Journal of Mathematics Research; Vol. 14, No. 4; August 2022
ISSN 1916-9795  E-ISSN 1916-9809
Published by Canadian Center of Science and Education

Optimal Control for a Degenerate Population Model in Divergence
Form With Incomplete Data

Mohamed A. Sana!, Somdouda Sawadogoz, Sadou Tao?

! Université Joseph KI-ZERBO, UFR-Sciences Exactes et Appliquées Département de Mathématiques, 03 BP 7021
Ouagadougou 03 Burkina Faso

2 Ecole Normale Supérieure, Département des Sciences Exactes, 01 BP 1757 Ouagadougou 01 Burkina Faso

3Université Joseph KI-ZERBO, UFR-Sciences Exactes et Appliquées, Département de Mathématiques, 03 BP 7021
Ouagadougou 03 Burkina Fas

Correspondence: Mohamed A. Sana, Université Joseph KI-ZERBO, UFR-Sciences Exactes et Appliquées, Département
de Mathématiques, 03 BP 7021 Ouagadougou 03 Burkina Faso

Received: May 22,2022  Accepted: July 5,2022  Online Published: July 17, 2022
doi:10.5539/jmr.v14n4p65 URL: https://doi.org/10.5539/jmr.v14n4p65

Abstract

In this paper, we study the control of a degenerate population dynamics system in divergence form with unknown infor-
mation on the boundary. We use the no-regret control concept of J. L. Lions treated in (Lions, 1992) to investigate the
problem. At first, we define notions of no-regret control. Using an appropriate Hilbert space, we show that the no-regret
control is the limit near the origin of a series of low-regret controls defined by a quadratic perturbation previously used by
(Nakoulima, Omrane, & Velin, 2000) corresponding to the disturbed system and for which we give a singular optimality
system.
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1. Introduction

We consider a degenerate population model in its divergence form with incomplete data:

0 0 .

2D kystuy = ftwpe in Q

ot Oa

y(t7a71) =y(t’a70) = & on QT,A

(0, a, x) = Yax in Qu 1)
A

y(t7 07 .X) = ﬂyda in QT,]

Here Q = (0, T)x(0,A)x(0, 1), Q74 = (0,T)X(0,A), Qa1 = (0,A)%(0, 1), Or1 = (0,7)%(0, 1),and Q,, = (0, T)X(0, A)Xw
where the subset w c (0, 1) is the region where a control v is acting. The control v can correspond to a supply of individuals
or to a removal of individuals on the subdomain w. In this model, y(, a, x) is the distribution of certain individuals at the
point x € (0, 1), at time ¢ € (0,T), where T is fixed, and age a € (0, A) A being the life expectancy, 8 and u denote the

natural rates of fertility and mortality, respectively. The formula f Byda is the proportion of newborns at time ¢ and

at location x. In this model, y,, is the characteristic function of the control domain w c (0, 1),y = yo(a X) € LZ(QTJ)
is the initial distribution of individuals; the data f € L?(Q) matches to an external supply. The function g belongs to
G C L*(Qr.4). We say that (1) is a system with incomplete data because the information on the boundary are missing.
Then k is a function of the space variable x which designates the dispersion coefficient. We assume that it degenerates at
the boundary of the domain.

In the follow, we define the following notions:

Definition 1.1. We say that the function k is weakly degenerate (W.D.) if k € WH'([0, 11), k > 0 in (0,1) and k(0) = k(1) =
0, for all x € [0, 1], there exists two constants My, M, € (0, 1) such that xk’(x) < M1k(x) and (x — 1)k’ (x) < Mk(x).

Definition 1.2. We say that the function k is Strongly degenerate (S.D.) if k € W">([0,1]),k > 0 in (0,1) and k(0) =
k(1) = 0, for all x € [0, 1], there exists two constants M|, M, € [1,2) such that xk’(x) < M k(x) and (x— 1)k’ (x) < Mk(x).
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In recent years, population dynamics models have been widely studied by several authors from many points of view.

The majority of them have investigated the null controllability of the system for example, (Boutaayamou & Echarroudi,
2017), (Fragnelli, 2018), (Fragnelli, 2019), (Fragnelli, 2020). In effect, y can designate the proportion of a pest insect
population, for example (He & Ainseba, 2014). Thus it is important to control it. In (He & Ainseba, 2014), the sys-
tem (1) models insect growth, and the control corresponds to the removal of individuals by using pesticides. Authors
(Boutaayamou & Echarroudi, 2017), are concerned with the null controllability of a population dynamics system with
an interior degenerate diffusion. To this end, they proved first a new Carleman estimate for the full adjoint system, and
afterward, they deduce a suitable observability inequality which will be needed to establish the existence of control acting
on a subset of the space which leads the population to extinction in a finite time. (Fragnelli, 2019) and (Fragnelli, 2020)
deal with a degenerate system describing the dynamics of a population depending on time, age, and space in divergence
form. He assumes that the degeneracy can occur at the boundary or in the interior of the space domain and he focuses on
the null controllability problem. To this aim, he proves first Carleman estimates for the associated adjoint problem, then,
via cut off functions, he proves the existence of a null control function localized in the interior of the space domain in
both papers. In the second one, he considers two cases: either the control region contains the degeneracy point xg, or it is
a reunion union of two domains each located on one side of x,. Whereas in (Fragnelli, 2018), the same previous research
is done but on a degenerate population equation in non-divergence form.

According to the authors, the non-trivial solutions of the system (commonly named LotkaCMcKendrick systems) have
exponentially rising or falling asymptotic behavior, depending on the size of a certain biological amount (the so called net
reproduction rate), see (Anita, 2000) and also (Fragnelli, Martinez, & Vancostenoble, 2005) for related results concerning
time-independent steady states. In (Ainseba & Langlais, 2000), authors consider the optimal control problem for a pop-
ulation dynamics system with age dependence, spatial structure, and a nonlocal birth processus appearing as a boundary
condition. They examine the controllability at a given time 7 and prove that the approximate controllability is valid for
any fixed finite time 7'. Accordingly, they established a new result of condition continuation which is unique.

As much as we know, the first null controllability work for an age population dynamics model is due to (Ainseba &
Langlais, 2000), where the authors proved that a set of profiles is approximately reachable. Later, in (Ainseba & Anita,
2004), a local exact controllability was proved. In particular, in (Ainseba & Ianneli, 2003), the authors showed that, if
the initial data is sufficiently small, it is possible to find a control that drives the population to extinction. In the last one,
the null controllability is also studied for a non-linear model of population dynamics in the diffusive form whenever the
fertility and the mortality rates respectively depend on the total population. In (Traore, 2006), the authors considered a

nonlinear distribution of newborns of the form F/( f B(t, a, x)y(t, a, x)da).

