcome

cos∗(A + B, γ) = cos(A + B) +
cos(γ)
sin(γ)

sin(A + B) (28)

which is by definition the extended cosine function [as defined previously in Eq.(3)] for α = A + B. The reduction of
Eq.(22) to Eq.(28) — a particular case of Eq.(3) already proven to be true — implies that Eq.(22) is also inherently true.
This completes the proof.

3.2 Extended Angle Difference Identity Rule

Theorem 2 Angle Difference Identity Rule for Scalene Triangles). If the extended sin∗(α, γ) and cos∗(α, γ) functions are
the normalized projected side lengths of a scalene triangle — where angle α is the reference angle formed between the
unit side and the projected extended diagonal or vertical sine side of the triangle, and the angle γ is the obtuse angle
formed between the two projected sine and cosine sides of the triangle — then, for the particular case where the reference
angle is the result of the difference between smaller angles A and B such that α = A− B, the relationship between lengths
given for this particular case by the extended sine and cosine are given as

sin∗(A − B, γ) = sin∗(A, γ) cos∗(B, γ) − cos∗(A − π + 2γ, π − γ) sin∗(B, γ) (29)
cos∗(A − B, γ) = cos∗(A, γ) cos∗(B, γ) + sin∗(A − π + 2γ, π − γ) sin∗(B, γ) (30)

Proof. Let us start with the extended sine function sin∗(A − B, γ). Consider the scalene triangle 4ABD of reference angle
∠BAD ≡ α = A and obtuse angle ∠ADB ≡ γ in Figure 3. As seen before in Figure 2, the second scalene triangle 4ABC
of reference angle ∠BAC ≡ α = B and obtuse angle ∠ABC ≡ γ is formed on top of the first — this time inverted — such
that its smaller length AB equals the longest length of tringle 4ABD.

That is, the new triangle is the same as in Figure 2, except that it is mirrored about length AB. Together, their subtraction
defines the smaller triangle 4AFC of reference angle ∠CAF ≡ α = A − B and obtuse angle ∠AFC ≡ γ. The important
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Figure 3. An angle subtraction within a scalene triangle and associated projections.

difference from Figure 2 is that the internal angles of the triangle 4BEC have changed with the inversion, becoming
ε = A − π + 2γ for the internal reference angle ∠CBE and π − γ for the obtuse angle ∠BEC. The term obtuse is used
here to identify the angle playing the role of π/2 in a right-angled triangle. For a scalene triangle, this will change and
will not always be literally the case, but once the proof is complete it will show that Eq.(29) and Eq.(30) are both true
for any combination of α, γ ∈ <. In Figure 3, the oblique projection of the longest side AC of the triangle 4AFC is
CF = sin∗(A − B, γ), which is also the difference CF = BD − BE.

sin∗(A − B, γ) = sin∗(A, γ) cos∗(B, γ) − cos∗(A − π + 2γ, π − γ) sin∗(B, γ) (31)

We will now prove that Eq.(31) holds true for any reference angle α = A − B and obtuse angle γ where α, γ ∈ <. The
process is the same as before in section 3.1, except for the change of sign between the two products in Eq.(9) and the
extended cosine term in the second product that changes from cos∗(A, π − γ) to cos∗(A − π + 2γ, π − γ), as discussed due
to the changes in the angles of triangle 4BEC. This modified cosine term is first expanded using Eq.(3) to

cos∗(A − π + 2γ, π − γ) = cos(A − π + 2γ) +
cos(π − γ)
sin(π − γ)

sin(A − π + 2γ) (32)

Replacing expressions for sin(π − γ) from Eq.(14) and for cos(π − γ) from Eq.(15) gives

cos∗(A − π + 2γ, π − γ) = cos(A − π + 2γ) −
cos(γ)
sin(γ)

sin(A − π + 2γ) (33)

The terms sin(A − π + 2γ) and cos(A − π + 2γ) are further elaborated — where the angle α = A − π + 2γ is conveniently
re-written as the difference between two angles — by the traditional angle sum and difference identity rules [given by
Eq.(1) and Eq.(2)]. Starting with sin(A − π + 2γ), it gives

sin(A − π + 2γ) = sin(A) cos(π − 2γ) − cos(A) sin(π − 2γ) (34)

