Cubic and Quadratic Equations and Zeta Function Zeros

Shaimaa said soltan ${ }^{1}$
${ }^{1}$ Computer Engineer, Toronto, Canada
Correspondence: Shaimaa Soltan, 3050 Constitution Blvd, Mississauga, ON., L4Y 3X1, Canada

Received: August 14, 2022 Accepted: September 15, 2022 Online Published: September 22, 2022
doi:10.5539/jmr.v14n5p8
URL: https://doi.org/10.5539/jmr.v14n5p8

Abstract

In this paper, we will study a partial sum modulus distribution for a specific natural number set using a dynamically sliding window. Then we will construct a cubic equation from this distribution and a formula to calculate this cubic equation zero. Then we will go through some applications of this Cubic equation using the basic algebraic concepts to explain the distribution of natural numbers.

First part in this paper, we will interduce a partial sums modulus distribution for natural numbers using a dynamic sliding window as a parameter to explore the natural numbers distribution. As a simpler way of studying the distribution of a multi dynamic subsets inside natural numbers domain.
Second part in this paper, we will interpret this distribution into a quadratic and cubic equations and twin cubic equation concept clarification, then will use these two concepts to explain the distribution of zeros on the Zeta function strip line.
In the last part, we will go through some applications for this distribution one of them will be an example of getting prime number factors using a partial sum of specific series of odd numbers.
Keywords: Prime Numbers, Composite Prime Numbers, Prime Number Distribution, Zeta function

1. Introduction

1.1 Introduce the Problem

Understanding numbers distribution is not clear and is a missing part of the number system theory.
We only have two main basic concepts for natural numbers; numbers are (even numbers or odd numbers).
These main two concepts alone are not enough to get a full understanding of natural numbers distribution.
To understand natural numbers distribution more, we will study a dynamical sliding window partial sum reminder distribution to find out how numbers are behaving inside a closed sliding window then we will parametrize this window to get distribution in terms of this window size as a parameter.
Instead of studying the numbers separately, we are going to study partial sum reminder distribution by taking a partial sum using a sliding window and then find the reminder for each partial sum window to the first element in the sliding window.

0	1	121	3	5	7	9	11	13
1	2	3	5	7	9	11	13	15
2	3	5	7	9	11	13	15	17
3	5	7	9	11	13	15	17	19
5	7	9	11	13	15	17	19	21
7	9	11	13	15	17	19	21	23
9	11	13	15	17	19	21	23	25
11	13	15	17	19	21	23	25	27
13	15	17	10	21	23	25	27	30
15	17	19	21	23	25	27	29	31
17	19	21	23	25	27	29	31	33
19	21	23	25	27	29	31	33	35
21	23	25	27	29	31	33	35	37
23	25	27	29	31	33	35	37	39
25	27	29	31	33	35	37	39	41
27	29	31	33	35	37	39	41	43
29	31	33	35	37	39	41	43	45
31	33	35	37	39	41	43	45	47
33	35	37	39	41	43	45	47	49
35	37	39	41	43	45	47	49	51
37	39	41	43	45	47	49	51	53
39	41	43	45	47	49	51	53	55
41	43	45	47	49	51	53	55	57
43	45	47	49	51	53	55	57	59
45	47	49	51	53	55	57	59	61
47	49	51	53	55	57	59	61	63
49	51	53	Ss	57	59	61	63	65
51	53	55	57	59	61	63	65	67
53	55	57	59	61	63	65	67	69
55	57	59	61	63	65	67	69	71
57	59	61	63	65	67	69	71	73
59	61	63	65	67	69	71	73	75
61	63	65	67	69	71	73	75	77
63	65	67	69	71	73	75	77	79

Any sliding window has size parameter called (W). this sliding window will produce a multi subsets as it moves along this natural number set $\mathrm{N}=\{0,1,2,3,5,7,9,11,13,15,17,19 \ldots\}$, which is odd numbers set but with number 2 (even) and number 0 added to this set.

For example, a partial sum with a sliding window of size $(\mathrm{W}=3)$.
If we started at $\mathrm{N}=0$ (first element in the set), we get a new set of subsets, each of size 3 and these subsets sums is a set $\mathrm{S}_{0}=\{(0+1+2),(1+2+3),(2+3+5),(3+5+7),(5+7+9) \ldots\}$
If we started from $N=1$ (second element in the set) and $W=3$, we get another set $S_{1=}=\{(1+2+3),(2+3+5),(3+5+7)$, $(5+7+9) \ldots$.
Then for each subset sum we will take the modulus to the first element in this subset for the specific window size if >0 other else the value will be $=0$.
So, For $\mathrm{S}_{0}=\{(0+1+2),(1+2+3),(2+3+5),(3+5+7),(5+7+9),(7+9+11),(9+11+13) \ldots\}$
The modulus set of S_{0} will be $\mathrm{S}_{\mathrm{M} 0}=\{0,6 \bmod (1), 10 \bmod (2), 15 \bmod (3), 21 \bmod (5), 27 \bmod (7), 33 \bmod (9), 39 \bmod$ $(11), \ldots\} \mathrm{S}_{\mathrm{M} 0}=\{0,0,0,0,1,6,6,6,6 \ldots\}$
For $S_{1}=\{(1+2+3),(2+3+5),(3+5+7),(5+7+9),(7+9+11),(9+11+13) \ldots\}$
The modulus set of $\mathrm{S}_{\mathrm{M} 0}=\{6 \bmod (1), 10 \bmod (2), 15 \bmod (3), 21 \bmod (5), 27 \bmod (7), 33 \bmod (9), 39 \bmod (11), \ldots\}$ $\mathrm{S}_{\mathrm{M} 1}=\{0,0,0,1,6,6,6,6 \ldots\}$
In Figure 1., we study window ($\mathrm{W}=3$) for $\mathrm{S}_{0}, \mathrm{~S}_{\mathrm{M} 0}, \mathrm{~S}_{1}, \mathrm{~S}_{\mathrm{M} 1}, \mathrm{~S}_{2}, \mathrm{~S}_{\mathrm{M} 2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{M} 3} \mathrm{~S}_{5}, \mathrm{~S}_{\mathrm{M} 5}, \mathrm{~S}_{7}$, and $\mathrm{S}_{\mathrm{M} 7}$ from left to right.