But, in all the above articles, the dispersion coefficient k is a scalar or a strictly positive function. To our best knowledge,
(Ainseba & Ianneli, 2003) is the first paper where the dispersion coefficient, which depends on the space variable x, can
degenerate. In particular, the authors assume that k degenerates at the edges (for example k(x) = x%, being x € (0, 1)
and @ > 0). The authors apply Carleman estimates on the adjoint problem and prove a zero controllability result for (1)
under the condition 7 > A . But, this hypothesis is incorrect when A becomes large enough. To overcome this problem in
(Echarroudi & Maniar, 2014), the authors employed Carleman estimates and the fixed point method of Leray-Schauder.

In (Birgit & Omrane, 2010), B.Jacob and A.Omrane are concerned with the optimal control for linear age-structured
population dynamics system with incomplete data. More precisely, the initial population age distribution is supposed to
be unknown. They used the notion of no-regret control of J.L.Lions in (Lions, 1992) to such singular population dynamics,
following the method by Nakoulima et al. as in (Nakoulima, Omrane, & Velin, 2000). They prove that the problem they
are considering has a unique no-regret control that they characterize by a singular optimality system.

In the present paper, we are interested with the no-regret control of a degenerate population dynamics system describing
a single species in divergence form with unknown information on the boundary which to our knowledge has not been
treated. We consider the minimization of the following cost functional:

J(V’ g) = ||y(V, g) Zd”LZ(Q) + N”v”iZ(Qw) (2)
where z; € L*>(Q) and N > 0 are given. We deal with solving the optimization problem above:

inf sup J(vig)
VELA(Qu) gel2(Qr )

But noticing that we could have obtained:

sup  J(v;g) = +oo,
8€L*(Qr.a)
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We consider the next problem:

inf  sup (J(v;8) - J(0;8)) 3)

VELA(Qo) gel2(014)

Then we research the control that does not make things worse than a given control vy (or to than doing nothing, vo = 0
in our case), independently of the perturbations which may be of an infinite number. Lions used the notions of Pareto
control (Lions, 1986) and equivalently the no-regret control (Lions, 1992) in application to the control of systems having
missing data. The no-regret concept was previously used in statistics by Savage (Savage, 1972). The no-regret control over
incomplete data problems is not easy to characterize directly. We will use an approximate control: the low-regret control.
To achieve the no-regret control, we give the singular optimality system for the low-regret control for the incomplete data
population dynamics (1)C(2), using a quadratic perturbation used by Nakoulima et al. in (Nakoulima, Omrane, & Velin,
2000) (see also (Nakoulima, Omrane, & Velin, 2003)). Next, we give a singular optimality system that characterizes the
no-regret control that is the limit of a standard control problem.

The paper is organized as follows. In Section 2, we give well-posedness and some regularity results. We study the
low-regret and no-regret control and their characterizations in sections 3 and 4 respectively.

2. Well-posedness Result and Preliminaries

In the sequel, we will assume that & satisfies the following hypotheses:
ke C([0;1]) N C'((0; 1) ; k > 0in (0; 1], k(0) = 0;

there is a constant M; € [0, 1) such that xk’(x) < M k(x) for all x € [0; 1]
In plus, we make the following assumptions about the functions u and 5 defined in (1):

L[] ﬁ € C(Q_A,]) andﬁ > 0in QA,I’
e ueC(@andu >0in Q.

To show that the problem (1) is well posed, we need to introduce the following Sobolev spaces:
H} = {u € L*(0, 1)|u absolutely continuous in [0, 1], Vku, € L*(0,1) and u(1) = u(0) = 0}

and
H} = {u € H}(0,1)] ku, € H'(0,1)}.

with their respective norms:

2 2 2
el 0 1) = et 1y + | Vil 2,

Hi . Vu € Hy(0,1)

O,1)
2 2 2 2
1Ry 1y = Wy 1)+ KA gy, Vi € HEO, 1)

Let the unbounded operator A : D(A) = H,f(O, 1) - L3*(0,1) defined by Au = (k(x)uy)y, u € D(A), closed, symmetric,
self-adjoint and negative operator and whose domain is dense in L*(0,1) (Cannarsa, Martinez, & Vancostenoble, 2005).
In addition, it generates an analytical semi-group in space L*(0, 1). By setting L*(Q) = L*(0, T; L*(Qa.1)) the following
result on the existence and uniqueness of the solution of the model (1) holds:

Theorem 2.1. Assume that k is weakly or strongly degenerated in 0 andjor in 1. For all f € L*(Q) and y, € Lz(QA,l), the
system (1) admits a unique solution

y€&=C(0,TI; L*(Qa1)) N L*0, T; H' (0, A; HL(0, 1))

and

T A
sup Iyl q, ) + f f I Viyall7 .1, dads < CliyolZ g, , + CIf 72 ) “
t€[0,T] ! 0 0 !

where C is a positive constant independent of k, yo and f. In addition, if f = 0, then'y € C'([0,T]; L*(Qa.1)).

The proof is similar to those in ((Engel & Nagel, 2000), (Fragnelli, 2020), (Lions & Magenes, 1972))

Lemma 1. foranyy € W(T,A) = {y € L*((0, T) x (0, A); H,l (0, 1)) such that % + 2—2 e L*((0,T) % (0, A); Hk‘l(O, 1)}, one

can define the trace at t = ty in LZ(QAJ). One can define also the trace at a = ay in LZ(QT,I). The applications “trace”
are continuous for weak and strong topologies.
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For more details on the latter lemma, see Oumar in [Sur un problme de dynamique de populations(2003)]

Remark 1. 1. The space H,: (0, 1) is compactly embedded in L*(0, 1). See (Alabau-Boussouira, Cannarsa, & Frag-

nelli, 2006)
2. W(T,A) c C([0,T], L*(Qa.1)) and W(T,A) c C([0,A], L*(Qr.1)). See (Langlais, 1979)

Proposition 2.1. Let y = y(v,.) be solution of system (1), then the application v + y(v,.) is continuous from L*(Q,,) to

L((0,T) X (0, A); H}(0, 1)).