The terms with argument π − 2γ are expanded into

sin(π − 2γ) = sin(π) cos(2γ) − cos(π) sin(2γ) = + sin(2γ) (35)
cos(π − 2γ) = cos(π) cos(2γ) + sin(π) sin(2γ) = − cos(2γ) (36)

Substituting into Eq.(34) further simplifies it to

sin(A − π + 2γ) = − sin(A) cos(2γ) − cos(A) sin(2γ) (37)

Moreover, it is known that
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sin(2γ) = sin(γ) cos(γ) + cos(γ) sin(γ) = 2 sin(γ) cos(γ) (38)
cos(2γ) = cos(π) cos(2γ) + sin(π) sin(2γ) = cos2(γ) − sin2(γ) (39)

Which when replaced back into Eq.(37) gives

sin(A − π + 2γ) = − sin(A)
[

cos2(γ) − sin2(γ)
]
− cos(A)

[
2 sin(γ) cos(γ)

]
(40)

The same approach is used to determine cos(A − π + 2γ). The classical identity rule gives

cos(A − π + 2γ) = cos(A) cos(π − 2γ) + sin(A) sin(π − 2γ) (41)

Replacing sin(π − 2γ) from Eq.(35) and cos(π − 2γ) from Eq.(36) further simplifies Eq.(41) to

cos(A − π + 2γ) = − cos(A) cos(2γ) + sin(A) sin(2γ) (42)

The terms sin(2γ) and cos(2γ) are expanded with Eq.(38) and Eq.(39) giving

cos(A − π + 2γ) = − cos(A)
[

cos2(γ) − sin2(γ)
]

+ sin(A)
[
2 sin(γ) cos(γ)

]
(43)

Substituting the individual expressions for sin(A − π + 2γ) in Eq.(40) and cos(A − π + 2γ) in Eq.(43) into the original
expression of cos∗(A − π + 2γ, π − γ) in Eq.(33) results in

cos∗(A − π + 2γ, π − γ) = I + II =

= − cos(A)
[

cos2(γ) − sin2(γ)
]

+ sin(A)
[
2 sin(γ) cos(γ)

]
−

−
cos(γ)
sin(γ)

{
− sin(A)

[
cos2(γ) − sin2(γ)

]
− cos(A)

[
2 sin(γ) cos(γ)

]}
(44)

For convenience, this expression is decomposed into two parts. Let us start by simplifying Part I

Part I = − cos(A)
[

cos2(γ) − sin2(γ)
]

+ sin(A)
[
2 sin(γ) cos(γ)

]
(45)

which can be rewritten as

Part I = − cos(A) cos2(γ) + cos(A) sin2(γ) + 2 sin(γ) cos(γ) sin(A) (46)

Concerning Part II, it can be further simplified as

Part II = −
cos(γ)
sin(γ)

{
− sin(A)

[
cos2(γ) − sin2(γ)

]
− cos(A)

[
2 sin(γ) cos(γ)

]}
(47)

Knowing that cos2(γ) − sin2(γ) = 1 − 2 sin2(γ) further expands this — with some simplification — to

cos(γ)
sin(γ)

sin(A)
[
1 − 2 sin2(γ)

]
+ 2 cos2(γ) cos(A) (48)

which expands to

Part II =
cos(γ)
sin(γ)

sin(A) − 2 cos(γ) sin(γ) sin(A) + 2 cos2(γ) cos(A) (49)

Replacing back into the latest expression of cos∗(A − π + 2γ, π − γ) [given by Eq.(44)] both Part I [in Eq.(46)] and Part II
[in Eq.(49)] results in
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cos∗(A − π + 2γ, π − γ) = I + II =

= − cos(A) cos2(γ) + cos(A) sin2(γ) + 2 sin(γ) cos(γ) sin(A) +

+
cos(γ)
sin(γ)

sin(A) − 2 cos(γ) sin(γ) sin(A) + 2 cos2(γ) cos(A) (50)

The two terms with the common multiplier sin(γ) cos(γ) cancel, and those with cos2(γ) simplify to

cos(A) sin2(γ) +
cos(γ)
sin(γ)

sin(A) + cos2(γ) cos(A) (51)

Which can be re-arranged as

cos(A)
[

sin2(γ) + cos2(γ)
]

+
cos(γ)
sin(γ)

sin(A) (52)

