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Abstract

In this article, we measure the efficiency of the Autonomous Port of Dakar (APD) and identify the causes of inefficiency
for the year 2021. Measuring port efficiency is an important factor in strengthening its competitiveness and stimulating
national development. In the literature, the most widely used methods for measuring efficiency in the port sector are
parametric and non-parametric methods. Our objective is to apply Data Envelopment Analysis (DEA) with two models,
namely: the Charnes, Cooper and Rhodes (CCR) and Banker, Charnes and Cooper (BCC) to determine the efficiency
scores and the bootstrap approach the Simar and Wilson in 2007 to correct the errors and determine the confidence
intervals. Numerical simulations are performed in the two distinct zones separated by a Fishing Port (FP), Naval Repair
Workshops (NRW) and the Military Zone (MZ), while the others zones are the Decision-Making Units (DMUs), detailed
in table 2. The results show that APD obtains six (6) effective DMUs with CCR model (average score of 0.858) and ten
(10) effective DMUs with BCC model (average score of 0.951). The average scale efficiency is 0.897. With the bootstrap
approach, we obtain an average bias-corrected of 0.700 for CCR model (with confidence intervals of [0.324; 0.1291]) and
0.870 for BCC model (with confidence intervals of [0.620; 1.197]). These results will allow the decision makers of the
Dakar port authority to improve its performance and competitiveness at the national and international levels.
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1. Introduction

Ports play a major role in the competitiveness of international supply chains and hence in the competitiveness of countries
and regions. As well, global trade, supply chains, production processes, and economic integration depend heavily on the
existence of efficient port systems and associated logistics. According to the United Nations Conference on Trade and
Development (UNCTD) held in Geneva in 2018, more than 80% of the volume of goods traded in the world is transported
by sea and that shipping and ports are an integral part of any door-to-door transport solution (Ripoll, 1973). Based on
these assumptions, we can say that it is therefore important to monitor and measure the operational, financial, economic,
social and environmental efficiency of ports. This will be an important factor in promoting the competitiveness of ports
and stimulating global development. The APD is based on the six (6) major ports in West Africa, and it is also based on
the twenty-five (25) major ports in Africa. When we look at the world ranking of ports, we see that ports are far from the
ranking relative to the rest of the world. We can say that in Africa we have a lot of challenges in the port sector.

Efficiency measurement methods can be classified into two categories according to the one-dimensional and multidimen-
sional approaches (Farah, 2018). The technique used by the one-dimensional approach to assess efficiency is the partial
ratios, whereas for the multidimensional approach, the techniques used are the methods of the frontier and the methods of
the mean. Speaking of the frontier method, we have parametric methods and non-parametric methods, all developed by
Farrel in 1957. In the literature, the most widely used methods for measuring efficiency in the port sector are parametric
and non-parametric methods (Carine, 2015; Nguyen, Nguyen, Chang, Chin & Tongzon, 2016; Simöes & Marques, 2010;
Tovar & Wall, 2019) we we all used the frontier method to assess efficiency in the port sector.

The DEA method was introduced by Charnes et al. to measure the efficiency of a U.S federal program of resource
allocation to schools (Follow Through Program). The use of the DEA method was then generalized in public and private
structures (Health System, Human Resources, Unemployment Offices, Power Plants, Police Units, Waste treatment Plants,
logistic etc.). The DEA method is a tool for analysis and decision support in the areas mentioned above and allows:
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• calculate an efficiency score for each DMU, indicating whether an organization has a margin for improvement;

• set target values for each DMU, indicating how much the inputs need to be reduced and the outputs increased for a
DMU to become efficient;

• identify reference peers for each DMU, indicating which organizations have the best practices to analyze.

The question of improving the efficiency and competitiveness of the APD (infrastructure, logistics, etc.) is a hard subject
which has been concerning the local authorities for several years, and on which a research work was launched in the last
decade. The challenges are: (i) port congestion, which stifles the efficiency of various zone area (ii) modernization of
infrastructure to make of the APD among one of in the sub-region, in Africa and even in the world hubs of reference;
(iii) ship movements. Our research addresses these challenges, focusing on the three economic, social and environmental
aspects to measure the efficiency of the APD in two stages. First, we use the two main DEA models (CCR and BCC)
proposed by Charnes et al. and Banker et al. respectively. Second, we apply the bootstrap method proposed by Simar and
Wilson to correct the bias and determine the confidence intervals.