Proof 1. Let vy € L*(Q,). And let us show that lim y(v,.) = y(vo, .).
VoV
We set 3 = y(v,.) — y(vo, .), then ¥y is solution of :

v-volxo in Q

Jy ay - -
(9_); + (?_(yl - (k(x)yx)x +uy

}_J(t, a, l) = )_’(ts a, 0) =0 on QT,A
¥(0,a, x) =0 in QOa
A
¥(2,0,x) = Byda in  Qr;
0
If we set 7z = e "'y with r > 0, we get that 7 is solution of:
Ed+ & (k(Wz)x+@+nz = (v=v)ex, in Q
2t a, 1) = z(t,a,0) = 0 on Qra
2(0,a, x) =0 in  Qal
A
2(2,0, x) = Bzda in  QOr
0

Multiply the first equation of (6) by z then integrate by parts on Q, we get:

1 1 ! !
E”Z(T’ . ')”iz(QA,I) - E”Z(O, . ')”IZAZ(QAVI) + EHZ("As ')”22(QT,I) - E”Z(7 O’ )“iZ(QTI) + ” \/zZX"iZ(Q)
HINFF il g, = [ v = wpe™ dadade
Ou

It then follows:

1 _
3l 0 MG, + Il VeadliEz g, + NP+ Al g, < f 2(v = vo)e™"" dxdads
' Qu

A 2

By observing that:||z(., 0, .)||iz ) = f Bzda , one can obtain obviously:

' 0 LX(Qr.1)

AB? 1 1
2 2 0 1112 2 2
” \/zZXHLZ(Q) + ” r +'uZHL2(Q) - T”Z”LZ(Q) - E”Z”LZ(Q) < EHV - VO”LZ(QM)
2 2

with Be = ||Bllz~0.4) and po = r + u — % - Aiz”“ withr > % + %:

we obtain:

1
2 2 2
” \/;Zx“LZ(Q) + /'lOHZ”LZ(Q) < EHV - VOHLZ(Qw)
we can choose g such that:

2

||V - vO”LZ(Qw)

2 oy
”Z”LZ((O,T)X(O,A);H,}(0,1)) )

This means that the map v — y(v,.) is a lipschitz function on L*(Q,,) onto L*((0, T) x (0, A); H,l O, 1)).
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Proposition 2.2. For all v € L*(Q,) the application v — S(v,.) is continuous on L*(Q,) onto L*(Q,) to L*((0,T) X
0,A); H]i(O, 1)). where S = S(v,.) is solution of

os 0§

5 " a k(X)S ) +puS = -0 -y0,0)) in Q

S(t,a,1)=S8(a,0) 0 on Qra (7)
S(T,a,x) =0 in  Qa

S(1.A, ) =0 in O

Proof 2. Let be vi,v, € L*(Q,,) and let be § = S(v|) — S (v2). Then S satifies the system:

—é;—st - g—i = k(S )x+puS = —001,)=y(2,)) in Q

S(t,a,1)=S8(t,a,0) = 0 on QOra (8
S_ (T, a, X) = 0 in QA,I

St A, x) = 0 in QOr;

Ifwe set 7 = ¢S with r > 0, we get that z is solution of:

0 0
—a—f - £ k(s + )z = —Gv) =y e i Q
z(t,a,1) = z(t,a,0) =0 on QOra 9)
z(0,a, x) = 0 in Qal
z(t,0, x) = 0 in  QOr.

Multiply the first equation of (9) by z then integrate by parts on Q:
1 1
S0 Mg, + 51260 Mg, + I Vhedlfa gy + NP+ el g

== f 2(v1,.) — y(va2, ))e”"" dxdadt
o

Then,
1 _
EHZ("O’ ')”iz(er) +| \/%Zx"iz(g) +| \/r+,uzlli2(Q) < - f z20(v1,.) = y(va2, ))e”"" dxdadt
' 0
Hence
0.y 4 VR + (Ml ) < Sl + Iy, = y(2, DI
2 1S Nior) Wl Rl g) = 5l T 5 IWVAVE )= Y2 )
By setting ro =r+ u — %
0.y 4 VR, + ol < 2l ) =y IR
2 VATV AN LZ(QL]) Tx LZ(Q) (1]]%4 LZ(Q) = 2 y(\Vi, . y(va,. LZ(Q)
we can choose rq such that:
0.0+ IR < Lyt =y I
2 B My T Rz o rxoarm @) = 31V = YWV2s i)
Returning to z = e™"'§
5.0y, | +ISIE < ey, ) =y, Ii7
AV ZI (7Y 2(0.)x0AxHN@Q) = € VW) =YV, i)
and consequently
G2 T 2
||S|| 2((0,T)><(0,A);H£(Q)) <e ||)’(Vl, ) - y(V29 )”LZ(Q)

Using Proposition 2.1, we get that v — S (v, .) is continuous on L*(Q) onto L*((0, T) x (0, A); H,l 0, 1))
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Lemma 2. For all v € L*(Q) and g € L*(Qr.4), we have:

J(v,g)-J(,8) =J(»,0)—-J(0,0) + 2f ga(k(x)s)d(r (10)

Ora dv

Proof 3. Let be f € L*(Q), v € L*(Q,),g € LX(QrA)u € L*(Q) and 8 € L™(Qr.1),k € W' ([0, 1]) and yo € L*(Q4.1). Now
let be y(v,0), ¥(0, g) and (0, 0) the respective solutions of systems:

0 0
22 ky)e+uy = fHve i Q
ot da
¥(t,a,1) =y(t,a,0) = 0 on QOra
(0, a, x) = Y@x) in QOa an
A
¥(t,0, x) = Pyda in Qr,
0
% + Z—Z - k(y )ty = f in Q
y(t’a’ 1) :)’(t’a,o) = 8 on QT,A 2
¥(0,a, x) = Y(a,x) in Quy (12)
A
y(t’ O’ x) = ﬂyda in QT,]
0
and
0 d .
D2 ky)e+uy = f in 0
ot Oa
y(t,a, 1) :y(t’a,o) = 0 on QT,A
(0, a, x) = Y@x) in Qa (13)
A
y(t, 0, X) = f Bydd in QT,]
0

Remember that according to (7) that the functional S is the solution of system:

os 0§

5 a k()S)x+pS = -0 -y0,0)) in Q

S(t,a,1)=S(t,a,0) = 0 on QOra
S (T, a, X) = 0 in QA,]
S(t,A,x) = 0 in  QOr,

As a result, as y(v,0) — ¥(0,0) € L*(Q), the problem below admits a unique solution.

oS
Also, noting that S = S(v) € L*(Qr.4, HZ(O, 1)), 5 exists and belongs to L*>(Qr.4). Therefore, there is a constant C > 0
y
such that

oS
”E”LZ(QT_A) < Clly(, 0) = ¥(0,0)llz2(0)