3	Window																
3		3	6	0		10	0		15	0		21	0		27	0	
6	0	5	10	0		15	0		21	1		27	2		33	3	
10	0	7	15	0		21	1		27	6	3	33	5		39	4	
15	0	9	21	1		27	6	2	33	6		39	3		45	0	
21	1	11	27	6	1	33	6		39	6		45	1.		51	7	
27	6	0	33	6		39	6		45	6		51	12	5	57	5	
33	6	15	39	6		45	6		51	6		57	12		63	3	
39	6		45	6		51	6		57	6		63	12		69	1	
45	6		51	6		57	6		63	6		69	12		75	18	7
51	6		57	6		63	6		69	6		75	12		81	18	
57	6		63	6		69	6		75	6		81	12		87	18	
63	6		69	6		75	6		81	6		87	12		93	18	
69	6		75	6		81	6		87	6		93	12		99	18	
75	6		81	6		87	6		93	6		99	12		105	18	
81	6		87	6		93	6		99	6		105	12		111	18	
87	6		93	6		99	6		105	6		111	12		117	18	
93	6		99	6		105	6		111	6		117	12		123	18	
99	6		105	6		111	6		117	6		123	12		129	18	
105	6		111	6		117	6		123	6		129	12		135	18	
111	6		117	6		123	6		129	6		135	12		141	18	
117	6		123	6		129	6		135	6		141	12		147	18	
123	6		129	6		135	6		141	6		147	12		153	18	
129	6		135	6		141	6		147	6		153	12		159	18	
135	6		141	6		147	6		153	6		159	12		165	18	
141	6		147	6		153	6		159	6		165	12		171	18	
147	6		153	6		159	6		165	6		171	12		177	18	
153	6		159	6		165	6		171	6		177	12		183	18	
159	6		165	6		171	6		177	6		183	12		189	18	
165	6		171	6		177	6		183	6		189	12		195	18	
171	6		177	6		183	6		189	6		195	12		201	18	
177	6		183	6		189	6		195	6		201	12		207	18	
183	6		189	6		195	6		201	6		207	12		213	18	
189	6		195	6		201	6		207	6		213	12		219	18	
195	6		201	6		207	6		213	6		219	12		225	18	
201	6		207	6		213	6		219	6		225	12		231	18	
207	6		213	6		219	6		225	6		231	12		237	18	
213	6		219	6		225	6		231	6		237	12		243	18	
219	6		225	6		231	6		237	6		243	12		249	18	
225	6		231	6		237	6		243	6		249	12		255	18	
231	6		237	6		243	6		249	6		255	12		261	18	

In Figure 2., we study window ($\mathrm{W}=4$) for $\mathrm{S}_{0}, \mathrm{~S}_{\mathrm{M} 0}, \mathrm{~S}_{1}, \mathrm{~S}_{\mathrm{M} 1}, \mathrm{~S}_{2}, \mathrm{~S}_{\mathrm{M} 2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{M} 3} \mathrm{~S}_{5}, \mathrm{~S}_{\mathrm{M} 5}, \mathrm{~S}_{7}$, and $\mathrm{S}_{\mathrm{M} 7}$ from left to right.

4	Window	0	4	Window	1	4	Window	2	4	Winodw	3	4	Window	5	4	Window	7
6	"\#DIV/o!		11	0		17	1		24	0		32	2		40	1	
11	0		17	1		24	0		32	2		40	0		48	3	
17	1		24	0		32	2		40	5		48	6		56	0	
24	0		32	2		40	5		48	3		56	2		64	1	
32	2		40	5		48	3		56	1		64	9		72	6	
40	5		48	3		56	1		64	12	3	72	7		80	2	
48	3		56	1		64	12	2	72	12		80	5		88	13	
56	1		64	12	1	72	12		80	12		88	3		96	11	
64	12	0	72	12		80	12		88	12		96	1		104	9	
72	12		80	12		88	12		96	12		104	20	5	112	7	
80	12		88	12		96	12		104	12		112	20		120	5	
88	12		96	12		104	12		112	12		120	20		128	3	
96	12		104	12		112	12		120	12		128	20		136	1	
104	12		112	12		120	12		128	12		136	20		144	28	7
112	12		120	12		128	12		136	12		144	20		152	28	
120	12		128	12		136	12		144	12		152	20		160	28	
128	12		136	12		144	12		152	12		160	20		168	28	
136	12		144	12		152	12		160	12		168	20		176	28	
144	12		152	12		160	12		168	12		176	20		184	28	
152	12		160	12		168	12		176	12		184	20		192	28	
160	12		168	12		176	12		184	12		192	20		200	28	
168	12		176	12		184	12		192	12		200	20		208	28	
176	12		184	12		192	12		200	12		208	20		216	28	
184	12		192	12		200	12		208	12		216	20		224	28	
192	12		200	12		208	12		216	12		224	20		232	28	
200	12		208	12		216	12		224	12		232	20		240	28	
208	12		216	12		224	12		232	12		240	20		248	28	
216	12		224	12		232	12		240	12		248	20		256	28	
224	12		232	12		240	12		248	12		256	20		264	28	
232	12		240	12		248	12		256	12		264	20		272	28	
240	12		248	12		256	12		264	12		272	20		280	28	
248	12		256	12		264	12		272	12		280	20		288	28	
256	12		264	12		272	12		280	12		288	20		296	28	
264	12		272	12		280	12		288	12		296	20		304	28	
272	12		280	12		288	12		296	12		304	20		312	28	
280	12		288	12		296	12		304	12		312	20		320	28	
288	12		296	12		304	12		312	12		320	20		328	28	
296	12		304	12		312	12		320	12		328	20		336	28	
304	12		312	12		320	12		328	12		336	20		344	28	
312	12		320	12		328	12		336	12		344	20		352	28	

In Figure 3., we study window (W=5) for $\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{M} 1}, \mathrm{~S}_{2}, \mathrm{~S}_{\mathrm{M} 2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{M} 3} \mathrm{~S}_{5}, \mathrm{~S}_{\mathrm{M} 5}, \mathrm{~S}_{7}$, and $\mathrm{S}_{\mathrm{M} 7}$ from left to right.