Ultimately, this reduces Eq.(50) to

cos∗(A − π + 2γ, π − γ) = cos(A) +
cos(γ)
sin(γ)

sin(A) = cos∗(A, γ) (53)

Note that this allows the identity rule for the extended sine with angles α = A − B and γ — given initially by Eq.(31) —
to be rewritten as

sin∗(A − B, γ) = sin∗(A, γ) cos∗(B, γ) − cos∗(A, γ) sin∗(B, γ) (54)

Despite Eq.(54) being more convenient, for the purpose of future comparison the former version [Eq.(31)] will be used
during the remainder of this paper. Expanding the individual terms in Eq.(59) with Eq.(11) and Eq.(12) results in

sin∗(A − B, γ) =

[
sin(A)
sin(γ)

][
cos(B) +

cos(γ)
sin(γ)

sin(B)
]
−

[
cos(A) +

cos(γ)
sin(γ)

sin(A)
][

sin(B)
sin(γ)

]
(55)

which can be further elaborated to

1
sin(γ)

sin(A) cos(B) +
cos(γ)
sin(γ)

1
sin(γ)

sin(A) sin(B) −
1

sin(γ)
cos(A) sin(B) −

cos(γ)
sin(γ)

1
sin(γ)

sin(A) sin(B) (56)

By cancelling the terms with the common multiplier sin(A) sin(B) simplifies the original expression for sin∗(A − B, γ) [in
Eq.(31)] to

sin∗(A − B, γ) =
1

sin(γ)

[
sin(A) cos(B) − cos(A) sin(B)

]
(57)

And knowing that the angle difference identity for sine is sin(A − B) = sin(A) cos(B) − sin(B) cos(A), the final expression
becomes

sin∗(A − B, γ) =
sin(A − B)

sin(γ)
(58)

which is by definition the extended sine function sin∗(α, γ) with α = A − B. The reduction of Eq.(31) to Eq.(58) — a
particular case of Eq.(3) that already proved to be true — implies that Eq.(31) is also inherently true. This completes the
first part of the proof concerning the extended sine function only.

Let us now advance to the cosine expression cos∗(A − B, γ). In Figure 3, the horizontal projection of the unit side AC of
the triangle 4AFC given by AF = cos∗(A − B, γ) is given as the sum of two segments AF = AD + DF. According to
Figure 3, the segment AD results from a double projection (adjacent to angles A and B) of AC = 1 onto AB = cos∗(A, γ)
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that is then projected onto AD = cos∗(A, γ) cos∗(B, γ). Similarly, the segment AF also results from a double projection
(opposing angles A and ε = A − π + 2γ) of AC = 1 onto BC = sin∗(B, γ) that is then projected onto EC = DF =

sin∗(A − π + 2γ, π − γ) sin∗(B, γ). Adding the segments AD and DF results in

cos∗(A − B, γ) = cos∗(A, γ) cos∗(B, γ) + sin∗(A − π + 2γ, γ) sin∗(B, γ) (59)

We will now prove that Eq.(59) holds true for any reference angle α = A − B and obtuse angle γ where α, γ ∈ <. The
process is still the same as before, except for a sign change in Eq.(24) and the modified term sin∗(A − π + 2γ, γ), which
will now be expanded first as we reduce Eq.(59)

sin∗(A − π + 2γ, π − γ) =
sin(A − π + 2γ)

sin(π − γ)
(60)

The term sin(A − π + 2γ) was already determined and given by Eq.(40), here repeated for convenience

sin(A − π + 2γ) = − sin(A)
[

cos2(γ) − sin2(γ)
]
− cos(A)

[
2 sin(γ) cos(γ)

]
(61)

Substituting into Eq.(60) and replacing sin(π − γ) = sin(γ) [from Eq.(14)] gives

sin∗(A − π + 2γ, π − γ) =
− sin(A)

[
cos2(γ) − sin2(γ)

]
− cos(A)

[
2 sin(γ) cos(γ)

]
sin(γ)

The relation cos2(γ) − sin2(γ) = 1 − 2 sin2(γ) further reduces the right of Eq.(62) into

− sin(A)
[
1 − 2 sin2(γ)

]
sin(γ)

− 2 cos(A) cos(γ) (62)