Now multiply the first equation of (7) by y(0, g) — y(0, 0) then integrate by parts over Q. We get

s 0§
L o7 = 3 ~ *OS e+ uSH((0, 8) = ¥(0, 0))dxdadr = — fQ (v, 0) = ¥(0,0)(x(0, &) = (0, 0))dxdadr

f 505 )8 ) + uS)¥(0, g)dxdadi + f 25205 ()80 + 14530, 0)ddad
0 ot oa 0 ot da

=- fQ (v, 0) = ¥(0,0)(x(0, &) = (0, 0))dxdadr
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f (ay(O,g) N oy(0, g)
0

0y(0,0) N 0y(0,0)

= (k(x)yx(0, 8))x + uy(0, g))S dxdadr + f (

ot da 0 ot da
~(k(x)yx(0,0)), + 1y(0, 0))S dxdads — f (0, )(T)S(T) = y(0, £)(0)S (0)]dxda
O
o(k(x)S
- fQ (0, )(A)S (A) — ¥(0, £)(0)S (0)]dxdr — fQ MO 0,010

- f [y(0,0X(T)S(T) = y(0,0)(0)S (0)]dxda — f [¥(0,0)(A)S (A) = ¥(0,0)(0)S (0)]dxdr

& or
00 = [ 156000500000 0.0t
Then
) fQ 0. = - fQ (3(,0) = (0, 0))(¥(0, 8) — (0, 0))dxdads
Finally, we get:
fQH (G o - fQ (34, 0) = (0, 0)(3(0, 8) ~ ¥(0, 0))dxdads 04

On the other hand, noting that:y(v, g) = y(v,0) + y(0, g) — y(0, 0), we get:
— 2 2
J(V, g) = ||)’(V, g) - Zd“LZ(Q) + N”v”LZ(Qw)
— 2 2
= ”y(V, O) + y(o’ g) - y(oa 0) - Zd”LZ(Q) + N||V||L2(Qw)

+2 [ 6040) = 2)0(0.) = 3(0.0)dxdads
0
= [y, 0) = 2allja g, + NIVl g, + (0, ) = 2all72 ) + 150, 0) = zall7

-2 L (0, 8) — z2)(¥(0,0) — zz)dxdad? + 2 L (v, 0) = z2)(¥(0, g) — ¥(0,0))dxdad?
=Jv,0)+J(0,8) +J(0,0)-2 L(y(o,g) —z2)((0, 0) — z7)dxdadt

+2 L(y(v, 0) — z)(¥(0, g) — y(0, 0))dxdad?

=Jv,0)+J(0,g) +J(0,0)-2 L(y(O, g) —¥(0,0)(»(0, 0) — z4)dxdad?

-2 jQ‘ (0, 0) = z2)(»(0, 0) — z4)dxdadt + 2 L (v, 0) = z4)(¥(0, g) — ¥(0, 0))dxdadt
=J(»,0)+J(0,g) + J(0,0) - 2J(0,0) -2 L(y(o, g) —¥(0,0)(»(0,0) — z7)dxdad?
+2 L(y(v, 0) — z)(¥(0, g) — ¥(0, 0))dxdad?

=J,0)+J(0,8)—-J(0,0)+2 f(y(v, 0) — (0,0)(»(0, g) — ¥(0, 0))dxdadt
Qo

and using equality (14), we get:

A(k(x)S
J0.9) = 90.9) = J0.0) - 0.0+ 2 [ ¢ (1)
Ora I
o . Ik(x)S) . 12
Remark 2. The problem (14) has a meaning if the expression g ” do is bounded in L*(Qr 4).

T.A

Then, using (14), the expression (3) becomes :

inf J,0)-J(@0,0)+2 sup f g (16)
vell Ora

geLX(Qr.a)

A(k(x)S)
5 dO’)
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We can get:

O(k(x)S
Sup f gmdo- = 400
g€L?(Qr) Y QOra o

or

A(k(x)S
sup f gmdo- =0
8€L*(Qr.a) Y Ora dv

The problem (16) admits a solution only in the case (18). And the control v is choosen in suitable space
close non empty of L*(Q,,) defined by:

O(k(x)S
X = 0,95 € 12(0r.0)

U,y = {v e L*(Q,,), such thatf
Ora

As such control is not easy to characterize, we consider the following low-regret control problem:

gB(k(x)S) p

inf J(v,0)-J(0,0) +2
inf  [J0.0)-J0.00+2 sup fQ s

2
0-_7||g||L2 ’ VY> 0
g€L*(Qr,4) @)

Using the Legendre-Fenchel transformation, problem (20) is equivalent to solving:

A

. ) 1 Ak(x)S)
with S = J,0) = JO,00+ “I=2" 1l

3. Existence and Characterization of Low-regret Control

a7)

(18)

U 4 subset convex

19)

(20)

ey

In this section, we propose an existence result for the family of low-regret controls. Then we give the singular optimality

system allowing us to characterize it.

Proposition 3.1. There exists a unique low-regret control u, solution of problem (21).

Proof 4. The proof uses Propositions 2.1 and 2.2 to show that the functional JV is continuous, on the one hand, and
the strict convexity of J¥, on the other hand, to show the uniqueness of the solution of the problem (21). Therefore, the
sequence y(vy,.) weakly converges to y(u,,.) in L*(Q). The sequence S (v,,.) weakly converges to S (uy,.) in L*(Q). By

A(k(x)S (v, - A(k(x)S (uty, .
continuity of the trace application, the sequence w weakly converges toward W in L*(Qr ).
Therefore,
. . 1 k(xS (Vn, ) o _
T uy) < Inf () = 100, 0) = 0,00+ S|=—"3 22, ) = dy

Thus u,, is a solution to the problem (21).

We now turn to the characterization of low-regret control u, .

Proposition 3.2. Let u, € L*(Q,,) be the solution of the problem (21). Then there exists Py € L*((0,T) x (0, A); H,i O, 1))
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and q, € L*((0,T) x (0, A); H,: (0, 1)) such as the quadruplet {y,,&,, py, q,} be solution of systems:

% + % - (k(x)yyx)x tuy, = f+ UyXw in Q
¥(t,a,1) =y, a,0) = 0 on QOra
yy(o’ a, X) = yO(a, )C) in QA,I
¥y(2,0, x) = 0 in  Ori
0 0
_% - % - (k(x)fyx)x +ﬂ§y = Yy —Z4 in Q
&(ta, 1) =¢&,(ta,0) = 0 on QOra
£,(0,a, x) =0 in Qa1
&,(,0,x%) = 0 in  QOri
apy 8[’7 _ .
W + % - (k(x)pyx)x + ﬂpy =0 m Q
D =p,(ta0 LM
py(t’ a, ) - Py( ,a, ) \/7 Sy on QT,A
Dpy(0,a, x) = 0 in Q4
Py(t,0,x) =0 in  QOr
0 0
—% - % = (kK()qy)e+ gy = yy+Epy—2a in Q
qy(t,a,1) = q,(t,a,0) = 0 on QOra
qy(0,a, x) =0 in  Qa,
(1,0, ) =0 in Or

and
Nu, +q, =0 dans Q,

Proof 5. The optimality condition of Euler-Lagrange which characterizes the low-regret control u,, is given by:

lim J(uy + ) = JV(uy) _

2
lim 3 0, Vv e L (Quw)