This article is organized as follows: in section 2 we present a review of the literature on port efficiency. In section 3 we
briefly describe the DEA method and bootstrap approach used in this article. In section 4 we introduce the DMUs, the
input and output variables, and dataset. In section 5 we provide numerical results for both the proposed DEA/bootstrap
formulations applied to APD and comment on the results. Finally, in section 6 we provide conclusions and future works.

2. Literature Review

In this section, we give a general overview of the literature review of the DEA method, DEA bootstrap approach and
Stochastic Frontier Analysis (SFA) method, before focusing on our case study: the application of the DEA method and
the bootstrap approach in the port sector. The literature review on the application of the DEA, SFA and DEA bootstrap
methods in the port sector is summarized in the table 1.

The non-parametric efficiency measuring method is due to Farrell by only considering one variable (input and output).
Charnes et al. took up this method while considering several variables (input and output) at the same time, also by using
the technique of linear programming, hence the exponential progress of their method, called DEA. The DEA bootstrap
approach was introduced by Simar and Wilson, and today several authors have used this approach to evaluate efficiency
in different sectors.

The literature on the efficiency of the port industry is relatively new (the first studies appeared in the mid-1990s). The
DEA method has been applied for the first time in the port sector by Roll and Hayuth and assumes that the convexity
hypothesis is verified. In the case where this hypothesis is not verified, Tulkens and Deprins developed a model called
Free Disposal Hull (FDH).

Emrouznejad and Yang identified over more than 900 articles related to the application of the method in different sectors
and in different countries around the world. According to their study, the most common areas of application of the DEA
method are: agriculture, banking, supply chain, transportation sector. Georgiadis et al. have analyzed the performance
of 34 multimodal public transport networks worldwide to investigate whether the service characteristics of their metro
components significantly affect bus performance and vice versa as well as whether their operational environment exerts
the same impact on metro and bus public transport modes. They used the DEA bootstrap approach to determine efficiency
scores and correct errors as a first step. In the second step, they used robust condition efficiency estimators of order-m to
identify the factors that could explain these performance rankings.

Novickyté and Droz̆dz used the DEA method to examine the performance of Lithuania Banks. On average, they achieved
an efficiency score of 86% for the VRS model and 60% for the CRS model. As mentioned in section 1, the DEA method
and its components are used in several areas. For example, in education, Mahmudah and Lola applied the Fuzzy Data
Envelopment Analysis (FDEA) method to measure the performance of the 25 Indonesian Universities. In the health
care system, Hamidi has used the SFA technique to measure technical efficiency of governmental hospitals in Palestine.
Numerous authors had applied the DEA method to assess efficiency in the port sector in different countries of the world
(Al-Eraqi, Mustafa, Khader & Barros, 2008; Ashraf Malabika Deo, 2014; Trujillo & Tovar, 2007; Wanke & Barros, 2016).
For more details on the application of the DEA method see Al-Eraqi et al.. In table 1 , column 1 concerns the authors
of the article and the country where the study was conducted. Column 2 concerns the DMUs and the methods used. In
columns 3 and 4 are the input and output variables. Finally, column 5 is dedicated to a short summary relating to the
study.
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Table 1. Studies applying DEA and bootstrapping in the port sector
Authors/Country DMUs/ Methods Inputs Outputs Comments

Tongzon,
2001/Australian and
other international ports

31 ports/DEA

number of cranes, number of
berths, number of tugs, total length
of terminal, amount of delay time,
number of port authority
employees

ship working rate,
number of
containers

They used DEA to provide an efficiency
measurement for four Australian and
twelve other international container
ports. According to their results the
Melbourne, Rotterdam, Yokohama and
Osaka ports, have obtained the lowest
efficiency scores.

Wang, Song &
Cullinane, 2003/Word

several container
terminal/(DEA, FDH)

total length of terminal, total quay
length, number of quayside
gantries, number of yard gantries
and number of straddle carriers

number of
containers

In this paper, two alternative techniques
DEA and the FDH models have used to
evaluate the efficiency of the worlds
most important container ports and
terminals. On average the ports scored
0.5759, 0.7629 and 0.8949 for the CCR,
BCC and FDH models respectively.

Cullinane, Song &
Wang, 2005/Word

several container ports
word/DEA/FDH

total length of terminal, total quay
length, number of quayside
gantries, number of yard gantries,
number of straddle carriers

number of
containers

In this paper, DEA and FDH models are
used for evaluate the efficiency of ports
and container terminals in the world.
The results provide an overview of the
current efficiency ranking of the world’s
leading ports and container terminals.