Further re-arranging results in the transformation of Eq.(62) into the resulting expression

sin∗(A − π + 2γ, π − γ) = −
sin(A)
sin(γ)

+ 2 sin(A) sin(γ) − 2 cos(A) cos(γ) (63)

The various terms in Eq.(59) for the expanded angle subtraction identity rule or cos∗(A − B, γ) are expanded using the
expressions in Eq.(64), Eq.(11) and Eq.(12) giving

cos∗(A − B, γ) = I + II =

[
cos(A) +

cos(γ)
sin(γ)

sin(A)
][

cos(B) +
cos(γ)
sin(γ)

sin(B)
]

+

+

[
−

sin(A)
sin(γ)

+ 2 sin(A) sin(γ) − 2 cos(A) cos(γ)
][

sin(B)
sin(γ)

]
(64)

For convinience, Eq.(65) is divided into two part. The gradual simplification process starts by expanding Part I as

Part I = cos(B) cos(A) +
cos(γ)
sin(γ)

sin(A) cos(B) +
cos(γ)
sin(γ)

sin(B) cos(A) +
cos2(γ)
sin2(γ)

sin(A) sin(B) (65)

Knowing that cos2(γ) = 1 − sin2(γ) allows this to be re-written as

cos(B) cos(A) +
cos(γ)
sin(γ)

[
sin(A) cos(B) + sin(B) cos(A)

]
+

1 − sin2(γ)
sin2(γ)

sin(A) sin(B) (66)

With further simplifying, it becomes
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Part I = cos(B) cos(A) − sin(A) sin(B) +
cos(γ)
sin(γ)

[
sin(A) cos(B) + sin(B) cos(A)

]
+

1
sin2(γ)

sin(A) sin(B) (67)

Our attention moves to Part II of Eq.(65) given as

Part II =

[
−

sin(A)
sin(γ)

+ 2 sin(A) sin(γ) − 2 cos(A) cos(γ)
][

sin(B)
sin(γ)

]
(68)

Expanding the product between terms in brackets

−
sin(A)
sin(γ)

sin(B)
sin(γ)

+ 2 sin(A) sin(γ)
sin(B)
sin(γ)

− 2 cos(A) cos(γ)
sin(B)
sin(γ)

(69)

Re-arranging gives

Part II = −
1

sin2(γ)
sin(A) sin(B) + 2 sin(A) sin(B) − 2

cos(γ)
sin(γ)

cos(A) sin(B) (70)

Replacing Part I from Eq.(68) and Part II from Eq.(71) into the expression for cos∗(A − B, γ) given by Eq.(65) yieds

cos∗(A − B, γ) = cos(B) cos(A) − sin(A) sin(B) +
1

sin2(γ)
sin(A) sin(B) +

+
cos(γ)
sin(γ)

[
sin(A) cos(B) + sin(B) cos(A)

]
−

1
sin2(γ)

sin(A) sin(B) +

+2 sin(A) sin(B) − 2
cos(γ)
sin(γ)

cos(A) sin(B)

(71)

The terms multiplying 1/ sin2(γ) cancel, and the terms multiplying cos(γ)/ sin(γ) and sin(A) sin(B) also further simplify.
Re-organizing the remainder of the terms gives

cos∗(A − B, γ) = cos(B) cos(A) + sin(A) sin(B) +
cos(γ)
sin(γ)

[
sin(A) cos(B) − sin(B) cos(A)

]
(72)

Finally, replacing the traditional identity rule cos(A− B) = cos(B) cos(A) + sin(A) sin(B) and sin(A− B) = sin(A) cos(B)−
sin(B) cos(A) gives the final expression

cos∗(A − B, γ) = cos(A − B) +
cos(γ)
sin(γ)

sin(A − B) (73)

which is by definition the extended cosine function cos∗(α, γ) [as defined previously in Eq.(3)] with α = A−B. As before,
the reduction of Eq.(59) to Eq.(74) — a particular case of Eq.(12), already shown to be true — implies that Eq.(22) is also
inherently true. This completes the proof.