After some calculations, we get the relation:

lf O(k(x)é(uy, ) Ak(x)E®,.)) Y,
Ora

— _ - v L2 »
fQ ((uy, 0) = za)y(v,0) + 5 5 o o uyy =0, YveL(Q,)

where y(v,0) = y, and £(v,0) = &, are respective solutions of:

W 2

Yy .
ot 9a K(Oyv)x + 1y = Wy in Q
yv(t’ a, 1) = yv(t’ a, 0) = 0 on QT,A
yv(0, a, x) = 0 in Qa
yv(t’ O’ )C) = 0 in QT,]
and o6, ot
- = == = k(&) +péy = —y(v,0) in Q
ot Oa
fv(t’ a, 1) = gv(tv a, 0) =0 in QT,A
&(0,a,x) =0 in QO
‘fv(t, O, -x) = O in QT,I

Multiply the first equation of (28) by q,, solution of (25) then integrate by parts on Q. We get:

1
»wQy + —p _Zd):f qyv, VYveL*(0.,)
Jypore grmms0= [, o

Multiply the first equation of (29) by \/L? Dy and integrate by parts on Q. We get:

f Ok()éy) f
» 9y Py = vap)/
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Reduce the relation (27) by using relations (30) and (31), we get:

f qyv + Nf u,v =0, Vve Lz(Qw) (32)
Qv (o

And we find the relation (26):
Nu,+g,=0 in Q, (33)
4. Existence and Characterization of the No-regret Control

In this section, we give an existence result for the no-regret control as a limit of the family of low-regret controls in the
neighborhood of the origin. Then we establish the singular optimality system allowing us to characterize it.

Proposition 4.1. The low-regret control u, converges toward the no-regret control u in L*(Q,,).

Proof 6. As u, is solution of (21), then

J'(w,) < J7(v) &= J(u,,0)-J(0,0) + lllwllmg oS J(v,0) - J(0,0)

L1 4 a(k(X)f(v N 2
,y L2(Qr.4)
In particular, for v = 0, we have:
k()& (uy, ) o
J(,,0) = J(0,0) + —||—’||L2(QM) <
The structure of J(u,,0) provides us:
1 0k(0)Euy, )
“yy Zd”LZ(Q) +N“uy||L7(Q ) ,y”—y”LZ(QTA) < J(Oa 0)

Thus, we deduce the following estimates:

ety llz2¢0,) < € (34)
lyy = zallzzo) < C (35)

1, 0k )
_”M”Lz(Qm) <C (36)

Using the relation (35) and the fact that y, is solution of (22), we deduce:

Yy llz20,mx0,axm 01y < € (37

where C is a positive constant. From the relations (35) and (37), we deduce that there exists u € L*(Q,) and y €
L*((0,T) x (0,A); H}(0,1)) such that:

Uy — u weakly in  L*(Q,,) (38)
Yy =y weakly in  L*((0,T) x (0, A); H,i 0, 1)) 39)

For the rest of the demonstration, we proceed by steps:

Step 1:Verify that (u,y) is solution of (22)

Letbe p € C*(Q)withgp =0o0n Qra, ¢(T,.,.) =0in Qa1 and ¢(., A,.) = 0 in Qr1. Multiply the first equation of (22) by
¢ then integrate by parts over Q:

Oy, dy, .
f ‘P( a F % = (k(X)yyx)x +,U)’y) fQ o(f + uyxw)

We get:

0 )
fQ Yy (—a—f - —a — (k(0)p)x +u90) fQ o(f + uy)

w
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by passing to the limit when y — 0, we get:

dp g
ny(—a—f - % = (k(xX)px)x +u¢) wi o(f +u)

We integrate by parts the last relation on Q and we get:

ady Oy
f (E + % = (k(X)yx)x +uy) fQ ) o(f +u)

Thus p P
AN k(X)y ) + 1y = f+uy, ae surQ (40)
ot da

Due the fact that y € L*((0,T) x (0,A); H 1(O 1)), then y(t,a) lg,, exists and belongs to L*(Qr.4). In addition, using

0 ay
relation (40), we deduce that 6_); + = EP € L*((0,T) x (0,A); H; 1(0,1)). Hencey € W(T, A). Thanks to Lemma 1, the trace

¥(0,.,.) and ¥(., 0, ) exists and belongs respectively to L*(Qa.1) and L*(Qr).

Now, consider ¢ € C*(Q) with ¢ = 0o0n Qra, ¢(T,.,.) =0in Q4 and ¢(.,A,.) = 0in Qr,. Multiply the first equation
of (22) by ¢ then integrate by parts on Q:

dy, 0y, .
f(p(f + uy)(w) = f (E + 6_a _( (x)yyx)x +/"yy)

0 0
= L Yy (—a—f - _a = (k(X)p)x + MQO) L 5 (QD(A)yy(A) - <P(0)yy(0))
ok 3k
+ f (@(T)yy(T) — p(0)yy(0)) + f (%) _ ( (gx)éo)
O Ora y 0 ¥

by taking into account the conditions at the boundary andfor limits, it comes:

0 0
fQ o(f + tyxo) = fQ Yy (—a—f—a—i—(k(@%)x+#90)— fQ 000

passing to limits when y — 0, we obtain:

_ O ¢
fQ o(f +uxw) = fQ ( % 9a (k(X)sox)ermp) f g @(0,.,.)y,(0,.,.)

We integrate this last equality by parts on Q:

ot

ok ok
[ - ponon+ [ EE) f Helwle) _ f W0, )
Oa.1 Or.a 14 T.A dv A1

Yo € C*(Q) such that ¢ = 0 on Qra, ¢(T,.,.) =0in Qs and ¢(.,A,.) = 0in Or;.

0 0
f o(f + 1ye) = f ( Y %—(k(x)yx>x+uy)+ fQ (@(A))(A) — @(0)y(0))

by taking into account the conditions at the boundary andfor limits, it comes:

dy dy
fsa(fﬂtxm) f (0—f+—a—(k(X)yA)x+uy) fQ 90(-,0,.)y(-,0,.)+f ¢(0,., )y, .,.)