	Window	1		Window	2		Window	3	5	Window	5		window	7
11	\#DIV/0!		18	0		35	2		45	0		55	1	
18	0		26	0		45	0		55	0		65	0	
26	0		35	2		55	6		65	2		75	5	
35	2		45	0		65	2		75	3		85	4	
45	0		55	6		75	9		85	8		95	7	
55	6		65	2		85	7		95	4		105	1	
65	2		75	9		95	5		105	0		115	10	
75	9		85	7		105	3		115	13		125	6	
85	7		95	5		115	1		125	11		135	2	
95	5		105	3		125	20	3	135	9		145	19	
105	3		115	1		135	20		145	7		155	17	
115	1		125	20	2	145	20		155	5		165	15	
125	20	1	135	20		155	20		165	3		175	13	
135	20		145	20		165	20		175	1		185	11	
145	20		155	20		175	20		185	30	5	195	9	
155	20		165	20		185	20		195	30		205	7	
165	20		175	20		195	20		205	30		215	5	
175	20		185	20		205	20		215	30		225	3	
185	20		195	20		215	20		225	30		235	1	
195	20		205	20		225	20		235	30		245	40	7
205	20		215	20		235	20		245	30		255	40	
215	20		225	20		245	20		255	30		265	40	
225	20		235	20		255	20		265	30		275	40	
235	20		245	20		265	20		275	30		285	40	
245	20		255	20		275	20		285	30		295	40	
255	20		265	20		285	20		295	30		305	40	
265	20		275	20		295	20		305	30		315	40	
275	20		285	20		305	20		315	30		325	40	
285	20		295	20		315	20		325	30		335	40	
295	20		305	20		325	20		335	30		345	40	
305	20		315	20		335	20		345	30		355	40	
315	20		325	20		345	20		355	30		365	40	
325	20		335	20		355	20		365	30		375	40	
335	20		345	20		365	20		375	30		385	40	
345	20		355	20		375	20		385	30		395	40	
355	20		365	20		385	20		395	30		405	40	
365	20		375	20		395	20		405	30		415	40	
375	20		385	20		405	20		415	30		425	40	
385	20		395	20		415	20		425	30		435	40	
395	20		405	20		425	20		435	30		445	40	

In Figure 4., we study window (W=6) for $\mathrm{S}_{0}, \mathrm{~S}_{\mathrm{M} 0}, \mathrm{~S}_{1}, \mathrm{~S}_{\mathrm{M} 1}, \mathrm{~S}_{2}, \mathrm{~S}_{\mathrm{M} 2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{M} 3} \mathrm{~S}_{5}, \mathrm{~S}_{\mathrm{M} 5}, \mathrm{~S}_{7}$, and $\mathrm{S}_{\mathrm{M} 7}$ from left to right.

In Figure 5., we study window $(W=1)$ for $\mathrm{S}_{0}, \mathrm{~S}_{\mathrm{M} 0}, \mathrm{~S}_{1}, \mathrm{~S}_{\mathrm{M} 1}, \mathrm{~S}_{2}, \mathrm{~S}_{\mathrm{M} 2}, \mathrm{~S}_{3}, \mathrm{~S}_{\mathrm{M} 3} \mathrm{~S}_{5}, \mathrm{~S}_{\mathrm{M} 5}, \mathrm{~S}_{7}$, and $\mathrm{S}_{\mathrm{M} 7}$ from left to right.