4. Summary

The traditional angle sum and difference identities for sine function and cosine function — with reference angle and
governed by the normalized Pythagoras Theorem — are

sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B) (74)
cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B) (75)
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These equations serve a particular case, valid only for a right-angled triangle (i.e., that is when the triangles obtuse angle is
γ = π/2). For a scalene triangle, the modified angle sum and difference identities for the extended sine function sin∗(α, γ)
and cosine function cos∗(α, γ) — with reference angle α = A ± B and obtuse angle γ [angle opposing the fixed unit side]
being governed by the normalized Law of Cosines sin∗(α, γ)2 − 2 sin∗(α, γ) cos∗(α, γ)c cos(γ) + cos∗(α, γ)2 = 1 — are for
summation

sin∗(A + B, γ) = sin∗(A, γ) cos∗(B, γ) + cos∗(A, π − γ) sin∗(B, γ) (76)
cos∗(A + B, γ) = cos∗(A, γ) cos∗(B, γ) − sin∗(A, π − γ) sin∗(B, γ) (77)

and for subtraction

sin∗(A − B, γ) = sin∗(A, γ) cos∗(B, γ) − cos∗(A − π + 2γ, π − γ) sin∗(B, γ) (78)
cos∗(A − B, γ) = cos∗(A, γ) cos∗(B, γ) + sin∗(A − π + 2γ, π − γ) sin∗(B, γ) (79)

where the extended sine function sin∗(α, γ) and extended cosine function cos∗(α, γ) are defined as

sin∗(α, γ) =
sin(α)
sin(γ)

; cos∗(α, γ) = cos(α) +
cos(γ)
sin(γ)

sin(α) =
sin(α + γ)

sin(γ)
(80)
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Appendix A

To facilitate the usage of the new extended rules presented in this article — highlighted by the summary in Chapter 4 —
a program was written with the open-source software Octave (Eaton et al 2021) and is enclosed below for users to easily
employ and analyze these fundamental equations applicable to scalene triangles. An example (assuming angles γ = 100
deg, A = 30 deg and B = 20 deg) of the end result of this program is shown in Figure 4 for the extended angle sum identity
rule, and in Figure 5 for the extended angle difference identity rule. These angles can be modified to the discretion of the
user in the appropriate control lines (number 4, 5 and 7) of the program. The program allows changes to these reference
angles A, B and γ, and computes and plots automatically the result as shown in Figure 4 and 5.

Please note that this program was written with Octave version 6.1.0 (x64) [which can be readily downloaded freely at
https://gnu.mirror.constant.com/octave/windows/], but it does not seem to load properly in the latest version 7.2.0 (the
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Figure 4. Example result of the program - the extended angle sum identity rule.

Figure 5. Example result of the program - the extended angle difference identity rule.
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drawGraph function does not load in the 7.2.0). Also, doing direct copy and paste of the entire code from a PDF reader
may replace the symbol ’ by ′, which will prevent the program from running. This is probably a result of the pdf format
exported by Miktex, and is simple to rectify. After copying and pasting the program into the Editor tab of Octave 6.1.0,
right click the mouse on the text and select ”Find and Replace”. In the new pop-up window, copy and paste the ′ (that is
seen in Octave) in the ”Find what:” box, and in the ”Replace with” box type the correct one ’ from your keyboard. Then
press the button ”Replace All” to correct the entire program. The program should now run without any error. Also, when
copying the entire code, you may inadvertently copy the page numbers 13 and 14; remember to delete them.