! Oal
d(k
_f yotp(O,.,.)—f y%
O Y

0 ay 8 k
- f (6{ + 2 ks +ﬂy) f (.0, (. 0,.) - Ikx)p)
da Or,1 QTA 81/

- | 0% =x0,.)¢0,..)
Oa

Ak
0=f so(-,O,-)y(.,O,.)—f (yo—y(O,.,.))go(O,.,_)_f y (;X)so)
Tl Oa - v

Yo € C*(Q) such that ¢ = 0 on Qra, ¢(T,.,.) =0in Qs and ¢(.,A,.) = 0in Q.
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Then
Y0,.,.) =y in Q4 (41)
¥(.,0,.) =0in O, 42)
Ylg, =0 (43)
By combining (40), (41), (42) and (43), we deduce that y = y(u, 0) is solution of
0 0 .
DLy tmy = fruwx, i Q
ot da
y(t,a, 1) = y(t,a,0) =0 on Qra (44)
¥(0,a, x) = Y(a,x) in  Qay
)’(Z, O’ .X') = 0 in QT,l

Step 2 : show that & = £(u, .) is solution of (23)

Let y € C*(Q) such that y = 0 on Qr 4 and (0, .,.) = 0 in Qa,1. Multiply the first equation of (23) by Y then integrate
by parts on Q:

08, &
leﬁ(—a—ty - a—ay — (k(x)&y)x +,U§y) = leﬁ(yy — Zd)

it comes:

0 0
L‘fy (6_1}0 + 8_!;[: — (kX)) x +/Jl,0) = Ll//(yy - 2q)

passing to the limit when y — 0, we obtain:

ff(z—w + W _ k(X)W )« +,wﬁ) = flﬁ()’ - 2a)
0 t oa 0

We integrate this last equality by parts on Q:

0 0¢ _ 3
L'J’(—E " (k(X)éx)x +M§) = wi(y Z4)

0 o¢
-2 - = k()€ =y 45
% B4 (k(X)Ex)x +HE =Y — 24 45)
Asé e L2((0,T) % (0,A); H,i (0, 1)), then y(t, a) |, , exists and belongs to L2(QT,A) a.e.(t,a) € (0,T) % (0,A).On the other
0 0
hand, using (45) in more, a—f + a—lg € L2((0,T) x (0, A); Hk‘l(O, 1)). Hence y € W(T, A). It follows from Lemma I that the
trace Y(T, ., .) exists and belongs to Lz(QA,l) and the traces Y(., A, .), ¥(.,0,.) exist and belong to LZ(QT,I).

Let be y € C*(Q) knowing that = 0 on Qra and Y(0,.,.) = 0 in Qa1. Multiply the first equation of (23) by Y then
integrate by parts on Q:

we deduce that:

0, 0k
fQ YOy —24) = fQ w(—a—; - a—; — (k(X)&yx)x +~§y)

0 0
- f fy(—”” + 2 +/w/) - f (A, (A) - w(0)%,(0)
(4] a Or

ot
O(k(x)&y) f O(k(x)y)
- 0 fy

- W(T)Ey(T) = ¥(0)6,(0)) + ¥

Oal Ora dv dv

which gives, by taking into account the boundary andfor limits conditions:

0 o
f Wy —2a) = f fy(a—‘f+a—‘”—(k<x>wx>x+uw)+ f 0.0, )6,(.0,.)
0 0 a Or.1
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passing to the limit when y — 0, we have:

0 0
f Uy - 2a) = f f(a—lp"'—w—(k(x)lﬂx)x"‘#lﬂ) f 0(.,0,.)
0 t c')a 7.1

We integrate this last equality by parts on Q:

0 0
Jypo-zo= v (—5——§—<k<x>§x>x+u§) |, wenea - oo
HE) [ k) |
4

&

+f (W(T)f(T)—l!/(O)f(O))+f ¥ E»
Oal Ora Ora

Y € C*(Q) suchthaty =0 on Qra and ¥(0,.,.) =0 in Qs

by taking into account the boundary andfor limits conditions, it comes:

_a —
+ f Tw(.,0,.)— f (., 0,.)é,0,.) — E——
Or,1 Or, Ora

0= ¢(~,A,-)§(-,A,~)+f (T, ., )T, .,.) - ¢ 3
Or Oal Ora

fl/’(y—Zd):flﬁ(—a—g—af (k(xX)éx)x +,U§)+f l/’(-,A,-)f(-,A,-)+f (T, ., )T, .,.)
9] 9] a0 Or O

a(k(X)lﬂ)

- L (é‘:(’ 07 ) - T)l!/(., Ov )

Yy € C*(Q) suchthaty =0 on Qra and Y(0,.,.) =0 in Oy,

We obtain:

&(.,0,.)=71in Or,
&lora =0

£(,A,)=0in Or,

&T,.,.)=0inQn,

By combining (45), (47), (48) and (49), we find that & = £(u, 0) is solution of

— G - - kWE) +pE =y-z inQ

&, a, 1) =&(1,a,0) = on Ora
&(T,a, x) =0 in Qa1
&, A, x) =0 in Q7

Now, using relation (38) and proposition (2.2), we deduce that:

Euy,.) — Eu,.) weaklyin L*(Qra)
If in addition, we exploit the relation (36), we get that:

&(u,,0) = 0 strongly in LZ(QT,A)
From the uniqueness of the limit, we conclude that:

Euy,.) — Eu,.) weaklyin  L*(Qra)
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Using the continuity of the trace application:

Ok Uy, ) Ok(DEWw, ) _

4
v ov 0 S

Consequently,

A(k(x)& (uy, .)) Ok(x)s(w, ) -
LT‘A gTdO'—) fTAA gTdO'—O (55)

Thus u € U,y. The strict convexity of J¥ allows to deduce that u is the unique control, solution of (21).

We conclude that the low-regret control u,, converge in L*(Q,,) toward the unique no-regret control u

In what follows, we will try to characterize the unique no-regret control u.