Window		1 Window	1		Window	2		Window	3		1 Window	5		Window		7		Window	9		1 Window	11		1 Window	13		1 Window	15		1 Window	17		Window	19		Windov
\#DIV/0!		2	01	4		02	6	0	0.3	10	0	3	14		2	3	18	0	3	22	2	13	26	6	23	30		0	34	4.1	3	38	2	23	42	
0		4	0	6	60	0	10	0	05	14	4	5	18		3	5	22	2	5	26	6	15	30	0	05	34	4	45	38	3	5	42	2	25	46	
0		6	0	10		0	14	0	07	18	84	7	22		1	7	26	5	7	30		27	34	4.6	67	38		37	42	20	7	46		7	50	
0	10	0	0	14		0	18	0	09	22	22	9	26		8	9	30	3	9	34		79	38	82	29	42		69	46	61	9	50	5	9	54	
0	14	4	0	18		0	22		011	26	64	11	30			11	34		11	38		511	42	29	911	46		211	50		11	54		11	58	
0	18	8	0	22		0	26	0	0	30	0 - 4		34		8		38		13	42		313	46	$6 \quad 7$	713	50		113	54		13	58		613	62	1
0	22	2	0	26		0	30	0	0	34	4		38		8		42	12		46		115	50	$0 \quad 5$	${ }^{5} 15$	54		915	58	813	15	62		215	66	
0	26	6	0	30		0	34	0	0	38	8 4		42		8		46	12		50		617	54	43	317	58		717	62	211	17	66		517	70	
0	30	0	0	34		0	38	0	0	42	24		46		8		50	12		54	54.16		58		119	62		519	66		19	70		19	74	1
0	34	4	0	38		0	42	0	0	46	$6 \quad 4$	4	50		8		54	12		58	8816		62	220	21	66		321	70		21	74	11	121	78	1
0	38	8 D	0	42		0	46	0	0	50	504	4	54		8		58	12		62	216		66	620		70		123	74		23	78		923	82	1
0	42	2	0	46		0	50	0	0	54	4	4	58		8		62	12		66	$6 \quad 16$		70	020		74		24.25	78		25	82		725	86	1
0	46	6	0	50		0	54	0	0	58	8 4	4	62		8		66	12		70	70.16		74	420		78	824	24	82		27	86		527	90	
0	50	0	0	54		0	58	0	0	62	24	4	66		8		70	12		74	4.16		78	820		82	224	2	86	528	29	90		329	94	
0	54	4 D	1	58		0	62	0	0	66	$6 \quad 4$	4	70		8		74	12		78	$8 \quad 16$		82	220		86	624	4	90	- 28		94		131	98	
0	58	8	,	62		0	66	0	0	70	$0 \quad 4$	4	74		8		78	12		82	216		86	620		90	- 24	24	94	$4 \quad 28$		98		233	102	
0	62	2	0	66		0	70	0	0	74	74	4	78		8		82	12		86	$6 \quad 16$		90	020		94	$4 \quad 24$	24	98	328		102	32		106	
0	66	6	0	70		0	74	0	0	78	$8 \quad 4$	4	82		8		86	12		90	$0 \quad 16$		94	4.20		98	324		102	28		106	32		110	3
0	70	0 D	0	74		0	78	0	0	82	24	4	86		8		90	12		94	$4 \quad 16$		98	8 20		102	224	4	106	- 28		110	32		114	3
0	74	4	0	78		0	82	0	0	86	$6 \quad 4$	4	90		8		94	12		98	$8 \quad 16$		102	220		106	- 24	24	110	- 28		114	32		118	3
0	78	8	,	82		0	86	0	0	90	94	4	94		8		98	12		102	216		106	620		110	- 24	24	114	428		118	32		122	3
0	82	2	0	86		0	90	0	0	94	4	4	98		8		102	12		106	66		110	020		114	4		118	38		122	32		126	3
0	86	6	0	90		0	94	0	0	98	$8 \quad 4$	4	102		8		106	12		110	016		114	420		118	824		122	28		126	32		130	3
0	90	0 D	0	94		0	98	0	0	102	24	4	106		8		110	12		114	416		118	820		122	24	24	126	- 28		130	32		134	3
0	94	4	0	98		0	102	0	0	106	6	4	110		8		114	12		118	816		122	220		126	- 24	4	130	- 28		134	32		138	3
0	98	8	0	102		0	106	0	0	110	$0 \quad 4$	4	114		8		118	12		122	216		126	620		130	- 24		134	4 28		138	32		142	3
0	102		0	106		0	110	0	0	114	4	4	118		8		122	12		126	616		130	30		134	- 24		138	38		142	32		146	3
0	106		0	110		0	114	0	0	118	$8 \quad 4$	4	122		8		126	12		130	O 16		134	420		138	- 24	24	142	28		146	32		150	3
0	110		0	114		0	118	0	0	122	124	4	126		8		130	12		134	4.16		138	820		142	24	4	146	- 28		150	32		154	3
0	114		0	118		0	122	0	0	126		4	130		8		134	12		138	816		142	220		146	- 24	4	150	- 28		154	32		158	3
0	118		0	122		0	126	0	0	130	- 4	4	134		8		138	12		142	216		146	620		150	- 24		154	48		158	32		162	3
0	122		0	126		0	130	0	0	134	34	4	138		8		142	12		146	$6 \quad 16$		150	020		154	4	4	158	3 28		162	32		166	3
0	126		0	130		0	134	0	0	138	88	4	142		8		146	12		150	0 16		154	420		158	- 24	24	162	28		166	32		170	3
0	130		0	134		0	138	0	0	142	24	4	146		8		150	12		154	4516		158	820		162	24	4	166	$6 \quad 28$		170	32		174	3
0	134		0	138		0	142	0	0	146	64	4	150		8		154	12		158	8 16		162	220		166	- 24		170	- 28		174	32		178	3
0	138		0	142		0	146	0		150	- 4	4	154		8		158	12		162	216		166	$6 \quad 20$		170	- 24	4	174	428		178	32		182	3
0	142		0	146		0	150	0	0	154	4	4	158		8		162	12		166	6 16		170	020		174	- 24	24	178	- 28		182	32		186	3
0	146		0	150		0	154	0	0	158	88	4	162		8		166	12		170	- 16		174	420		178	- 24	4	182	28		186	32		190	3
0	150		0	154		0	158	0	0	162	524	4	166		8		170	12		174	$4{ }^{16}$		178	820		182	24	24	186	- 28		190	32		194	3
0	154		0	158	-	0	162	0	0	166	6 4	4	170		8		174	12		178	816		182	220		186	- 24	4	190	- 28		194	32		198	3

Conclusion:
1- The cubic value for each window $\left(\mathrm{W}^{3}\right)$ will be in the window that contains W^{2} as one of its elements.
And [Sum (window elements) mod (window first element) $=0$].
2- Modules set for a sliding window if $\mathrm{N}>=\mathrm{W}$ will contain the same odd numbers set before N in a reversed order as the sum increases until it reaches a steady modulus number. (Highlighted in green in figure 1. And figure 2. And figure 3.)
3- As window size [W] increases; more elements of the reversed N set will start to be shown up as remainder for our partial sum.
4- Modules set for any sliding window W will reach a Steady value such that for each set S_{N}; will be a steady value $=\mathrm{W}^{*} \mathrm{~N}$ if $\mathrm{N}>3$ and steady value $=\mathrm{W}(\mathrm{W}-1)$ if $0<=\mathrm{N}$ and $\mathrm{N}<=3$; where W is window size and N is a start number for the set from original set N .

In figure 1., For example, for window $(W=3)$ and $N=0$; so $W^{3}=27$ which is the sum of window elements $(7,9,11)$ where 9 is the square of W and one of the window elements and $[27 \bmod (7)=0]$

The main point for this distribution is that this partial sum reminder will reach a steady value no matter what the window size is used to do the partial sum at W^{3} for $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2$, and S 3 the steady point will be at the partial sum $=\mathrm{W}^{3}$

2. Distribution Cubic Equation Solution

2.1 Cubic Equation Solution Formula

Based on our partial sum distribution study in point 1 ; we constructed a new set
$\mathrm{C}=\left\{\right.$ all steady values in modules sets for all sliding windows with size $\left.\mathrm{W}_{\mathrm{i}}\right\}$
$\mathrm{C}=\{$ steady value for $\mathrm{W}=1$, steady value for $\mathrm{W}=2$, steady value for $\mathrm{W}=3, \ldots\}$
$C=\{0,2,6,12,20,30,42,56,72,90 \ldots\}$