PROGRAM

clc, clear, format short
pkg load geometry;
pkg load matgeom;
disp(’ANGLE VARIABLES’)
disp(’Reference Angle A’), A=30 % CONTROL ANGLE A
disp(’Reference Angle B’), B=20 % CONTROL ANGLE B
disp(’Combined Reference Angle Alpha=A+B’), alpha=A+B
disp(’Obtuse Angle gamma’), gamma=100 % CONTROL ANGLE GAMMA
disp(’———————————————————————-’)
disp(’SINE AND COSINE’)
SineA=sind(A); disp(’sin(A)’); disp(SineA)
CosineA=cosd(A); disp(’cos(A)’); disp(CosineA)
SineB=sind(B); disp(’sin(B)’); disp(SineB)
CosineB=cosd(B); disp(’cos(B)’); disp(CosineB)
disp(’———————————————————————-’)
disp(’ORIGINAL ANGLE SUM AND DIFFERENCE IDENTITY RULES’)
% sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
disp(’sin(A+B)=sin(A)cos(B)+cos(A)sin(B)’)
IdSinPlus=sind(A)*cosd(B)+cosd(A)*sind(B); disp(IdSinPlus)
% sin(A-B)=sin(A)cos(B)-cos(A)sin(B)
disp(’sin(A-B)=sin(A)cos(B)-cos(A)sin(B)’)
IdSinMinus=sind(A)*cosd(B)-cosd(A)*sind(B); disp(IdSinMinus)
% cos(A+B)=cos(A)cos(B)-sin(A)sin(B)
disp(’cos(A+B)=cos(A)cos(B)-sin(A)sin(B)’)
IdCosPlus=cosd(A)*cosd(B)-sind(A)*sind(B); disp(IdCosPlus)
% cos(A+B)=cos(A)cos(B)-sin(A)sin(B)
disp(’cos(A-B)=cos(A)cos(B)+sin(A)sin(B)’)
IdCosMinus=cosd(A)*cosd(B)+sind(A)*sind(B); disp(IdCosMinus)
disp(’———————————————————————-’)
disp(’EXTENDED SINE AND COSINE’)
ExtSineA=sind(A)/sind(gamma); disp(’sin*(A,gamma)’); disp(ExtSineA)
ExtCosineA=cosd(A)+cosd(gamma)/sind(gamma)*sind(A); disp(’cos*(A,gamma)’);
disp(ExtCosineA)
ExtSineB=sind(B)/sind(gamma); disp(’sin*(B,gamma)’); disp(ExtSineB)
ExtCosineB=cosd(B)+cosd(gamma)/sind(gamma)*sind(B); disp(’cos*(B,gamma)’);
disp(ExtCosineB)
ExtSineAPigamma=sind(A)/sind(180-gamma); disp(’sin*(A,pi-gamma)’); disp(ExtSineAPigamma)
ExtCosineAPigamma=cosd(A)+cosd(180-gamma)/sind(180-gamma)*sind(A);
disp(’cos*(A,pi-gamma)’); disp(ExtCosineAPigamma)
ExtSineAPigammaMod=sind(A-180+2*gamma)/sind(180-gamma);
disp(’sin*(A-pi+2*gamma,pi-gamma)’); disp(ExtSineAPigammaMod)
ExtCosineAPigammaMod=cosd(A-180+2*gamma)+cosd(180-gamma)/sind(180-gamma)*sind(A-180+2*gamma);
disp(’cos*(A-pi+2*gamma,pi-gamma)’);
disp(ExtCosineAPigammaMod)
disp(’———————————————————————-’)
disp(’EXTENDED ANGLE SUM AND DIFFERENCE IDENTITY RULES’)
% sin*(A+B,gamma)=sin*(A,gamma)cos*(B,gamma)+cos*(A,gamma-gamma)sin*(B,gamma)
disp(’sin*(A+B,gamma)=sin*(A,gamma)cos*(B,gamma)+cos*(A,pi-gamma)sin*(B,gamma)’)
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ExtIdSinPlus=ExtSineA*ExtCosineB+ExtCosineAPigamma*ExtSineB; disp(ExtIdSinPlus)
% cos*(A+B,gamma)=cos*(A,gamma)cos*(B,gamma)-sin*(A,gamma-gamma)sin*(B,gamma)
disp(’cos*(A+B,gamma)=cos*(A,gamma)cos*(B,gamma)-sin*(A,pi-gamma)sin*(B,gamma)’)
ExtIdCosPlus=ExtCosineA*ExtCosineB-ExtSineAPigamma*ExtSineB; disp(ExtIdCosPlus)