Proposition 4.2. The no-regret control u solution of problem (3) is characterized by the quadruplet {y, ¢, p, q} solution of
optimality system :

0 0 .
22 (k(X)yx)x +py = f+uy, in Q
ot Oda
y(t,a,1) = y(t,a,0) =0 on QOra (56)
¥(0,a, x) = Y(ax) in Qa
y(t,0, x) = 0 in  QOr;
0 0 .
S gD tpE = y-z i 0
ot Oa
&(t,a,1) = &(1,a,0) =0 on QOra (57)
&(T,a,x) =0 in QO
f(t’ A7 x) = O in QT,]
0 0 .
L2 (kpdc+pp = 0 in Q
ot Oa
p(t’ a, 1) = p(t7 a, 0) = kl on QT,A (58)
p(oa a, .X) =0 in QA,]
p(ts Os -x) = O in QT,I
0 0 .
2 —q—(k(x)qx)ﬁuq = Y-tk in Q
ot Oa
q(t,a,1) = q(t,a,0) 0 on QOra (59)
q(T,a,x) =0 in QO
C](Z, Av )C) = 0 in QT,I
and
Nu+g=0 in Q, (60)

1 a(Ew, ) I
vy o Oy v

Proof 7. The results (56) and (57) have been demonstrated during the proof of the previous proposition. It remains to be
demonstrated (58)-(60). For this, we will proceed by steps:

where ki =lim,_,o and  ky =1lim,_

Step 1: show that p is solution of (58).
Using relation (36) on the one hand, we deduce that there exists a constant C > 0 such that:
1 Ok(x)é(uy, )
\Y ov

On the other hand, noting that p, = p(u,,.) satisfies system (24), we deduce that there exists an other constant C > 0
such that:

Il lz20r < C (61)

Ilpyll2) = C (62)
With regard to estimates (61) and (62), we deduce that there exist k| € L2(QT,A) and p € L*(Q) such that:
1 Ok()E(uy, )

N 5 ky weakly in  L*(Qr.4) (63)

Py — D weakly in  L*(Q) (64)
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Now multiply the first equation of (24) by a test function ¢ € C*(Q) such that ¢ = 0 on Qra, ¢(T,.,.) = 0in Qa1 and

(., A,.) = 0in Qr1. Then we integrate by parts on Q:

dpy  Op,
0= X — —(k x)x
L¢( ot + Ja (K(X)Pyx)x + 1Py

dp 0
- fQ Py (—a—f - b= ke, +W)

passing to the limit when y — 0 in the last equation and using (64), we obtain:

_ _Op ¢
0= fQ p( v <k<x>sox>x+uso)

We integrate this last equality by parts on Q:

_ op  9p _
0= fQ ¢( o (k(x)px>x+up)

So we deduce that: s s
L2l kp)tup =0 acin Q

(65)

Then, p € L*((0,T) x (0, A); H,l(O, 1)) implies p(t,a) |, , exists a.e.(t,a) € (0,T) x (0, A) and belongs to L*(Qr.4). Using
0 0
(65) on the other hand, we deduce that p € L*((0,T) % (0, A); H]i (0, 1)) involves a—I; + 6_p e L*((0,T) % (0, A); H;I(O, ).
a
Which implies p € W(T, A). Thus using Lemma 1, the traces p(.,0,.) and p(0, .,.) exist and belong respectively to L*(Qr.1)

and to LZ(QAJ).

Consider now ¢ € C*(Q) such that ¢ = 0 on Qra, ¢(T,.,.) = 0in Qa1 and ¢(.,A,.) = 0in Qr,. Multiply the first

equation of (24) by ¢ then integrate by parts on Q:

B op, Op,
0= L‘P(E t o T (K(X)Pyx)x + 1Py

dp 0
= f Py (——90 - a—"o — (k(xX)¢@x)x +W) + f (¢(A)p,(A) - £(0)py(0))
0 a Or.

O(k(x)py) f O(k(x)p)
o - Py 9
Ora v

ot

Ora

+ f (@(T)py(T) = p(0)p,(0)) + f P
Oa 14

which gives, by taking into account the boundary andjor limits conditions:

ot

dp 0 1 dk ,) Ok
0= pry (__<p - (9_‘2 — k(X)) +,U<P)— f = (k(0)&(uty, ) B(k(x)p)

VY v

passing to the limit in this last equality when y — 0 then using (63) and (64), it comes:

N L e
0= LP( or a (k(X)p)x + ,utp) Lm ki Iy

We integrate this last equality by parts on Q:

0 0
0= f @ (a—l: + 8_]7 = (k(X)p)x + ﬂp) - f (p(A)p(A) — p(0)p(0))
Q a Or.

v

- | @@p/ 1) - ¢Op, ) + f P 5

O Ora
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by taking into account the boundary andjor limits conditions:

0= f ¢(.,0,)p(,0,.) + f ¢, ., )p,.,.) + f (p—ky)
Or, Oa Ora

Yo € C*(Q) such that ¢ = 0 on Qra, ¢(T,.,.) =0in Qa1 and (., A,.) = 0in Q.

We obtain:

p(.,0,.) =0in Or;
p(o’ 3 ) = 0 in QA,I
p=kionQra

By combining (65), (66), (67) and (68), we deduce that p is solution of system

0 0
T2 koptup = 0 in
a
p(t9a, 1) = p(t’avo) = kl on
p(o’ a, X) = 0 in
p(tv 0’ x) = 0 in
Step 2: show that q, converge toward q solution of (59)
Let g} and q), be respective solutions of:
dq]  0q]
T k(0)g ) + g = _
yal‘ da ) ( (X)qlx) Mg Yy —Zd
q,(t,a,1) = q;(t,a,0) =0
q,(T,a, x) = 0
q,(t, A, x) =0
and 0 oa?
9 92 Y Yy _ 1
—y— o ; kg3 ) +1gy = 5Py
QQ(L a’ 1) = qz(t9 a9 0) = kl
q5(T,a, x) =0
q5(t,A, x) =0

Then q¥ = q}y + qg is solution of (25).
According to the estimate (36), there exists constant C > 0 such that:

y
gy 1lz2¢0.r)x0.41 0.1)) < C

So, there exists q| € L*((0,T) x (0, A); H,l (0, 1)) such that:

I(k(x)¢)

v

Ora
Qa1
Or,1

in
on
in
in

on
in

Or.a
Oa1
Or,

Or.a
Oa,1
Or,1

g = q weaklyin L*((0,T)x (0,A); H;(0, 1))

(66)
(67)
(63)

(69)

(70)

(71)

(72)

(73)

Now let ¢ € C*(Q) such that ¢; = 0 on Qr4 and ¢,(0,.,.) = 0in Qa,1. Multiply the first equation of (70) by ¢, then

integrate by parts on Q:

dq]  dq]

fQ o (‘E - —(k(x)quwq?) _ fQ 010y - 2a)

we obtain:

dp1  Opy
fgtﬁ(ﬁ + ga ~ KoL *"“”) ) erom )

passing to the limit when y — 0 in the last equality and using, we get:

0 0
qul (% + % —(k(x)solx)ﬁusol) = L¢1@—zd>
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We integrate this last equality by parts on Q:

0 0
fQ o (—% - % —(k(x)qu)qul) = fQ 01y - 24)

0q1  0q, 3
o Pa = (k(X)g1)x + g1 =y — 24 (74)

Asq € L*((0, T)x(0, A); H,: (0, 1)), then q(t,a) |, , exists and belongs to LZ(QT,A) a.e.(t,a) € (0,T)x(0,A). On the other
dq; 0

hand, relation (74) and the fact that q, € L2((0, T)x(0, A); H!(0, 1)) implie that —%—% € L2((0, T)x(0, A); H;'(0, 1)).