Table 1. Cubic Equations and steady values

A	$\mathrm{A} *(\mathrm{~A}-1)$	A^{2}	$(\mathrm{~A}-1)^{2}$	$\mathrm{~A}^{3}$	$\mathrm{X}^{3}+\mathrm{dX} \mathrm{X}^{2}+\mathrm{dX}+\mathrm{f}=(\mathrm{X}-\mathrm{a})(\mathrm{X}-\mathrm{b})(\mathrm{X}-\mathrm{c})$ $(\mathrm{X}-\mathrm{A})\left(\mathrm{X}^{2}-(\mathrm{A}-1) \mathrm{X}+(\mathrm{A} *(\mathrm{~A}-1)+1)\right.$
1	0	1	0	1	$(\mathrm{X}-1)\left(\mathrm{X}^{2}+1\right)$
2	2	4	1	8	$(\mathrm{X}-2)\left(\mathrm{X}^{2}-\mathrm{X}+2\right)$
3	6	9	4	27	$(\mathrm{X}-3)\left(\mathrm{X}^{2}-2 \mathrm{X}+7\right)$
4	12	16	9	64	$(\mathrm{X}-4)\left(\mathrm{X}^{2}-3 \mathrm{X}+13\right)$
5	20	25	16	125	$(\mathrm{X}-5)\left(\mathrm{X}^{2}-4 \mathrm{X}+21\right)$
6	30	36	25	216	$(\mathrm{X}-6)\left(\mathrm{X}^{2}-5 \mathrm{X}+31\right)$
7	42	49	36	343	$(\mathrm{X}-7)\left(\mathrm{X}^{2}-6 \mathrm{X}+43\right)$
8	56	64	49	512	$(\mathrm{X}-8)\left(\mathrm{X}^{2}-7 \mathrm{X}+57\right)$
9	72	81	64	729	$(\mathrm{X}-9)\left(\mathrm{X}^{2}-8 \mathrm{X}+73\right)$
10	90	100	81	1000	$(\mathrm{X}-10)\left(\mathrm{X}^{2}-9 \mathrm{X}+91\right)$
11	110	121	100	1331	$(\mathrm{X}-11)\left(\mathrm{X}^{2}-10 \mathrm{X}+111\right)$
12	132	144	121	1728	$(\mathrm{X}-12)\left(\mathrm{X}^{2}-11 \mathrm{X}+133\right)$
13	156	169	144	2197	$(\mathrm{X}-13)\left(\mathrm{X}^{2}-12 \mathrm{X}+157\right)$
14	182	196	169	2744	$(\mathrm{X}-14)\left(\mathrm{X}^{2}-13 \mathrm{X}+183\right)$
15	210	225	196	3375	$(\mathrm{X}-15)\left(\mathrm{X}^{2}-14 \mathrm{X}+211\right)$
16	240	256	225	4096	$(\mathrm{X}-16)\left(\mathrm{X}^{2}-15 \mathrm{X}+241\right)$
17	272	289	256	4913	$(\mathrm{X}-17)\left(\mathrm{X}^{2}-16 \mathrm{X}+273\right)$
18	306	324	289	5832	$(\mathrm{X}-18)\left(\mathrm{X}^{2}-17 \mathrm{X}+307\right)$
19	342	361	324	6859	$(\mathrm{X}-19)\left(\mathrm{X}^{2}-18 \mathrm{X}+243\right)$
20	380	400	361	8000	$(\mathrm{X}-20)\left(\mathrm{X}^{2}-19 \mathrm{X}+281\right)$
21	420	441	400	9261	$(\mathrm{X}-21)\left(\mathrm{X}^{2}-20 \mathrm{X}+421\right)$
22	462	484	441	10648	$(\mathrm{X}-22)\left(\mathrm{X}^{2}-21 \mathrm{X}+263\right)$

$\mathrm{W}=\{0,1,3,4,5,6,7,8,9,10 \ldots$.
The difference between each element in these set are the even number set $=\{2,4,6,8,10,12,14,16 \ldots\}$
So, as we increase the Window size to add an odd new number to the window; the remainder from the partial sum will increase by an even number positional to the even $((\mathrm{W}+1) \mathrm{W}-(\mathrm{W}-1) \mathrm{W})=2 * \mathrm{~W}$

Now let us relate these steady values to cubic of a natural number set and squares of a natural number set.