% sin*(A-B,gamma)=sin*(A,gamma)cos*(B,gamma)-cos*(A-pi+2gamma,pi-gamma)sin*(B,gamma)
disp(’sin*(A-B,gamma)=sin*(A,gamma)cos*(B,gamma)-cos*(A-pi+2gamma,pi-gamma)sin*(B,gamma)’)
ExtIdSinMinus=sind(A)*ExtCosineB-ExtCosineAPigammaMod*ExtSineB; disp(ExtIdSinMinus)
% cos*(A-B,gamma)red=cos*(A,gamma)cos*(B,gamma)+sin*(A-pi+2gamma,pi-gamma)sin*(B,gamma)
disp(’cos*(A-B,gamma)=cos*(A,gamma)cos*(B,gamma)+sin*(A-pi+2*gamma,pi-gamma)sin*(B,gamma)’)
ExtIdCosMinus=ExtCosineA*ExtCosineB+ExtSineAPigammaMod*ExtSineB; disp(ExtIdCosMinus)
figure(1)
% PLOTTING SUM RULE
subplot(1,2,1)
disp(’———————————————————————-’)
disp(’GRAPH NODES FOR PLOTTING EXTENDED SUM IDENTITY RULE’)
xA=0, yA=0 % Point A
xB=ExtCosineB*cosd(A), yB=ExtCosineB*sind(A) % Point B
xC=IdCosPlus, yC=IdSinPlus % Point C
xD=ExtCosineA*ExtCosineB, yD=0 % Point D
xE=ExtCosineB*cosd(A)-ExtSineAPigamma*ExtSineB, yE=ExtCosineB*sind(A) % Point E
xF=ExtIdCosPlus, yF=0 % Point F
Nodes = [ xA, yA; xB, yB; xC, yC; xD, yD; xE, yE; xF, yF];
Edges = [1, 2; 1, 3; 1, 4; 2, 3; 2, 4];
g = drawGraph(Nodes, Edges);
Nodes1 = [ 0, 0; xC, yC; xF, yF]; Edges1 = [1, 2; 1, 3; 2, 3];
g1 = drawGraph(Nodes1,Edges1);
Nodes2 = [ xB, yB; xE, yE]; Edges2 = [1, 2];
g2 = drawGraph(Nodes2,Edges2);
set(g1, ’markerfacecolor’, ’g’, ’markersize’, 50, ’linewidth’, 5);
set(g2, ’linestyle’, ’:’, ’Color’, ’blue’);
text(0.01,0.07,’A’,’Color’,’red’,’FontSize’,26)
text(xB+0.01,1.03*yB,’B’,’Color’,’red’,’FontSize’,26)
text(xC+0.01,1.03*yC,’C’,’Color’,’red’,’FontSize’,26)
text(xD+0.01,0.03,’D’,’Color’,’red’,’FontSize’,26)
text(xE+0.01,1.03*yE,’E’,’Color’,’red’,’FontSize’,26)
text(xF+0.01,0.03,’F’,’Color’,’red’,’FontSize’,26)
text(0.15*xC,0.04*yC, num2str(A),’Color’,’green’,’FontSize’,26)
text(0.15*xC,0.13*yC, num2str(B),’Color’,’green’,’FontSize’,26)
text(xF-0.08,0.03, num2str(gamma),’Color’,’magenta’,’FontSize’,26)
if max(xD,xF)>1 top=max(xD,xF), else top=1 end
xlim([0 top]); ylim([0 top]), axis square
title(’Extended Angle SUM Identity Rule’,’FontSize’,14)
set(gca,’FontSize’,20)
strAt=strcat(’ A=’,num2str(A),’deg’);
strBt=strcat(’ B=’,num2str(B),’deg’);
strAlphaP=strcat(’ Alpha=A+B=’,num2str(A+B),’deg’);
strGammat=strcat(’ Gamma=’,num2str(gamma),’deg’);
text(0.1,0.95,strGammat,’Color’,’magenta’,’FontSize’,20)
text(0.37,0.95,strAt,’Color’,’green’,’FontSize’,20)
text(0.53,0.95,strBt,’Color’,’green’,’FontSize’,20)
text(0.7,0.95,strAlphaP,’Color’,’red’,’FontSize’,20)
strIdSinPlus=strcat(’ FC=sin*(A+B,gamma)=’,num2str(ExtIdSinPlus),’ —’);
strIdCosPlus=strcat(’ AF=cos*(A+B,gamma)=’,num2str(ExtIdCosPlus));
strRulesP=strcat(’AC=1 —’,strIdSinPlus,strIdCosPlus)
text(0.05,0.9,strRulesP,’Color’,’blue’,’FontSize’,20)