Whence q1 € W(T,A). Then according Lemma 1, the traces q\(T,.,.) and q,(., A, .) exist and belong respectively to

LZ(QA’l),' and to Lz(QT,l). Consider ¢, € C*(Q) knowing that ¢; = 0 on Qra and ¢1(0,.,.) = 0 on Qa1. Multiply the
first equation of (70) by ¢, then integrate by parts on Q:

we deduce that:

dq]  oq]
—z) = =L (k(x)q ), Y
L‘Pl()’y Z4) stol( % oa (k(x)qy,) +ll611)

dp1 O
= fQ qT(a—t‘ o —(k(X)¢1x)x+,u<p1)— fQ (0g@) - 0100)

B(k(x)qT)_ f qya(k(x)‘pl)
Ora

—fQAVI(%(T)qT(T)—901(0)%(0))+f s e

Ora

by taking into account the boundary andjor limits conditions:

0 0
f%(w—aﬁfq{(%+ﬂ—(k(x)<pnx)x+ﬂ<m)+f ¢1(..0,.)¢7(.,0,.)
0 0 t da 0r)

passing to the limit when y — 0 in the last equality and taking into account (73) and (39), we get:

0 0
fsol(y—zd)=fq1 (§+ﬂ—<k<x>mx+wl)+f 71(,0,.)
Q Q 4 da 7.1

If we integrate this last equality by parts over Q, we get:

0 0
f P1(y—za) = f @1 (—% - % — (k(X)q1x)x +/1q1) + (©1(A)q1(A) — ¢1(0)g1(0))
¢ ¢ g a Or,
a(k ok
+ (@1 (T)q1(T) — ¢1(0)q1(0)) +f %% _f @ (k(x)p1)
Qa Ora v A v

+ f T‘Pl(., 07 )
Or,1

Yo, € C*(Q) such that o1 = 0on Qra and ¢1(0,.,.) =0in Q4.

by taking into account the boundary andfor limits conditions:

0 0
f 10— 20) = f o1 (—%—ﬂ—(kmqu)qul% f (7= @10, 0,)¢1(,0,.)
0 0 t da Or
Ik
+f ql(.,A,.)¢1(.,A,.)+f AT Jpr(T, ) m%
Or.1 Oal Ora 14

0= (T—ql(-,0,~))<ﬁ|(~,0~)+f ql(-,A,.)¢1(-,A,-)+f (T, ., )i (T, .,.)

Or Or Ol

) f Hk(x)p1)
oo

Yo, € C*(Q) such that ¢; = 0 on Q74 and ¢1(0,.,.) =0in Q4.
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we get:

q1(,0,.) =7in Or,
qilor, =0

q1(,A,.)=0in Qr,

qi(T,.,.) =0in Qs

By combining (74), (76), (77) and (78), we conclude that q, satisfies system:

—% oo (k()q1)x t g1 =y—z4 inQ

t da

q1(t,a,1) = q1(t,a,0) =0 on Q74
q1(T,a,x) =0 in Qa1
CII(LA, x) =0 in QT,I

Analogously with which above, it is obviously to show that q, satisfies system:

0 0 .
-2 - 2R kg2s +ug =k i Q
q(t,a,1) = ga(t,a,0) =0 onQra
q>(T, a, x) =0 inQq
CIZ(I,A,X) = 0 in QT,]

Back to expression (27), which means:

f(y(uy, 0) — 25(@.0) + lf O(k(X)E(uy, ) Ik(x)é(w, .)) N [ ww=0, voerko.
0 Y Jor, ov av 0,

By substituting the expression (31) in (27), we obtain:

f(y(u,/, 0) — zo)y(w,0) + L f Pyy(w,0) + N uyw=0, Ywce Lz(Qa,)
o \/7 7.A Qv

We set O = {y(w,0),w € L>.(Q,,)}. Then O c L*(Q). We define on O x O the inner product
oW, 0), y(w,0))o = L vw + fQY(V, 0)y(w,0), VY((v,0)y(w,0)) € OxO

The set O endowed with norm
lly(@, Il = lwll7q,, + V@, 020,
is a Hilbert space.

1
By setting T,,(w,) = —=p, in (82), we have:

N
f T, (1, (@, 0) = - f (4(1t, 0) — 2)¥(@,0) — N f ww, Vo eX0,)
0 0 Quw

On the one hand, we have:

lf Ty (uy)y(w,0)
0

and on the other hand, we have:

< (||y(uy, 0) = zall2 ) + N||My||L2(Qw)) Iy(w, Ollo,  Yw € L*(Q.,,)

< ITyull)lly@, 0)llo, Yo € L*(Q.,)

f Ty(“y)y(w, 0)
o

We deduce that:

1Ty w2y < C

1
S—=pyllrzg = C

VY

82

(75)
(76)
(77)
(78)

(79)

(80)

(81)

(82)

(83)
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where C = C(N, ”uy“LZ(Qm)v “Zd”Lz(Q)’ ”)’(”y’o)”Lz(Q)’ ||f||L2(Q))-
Using (71) and (83), there exists C > 0 such that

1311200408 0.1 < € (84)
According to estimates (83) and (84), there exists k, € L*(Q) and QG € L*((0,T) % (0,A); H ,: (0, 1)) such that:

1

—p, = ky weaklyin L*(Q) (85)
v ’

gy = g weaklyin L*(0,T)x (0,A); H;(0, 1) (86)

For the rest, using the same reasoning as for q’l', we prove by using (85) and (86) that q, satisfies:

SR (g g =k inQ

t oa

q2(t,a, 1) = q2(t,a,0) =0 onQra
9T, a, x) =0 inQu,
512(@14, x) =0 in QT,]

Now back to equality q" = q} + q}. Using (72) and (84), we deduce that

197120, x0 1 0.0 < € (87)
Then, there exists g € L*((0, T) x (0, A); H]i (0, 1)) such that:

q’ — q weakly in L*(0) (88)

By proceeding in the same way as for q}y and qg and using (88), we show that q is the solution of (59).
Finally, passing to the limit in (33) and using (38) and (88) , we deduce (60).
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