A	$\mathrm{A} *(\mathrm{~A}-1)$	A^{3}	$\mathrm{X}^{3}+\mathrm{dX}{ }^{2}+\mathrm{dX}+\mathrm{f}=(\mathrm{X}-\mathrm{a})(\mathrm{X}-\mathrm{b})(\mathrm{X}-\mathrm{c})$ $(\mathrm{X}-\mathrm{A})\left(\mathrm{X}^{2}-(\mathrm{A}-1) \mathrm{X}+(\mathrm{A} *(\mathrm{~A}-1)+1)\right.$	$\mathrm{X}^{3}+(\mathrm{A}+\mathrm{A}-1) \mathrm{X}^{2}+\left(2 * \mathrm{~A}^{3}(\mathrm{~A}-1)+1\right) \mathrm{X}+$ $\left(\mathrm{A}^{3}-\mathrm{A} *(\mathrm{~A}-1)\right)$
1	0	1	$(\mathrm{X}-1)\left(\mathrm{X}^{2}+1\right)$	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-1$
2	2	8	$(\mathrm{X}-2)\left(\mathrm{X}^{2}-\mathrm{X}+2\right)$	$\mathrm{X}^{3}-3 \mathrm{X}^{2}+5 \mathrm{X}-6$
3	6	27	$(\mathrm{X}-3)\left(\mathrm{X}^{2}-2 \mathrm{X}+7\right)$	$\mathrm{X}^{3}-5 \mathrm{X}^{2}+13 \mathrm{X}+21$
4	12	64	$(\mathrm{X}-4)\left(\mathrm{X}^{2}-3 \mathrm{X}+13\right)$	$\mathrm{X}^{3}-7 \mathrm{X}^{2}+25 \mathrm{X}+52$
5	20	125	$(\mathrm{X}-5)\left(\mathrm{X}^{2}-4 \mathrm{X}+21\right)$	$\mathrm{X}^{3}-9 \mathrm{X}^{2}+41 \mathrm{X}+105$
6	30	216	$(\mathrm{X}-6)\left(\mathrm{X}^{2}-5 \mathrm{X}+31\right)$	$\mathrm{X}^{3}-11 \mathrm{X}^{2}+61 \mathrm{X}+186$
7	42	343	$(\mathrm{X}-7)\left(\mathrm{X}^{2}-6 \mathrm{X}+43\right)$	$\mathrm{X}^{3}-13 \mathrm{X}^{2}+85 \mathrm{X}+301$
8	56	512	$(\mathrm{X}-8)\left(\mathrm{X}^{2}-7 \mathrm{X}+57\right)$	$\mathrm{X}^{3}-15 \mathrm{X}^{2}+113 \mathrm{X}+456$
9	72	729	$(\mathrm{X}-9)\left(\mathrm{X}^{2}-8 \mathrm{X}+73\right)$	$\mathrm{X}^{3}-17 \mathrm{X}^{2}+\ldots$
10	90	1000	$(\mathrm{X}-10)\left(\mathrm{X}^{2}-9 \mathrm{X}+91\right)$	$\mathrm{X}^{3}-19 \mathrm{X}^{2}+\ldots$
11	110	1331	$(\mathrm{X}-11)\left(\mathrm{X}^{2}-10 \mathrm{X}+111\right)$	$\mathrm{X}^{3}-21 \mathrm{X}^{2}+\ldots$
12	132	1728	$(\mathrm{X}-12)\left(\mathrm{X}^{2}-11 \mathrm{X}+133\right)$	$\mathrm{X}^{3}-23 \mathrm{X}^{2}+\ldots$
13	156	2197	$(\mathrm{X}-13)\left(\mathrm{X}^{2}-12 \mathrm{X}+157\right)$	$\mathrm{X}^{3}-25 \mathrm{X}^{2}+\ldots$
14	182	2744	$(\mathrm{X}-14)\left(\mathrm{X}^{2}-13 \mathrm{X}+183\right)$	$\mathrm{X}^{3}-27 \mathrm{X}^{2}+\ldots$
15	210	3375	$(\mathrm{X}-15)\left(\mathrm{X}^{2}-14 \mathrm{X}+211\right)$	$\mathrm{X}^{3}-29 \mathrm{X}^{2}+\ldots$
16	240	4096	$(\mathrm{X}-16)\left(\mathrm{X}^{2}-15 \mathrm{X}+241\right)$	$\mathrm{X}^{3}-31 \mathrm{X}^{2}+\ldots$
17	272	4913	$(\mathrm{X}-17)\left(\mathrm{X}^{2}-16 \mathrm{X}+273\right)$	$\mathrm{X}^{3}-33 \mathrm{X}^{2}+\ldots$
18	306	5832	$(\mathrm{X}-18)\left(\mathrm{X}^{2}-17 \mathrm{X}+307\right)$	$\mathrm{X}^{3}-35 \mathrm{X}^{2}+\ldots$
19	342	6859	$(\mathrm{X}-19)\left(\mathrm{X}^{2}-18 \mathrm{X}+243\right)$	$\mathrm{X}^{3}-37 \mathrm{X}^{2}+\ldots$
20	380	8000	$(\mathrm{X}-20)\left(\mathrm{X}^{2}-19 \mathrm{X}+281\right)$	$\mathrm{X}^{3}-39 \mathrm{X}^{2}+\ldots$
21	420	9261	$(\mathrm{X}-21)\left(\mathrm{X}^{2}-20 \mathrm{X}+421\right)$	$\mathrm{X}^{3}-41 \mathrm{X}^{2}+\ldots$

$$
X=A, X=\frac{-(A-1) \pm \sqrt{(A-1)^{2}-4(A *(A-1)+1)}}{2 a}
$$

One Natural solution and two imaginary solutions.\#
one interesting note on this quadratic equation distribution, we can rewrite the distribution equation as ($\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-\mathrm{C}$) and still gets the same zeros but with imaginary solutions multiplied by (-1)
where $\mathrm{C}=A^{3}-A^{2}+A$
Table 3. Cubic Twin Equations taking steady values in considerations

A	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-\mathrm{C}$	$\mathrm{X}^{3}+(\mathrm{A}+\mathrm{A}-1) \mathrm{X}^{2}+(2 * \mathrm{~A} *(\mathrm{~A}-1)+$ 1) $X+\left(A^{3}-A *(A-1)\right)$	Zerol	$\mathrm{X}^{3}+\mathrm{dX} \mathrm{X}^{2}+\mathrm{dX}+\mathrm{f}$ Zero2, Zero 3	$\mathrm{X}^{3} \mathrm{X}^{2}+\mathrm{X}-\mathrm{C}$ Zero2, Zero3
1	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-1$	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-1$	1	$X= \pm i$	$X= \pm i$
2	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-6$	$\mathrm{X}^{3}-3 \mathrm{X}^{2}+5 \mathrm{X}-6$	2	$X=\frac{1}{2} \pm i \frac{\sqrt{11}}{2}$	$X=-\frac{1}{2} \pm i \frac{\sqrt{11}}{2}$
3	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-21$	$\mathrm{X}^{3}-5 \mathrm{X}^{2}+13 \mathrm{X}+21$	3	$X=\frac{2}{2} \pm i \frac{\sqrt{24}}{2}$	$X=-\frac{2}{2} \pm i \frac{\sqrt{24}}{2}$
4	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-52$	$\mathrm{X}^{3}-7 \mathrm{X}^{2}+25 \mathrm{X}+52$	4	$X=\frac{3}{2} \pm i \frac{\sqrt{43}}{2}$	$X=-\frac{3}{2} \pm i \frac{\sqrt{43}}{2}$
5	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-105$	$\mathrm{X}^{3}-9 \mathrm{X}^{2}+41 \mathrm{X}+105$	5	$X=\frac{4}{2} \pm i \frac{\sqrt{68}}{2}$	$X=-\frac{4}{2} \pm i \frac{\sqrt{68}}{2}$
6	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-186$	$\mathrm{X}^{3}-11 \mathrm{X}^{2}+61 \mathrm{X}+186$	6	$X=\frac{5}{2} \pm i \frac{3 \sqrt{11}}{2}$	$X=-\frac{5}{2} \pm i \frac{3 \sqrt{11}}{2}$
7	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-301$	$\mathrm{X}^{3}-13 \mathrm{X}^{2}+85 \mathrm{X}+301$	7	$X=\frac{6}{2} \pm i \frac{\sqrt{136}}{2}$	$X=-\frac{6}{2} \pm i \frac{\sqrt{136}}{2}$
8	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-456$	$\mathrm{X}^{3}-15 \mathrm{X}^{2}+113 \mathrm{X}+456$	8	$X=\frac{7}{2} \pm i \frac{\sqrt{179}}{2}$	$X=-\frac{7}{2} \pm i \frac{\sqrt{179}}{2}$
9	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-\ldots$	$\mathrm{X}^{3}-17 \mathrm{X}^{2}+\ldots$	9
10	$\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-\ldots$	$\mathrm{X}^{3}-19 \mathrm{X}^{2}+\ldots$	10