text(xF/2-0.1,0.03,’cos*(A+B,gamma)’,’Color’,’blue’,’FontSize’,20)
text(xF/2+0.04,yC/3,’sin*(A+B,gamma)’,’Color’,’blue’,’FontSize’,20)
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text(xC/2-0.02,yC/2+0.05,’1’,’Color’,’blue’,’FontSize’,20)
% PLOTTING DIFFERENCE RULE
subplot(1,2,2)
disp(’———————————————————————-’)
disp(’GRAPH NODES FOR PLOTTING EXTENDED DIFFERENCE IDENTITY RULE’)
xAm=0, yAm=0 % Point A
xBm=ExtCosineB*cosd(A), yBm=ExtCosineB*sind(A) % Point B
xCm=IdCosMinus, yCm=IdSinMinus % Point C
xDm=ExtCosineA*ExtCosineB, yDm=0 % Point D
xEm=ExtCosineA*ExtCosineB-ExtIdSinMinus*cosd(gamma), yEm=IdSinMinus % Point E
xFm=ExtIdCosMinus, yFm=0 % Point F
NodesM = [ xAm, yAm; xBm, yBm; xCm, yCm; xDm, yDm; xEm, yEm; xFm, yFm];
EdgesM = [1, 2; 1, 3; 1, 4; 2, 3; 2, 4];
gm = drawGraph(NodesM, EdgesM);
Nodes1M = [ 0, 0; xCm, yCm; xFm, yFm];
Edges1M = [1, 2; 1, 3; 2, 3];
g1m = drawGraph(Nodes1M,Edges1M);
Nodes2M = [ xCm, yCm; xEm, yEm]; Edges2M = [1, 2];
g2m = drawGraph(Nodes2M,Edges2M);
set(g1m, ’markerfacecolor’, ’g’, ’markersize’, 50, ’linewidth’, 5);
set(g2m, ’linestyle’, ’:’, ’Color’, ’blue’);
text(0.006,0.04,’A’,’Color’,’red’,’FontSize’,26)
text(xBm+0.01,1.03*yBm,’B’,’Color’,’red’,’FontSize’,26)
text(xCm+0.01,1.03*yCm,’C’,’Color’,’red’,’FontSize’,26)
text(xDm+0.01,0.03,’D’,’Color’,’red’,’FontSize’,26)
text(xEm+0.01,1.03*yEm,’E’,’Color’,’red’,’FontSize’,26)
text(xFm+0.01,0.03,’F’,’Color’,’red’,’FontSize’,26)
text(0.15*xC,0.05*yC, num2str(A),’Color’,’green’,’FontSize’,26)
text(0.25*xC,0.03*yC, num2str(-B),’Color’,’green’,’FontSize’,26)
text(xFm-0.08,0.03, num2str(gamma),’Color’,’magenta’,’FontSize’,26)
if max(xD,xF)>1 top=max(xD,xF), else top=1 end
xlim([0 top]); ylim([0 top]), axis square
title(’Extended Angle DIFFERENCE Identity Rule’,’FontSize’,14)
set(gca,’FontSize’,20)
strAt=strcat(’ A=’,num2str(A),’deg’);
strBt=strcat(’ B=’,num2str(-B),’deg’);
strAlphaM=strcat(’ Alpha=A-B=’,num2str(A-B),’deg’);
strGammat=strcat(’ Gamma=’,num2str(gamma),’deg’);
text(0.1,0.95,strGammat,’Color’,’magenta’,’FontSize’,20)
text(0.37,0.95,strAt,’Color’,’green’,’FontSize’,20)
text(0.53,0.95,strBt,’Color’,’green’,’FontSize’,20)
text(0.7,0.95,strAlphaM,’Color’,’red’,’FontSize’,20)
strIdSinMinus=strcat(’ FC=sin*(A-B,gamma)=’,num2str(ExtIdSinMinus),’ —’);
strIdCosMinus=strcat(’ AF=cos*(A-B,gamma)=’,num2str(ExtIdCosMinus));
strRulesM=strcat(’AC=1 —’,strIdSinMinus,strIdCosMinus)
text(0.05,0.9,strRulesM,’Color’,’blue’,’FontSize’,20)
text(xFm/2-0.1,0.03,’cos*(A-B,gamma)’,’Color’,’blue’,’FontSize’,20)
text(xFm-0.24,yCm/3+0.01,’sin*(A-B,gamma)’,’Color’,’blue’,’FontSize’,20)
text(xCm/2,yCm/2+0.04,’1’,’Color’,’blue’,’FontSize’,20)
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