3. Distribution Cubic Equation Solution and Zeta Function

3.1 Distribution Cubic Equation Solution and Zeta Function

Based on our conclusion of cubic distribution equation solution, the distribution cubic equation will have a twin equation that gives the same solutions where this twin function all its coefficients $=1$ except the last coefficient will be any number beta.

$$
X^{3}-(2 A-1) X^{2}+\left(2 A^{2}-2 A+1\right) X(\beta)-\left(A^{3}-A^{2}+A\right)(\beta)=0
$$

Case (1):- If $\mathrm{A}=0$ we will get

$$
X^{3}-X^{2}+X(\beta)=(X)\left(X^{2}-X+\beta\right)=0
$$

Then we will have three zeros

$$
X=0, X^{2}-X+\beta=0
$$

And the other two solutions will be the solution for this quadratic equation

$$
X^{2}-X+\beta=0 \text { at } X=\frac{-(1) \pm \sqrt{(-1)^{2}-4(\beta)}}{2}
$$

and $4 *$ beta >1 so all the time second part will imaginarily part so the solution will be only in the form of

$$
X=-\frac{1}{2} \pm i \frac{\sqrt{4(\beta)-1}}{2}
$$

and this will be the same solution for the twin cubic equation but with $+1 / 2$ instead of $-1 / 2$.
If $\mathrm{A}=0$ The solution will be only in this form

$$
X=0 ; X=-\frac{1}{2} \pm i \frac{\sqrt{4(\beta)-1}}{2}
$$

Case (2): - If $(\beta)=0$ we will get a Cubic equation
$X^{3}-(2 A-1) X^{2}=0$
$X^{3}-(2 A-1) X^{2}=X^{2}(X-(2 A-1))=0$
$X=0 ; X=(2 A-1)$

Case (3) If $(\beta)=1$ we will get a cubic equation

$$
X^{3}-(2 A-1) X^{2}+\left(2 A^{2}-2 A+1\right) X-\left(A^{3}-A^{2}+A\right)=0
$$

In Table 3. If $\mathrm{A}=1$; we already got through the twin equations and how both equations have the same solution with imaginary solutions multiplied by (-1) even if the twin equation have different coefficients; so we can simplify this equation to its twin equation

$$
X^{3}-X^{2}+X-C=0
$$

Where

$$
C=A^{3}-A^{2}+\mathrm{A}
$$

Rewrite the equation as $(X-A)\left(a X^{2}+b X+d\right)=0$
Such that $\mathrm{a}=1$; the solution for this cubic equation is
$X=A, X=\frac{-(A-1) \pm \sqrt{(A-1)^{2}-4(A *(A-1)+1)}}{2 a}$
At $\mathrm{A}=0$ the solution will be
$X=0 ; X=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$
at $\mathrm{A}=1$ the solution is
$X= \pm i$
So, in conclusion, the Distribution Cubic Equation in the form of

$$
X^{3}-(2 A-1) X^{2}+\left(2 A^{2}-2 A+1\right) X-\left(A^{3}-A^{2}+A\right)=0
$$

The solution for this cubic equation $(X-A)\left(a X^{2}+b X+d\right)=0$ where $a=1$ is,

$$
X=A, X=\frac{-(A-1) \pm \sqrt{(A-1)^{2}-4(A *(A-1)+1)}}{2 a}
$$

Now this equation can be rewritten in terms of the quadratic equation factor as

$$
\begin{gathered}
X^{3}-X^{2}+X-C=0 \\
(X-A)\left(a X^{2}-b X+c\right)=0
\end{gathered}
$$

At $\mathrm{a}=1$ and $\mathrm{b}=1$

$$
(X-A)\left(X^{2}-X+c\right)=0
$$

Where C is any number; we will think of C as the total SUM of the Zeta function So, we can write the simpler twin equation in this form
or

$$
(X-A)\left(X^{2}-X+c\right)=(X-A)\left(X^{2}-X+\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots\right)\right)
$$

$$
\#(X-A)\left(X^{2}-X+c\right)=(X-A)\left(X^{2}-X+\left(1+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\cdots\right)\right)
$$

or

$$
(X-A)\left(X^{2}-X+\left(\sum_{i=0}^{\infty} \frac{i}{4}\right)\right)=0
$$

Table 4. General Cubic Equation for all complete squares [x-0.5]

i	$\left(\sum_{i=0}^{\infty} \frac{i}{4}\right)$	$(X-A)\left(X^{2}-X+\left(\sum_{i=0}^{\infty} \frac{i}{4}\right)\right)$	Zreol	Zero2	Zero3
0	0	$\left(X^{2}-X\right)=0$	0	1	A
1	$\frac{1}{4}$	$\left(X^{2}-X+\frac{1}{4}\right)$	$\frac{1}{2}$	$\frac{1}{2}$	A
2	$\frac{2}{4}$	$\left(X^{2}-X+\frac{2}{4}\right)$	$\frac{1}{2} \pm \frac{i}{2}$	$\frac{1}{2} \pm \frac{i}{2}$	A
3	$\frac{3}{4}$	$\left(X^{2}-X+\frac{3}{4}\right)$	$\frac{1}{2} \pm \frac{i \sqrt{2}}{2}$	$\frac{1}{2} \pm \frac{i \sqrt{2}}{2}$	A
4	$\frac{4}{4}$	$\left(X^{2}-X+\frac{4}{4}\right)$	$\frac{1}{2} \pm \frac{i \sqrt{3}}{2}$	$\frac{1}{2} \pm \frac{i \sqrt{3}}{2}$	A
5	$\frac{5}{4}$	$\left(X^{2}-X+\frac{5}{4}\right)$	$\frac{1}{2} \pm i$	$\frac{1}{2} \pm i$	A
6	$\frac{6}{4}$	$\left(X^{2}-X+\frac{6}{4}\right)$	$\frac{1}{2} \pm \frac{i \sqrt{5}}{2}$	$\frac{1}{2} \pm \frac{i \sqrt{5}}{2}$	A
7	$\frac{7}{4}$	$\left(X^{2}-X+\frac{7}{4}\right)$	$\frac{1}{2} \pm \frac{i \sqrt{6}}{2}$	$\frac{1}{2} \pm \frac{i \sqrt{6}}{2}$	A
8	$\frac{8}{4}$	$\left(X^{2}-X+\frac{8}{4}\right)$	$\frac{1}{2} \pm \frac{i \sqrt{7}}{2}$	$\frac{1}{2} \pm \frac{i \sqrt{7}}{2}$	A
9	$\frac{9}{4}$	$\left(X^{2}-X+\frac{9}{4}\right)$	$\frac{1}{2} \pm \frac{i \sqrt{8}}{2}$	$\frac{1}{2} \pm \frac{i \sqrt{8}}{2}$	A

In conclusion
1- we only get real solutions (nonimaginary solutions)

2- The solution will be

$$
\begin{aligned}
& \text { At } X=A \text { or } X=\frac{1}{2} \text { or } X=0 \text { or } X=1 \\
& \#
\end{aligned}
$$

$$
Z=A \text { or } Z=\frac{1}{2} \pm \frac{i \sqrt{c}}{2}
$$

And to generalize this equation with the actual Zeta function

$$
\begin{gathered}
(X-A)\left(X^{2}-X+\left(\sum_{n=1}^{\infty} \frac{1}{n}\right)\right)=0 \\
(X-A)\left(X^{2}-X+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdots .\right)=0 \\
Z=A \text { or } Z=\frac{1}{2} \pm \frac{i \sqrt{c}}{2}
\end{gathered}
$$

And in zeta function step zero in analytical continuation
It uses this simple concept of

$$
1=\frac{A}{A}=A A^{-1}=2 * 0.5
$$

And used \#

$$
\left(1-\frac{2}{2^{s}}\right)\left(1-\frac{2}{2^{s}}\right)^{-1} \sum_{n=1}^{\infty} \frac{1}{n}=0
$$

This is the same sequence we used in Table 4.

$$
\begin{gathered}
\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots \cdot\right) \\
(X-A)\left(X^{2}-X+c\right)-(X-A)\left(X^{2}-X+\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots\right)\right)
\end{gathered}
$$

or

$$
(X-A)\left(X^{2}-X+c\right)=(X-A)\left(X^{2}-X+\left(1+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\cdots\right)\right)
$$

And this sequence will only get real number solutions only at

$$
\begin{gathered}
\text { At } X=\text { A or } X=\frac{1}{2} \text { or } X=0 \text { or } X=1 \\
\qquad Z=A \text { or } Z=\frac{1}{2} \pm \frac{i \sqrt{c}}{2}
\end{gathered}
$$

And all other imaginary solutions will be with real part $=0.5$.

4. Quadratic Equation Solution and Prime Numbers Filtering

4.1 Quadratic Equation Solution and Prime Numbers Filtering

$$
\left(x^{2}-x+\left(1+\frac{\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{5}}{\sqrt{2}}+\frac{\sqrt{7}}{\sqrt{2}}+\frac{\sqrt{9}}{\sqrt{2}}+\frac{\sqrt{11}}{\sqrt{2}}+\cdots .\right)\right)=0
$$

If we stopped this sum at any term after in this series; the imaginary part of the solution will have only the Prime numbers factor.

For Example, the solution to the equation

$$
\begin{gathered}
\left(X^{2}-X+\left(1+\frac{\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{5}}{\sqrt{2}}+\frac{\sqrt{7}}{\sqrt{2}}+\frac{\sqrt{9}}{\sqrt{2}}+\frac{\sqrt{13}}{\sqrt{2}}\right)\right)=0 \\
\left(X=\frac{1}{2} \pm \frac{\sqrt{2 \sqrt{3} \sqrt{2}+2 \sqrt{5} \sqrt{2}+2 \sqrt{7} \sqrt{2}+2 \sqrt{13} \sqrt{2}+6 \sqrt{2}+3}}{2}\right)
\end{gathered}
$$

The imaginary part of the solution is the factors for all numbers and only prime numbers will be shown under the square root and any other number will be shown factored even the composite Primes will be factored
And the equation complete square is

$$
\left(\left(X-\frac{1}{2}\right)^{2}+\frac{3}{4}+\frac{\sqrt{2} \sqrt{3}}{2}+\frac{\sqrt{2} \sqrt{5}}{2}+\frac{\sqrt{2} \sqrt{7}}{2}+\frac{3 \sqrt{2}}{2}+\frac{\sqrt{2} \sqrt{13}}{2}\right)
$$

4. Results

First, we get to understand and learn more about how partial sums reminder distribution using a dynamically sliding window will reveal more on number theory; for each sliding window, we found a steady value for each partial sum modulus distribution will be reached.
Then we used this understanding of reminder distribution and the steady value to construct a Cubic equation and then generalized this Equation solution to generate a formula to get the Cubic equation solutions.
Then we started to apply this Cubic equation solution to understand and explain Zeta function summation and strip number at $\mathrm{X}=0.5$.
Then we used the quadratic equation part of the Cubic equation to filter and factor the prime numbers in a summation series of odd numbers as an application for this distribution findings.

References

Ares, S., \& Castro, M. (2006). Hidden structure in the randomness of the prime number sequence?. Physica A: Statistical Mechanics and its Applications, 360(2), 285-296. https://arxiv.org/abs/cond-mat/0310148v2.
Kim, H., \& Kim, J. (2002). Evaluation of zeta function of the simplest cubic field at negative odd integers. Mathematics of computation, 71(239), 1243-1262.
Shanks, D. (1974). The simplest cubic fields. Mathematics of Computation, 28(128), 1137-1152.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