Cullinane, Wang, Song
& Ji, 2006/Europ

104 European container
terminals/DEA (CCR
and BCC)

total length of terminal, terminal
area, number of equipment

container
throughput

In this article, it was investigated,
efficiency and scale properties of 104 of
Europes container terminals with annual
throughput of over 10,000 TEUs in
2003, distributed across 29 European
countries, are derived using DEA
method.

Barros & Managi,
2008/Japon

38 ports/DEA&
Bootstrapping

number of employees, number of
cranes in seaport

number of ship,
tons of liquid and
dry bulk loaded and
unloaded, number
of containers with
TEU

This paper used DEA bootstrap
technique to analyze the efficiency
factors of a representative sample of
Japanese seaports between 2003 and
2005. On average, they had a score of
0.416 for the CCR model and 1.000 for
the BCC model.

Wanke & Barbosa,
2014/Brazil

53 bulk terminals in
Brazil/DEA
Bootstrapped

loading hours
loaded shipments,
aggregate
throughput

In this paper, they used DEA and
bootstrapping technique to analysis
efficiency of Brazilian bulk terminals.
The results of the study suggest that
most Brazilian bulk terminals present
increasing returns-to-scale, that is, they
are too small in size comparatively to
the tasks performed, indicating a
capacity shortfall.

Figueiredo De Oliveira
& Cariou, 2015/Word

256 word ports & 38
ports Mediterraneans
/DEA& truncation model

berth length, number of portico,
number of Cranes

annual throughput
TEU

In this paper, they used the DEA method
and truncation model to analyze to 226
world ports, then to 38 Mediterranean
ports, and then to understand the
determinants of this efficiency for the
year 2010. They are concluded,
according the results, more than half of
the efficient ports are located in the Far
East, particularly in China (five parts).

Nguyen, Thenet &
Nguyen, 2015/Vietnam

43 Vietnamese
ports/bootstrapped
DEA&SFA

berth length, terminal areas,
warehouse capacity and
cargo-handling equipment

cargo throughput

In this paper, the bootstrap DEA was
applied to a sample of the 43 largest
Vietnamese ports and also, they
compared the results with those of the
SFA and standard DEA. The results
show that while the efficiency scores
obtained from the three methods provide
useful and consistent measures of port
efficiency, they differ considerably.

Kalgora, 2019/West
African

5 ports
DEA&Window-Analysis

depth of berths, total area, number
of cranes and number of employees

number of ships,
total tons and
number of
containers

This study presented a competitiveness
analysis of five strategic container ports
in West Africa using the DEA model
Windows I-C method. The results
indicate that, the port of Tema (Ghana)
to be the most competitive in the West
Africa with 95% production average
efficiency score, then followed
respectively by Lagos, Abidjan, Lom
and Cotonou port.

In the following section 3, we briefly describe the DEA method and the bootstrap approach adapted to our study.

3. Methodology

In this section, we introduce DEA mathematical both models (CCR and BCC), the scale efficiency (SE), the returns to
scale (RTS) and the bootstrap approach. The DEA method is one of the most widely used methods to evaluate efficiency a
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unit of a multiple-inputs and multiple-outputs simultaneously. The bootstrap approach allows us to correct measurement
errors and determine the confidence intervals. The motivation of using the DEA method is that it is non-parametric and
deterministic. In addition, it takes into account several inputs and outputs. The disadvantage is that it does not take
into account hazards. To overcome this last point, we used the bootstrap approach to correct errors and determine the
confidence intervals. The framework of the methodology is composed of four (4) main phases. Firstly, we present the
CCR mathematical model in 3.1, which assumes constant returns to scale (CRS). Through this model, we determine the
CCR efficiency scores. Secondly, we present the BCC mathematical model in 3.2, which assumes variable returns to scale
(VRS). Through this model, we determine the BCC efficiency scores. Thirdly, present, the SE and RTS in 3.3. Finally,
we develop the bootstrap approach in 3.4. Note that we have presented five (5) mathematical problems, both models
(CCR and BCC) which are: (P f−CCR):= Fractional problem of the CCR model; (Pl−CCR):= Linear problem of the CCR
model; (Pd−CCR):= Dual problem of the CCR model; (Pl−BCC):= Linear problem of the BCC model and (Pd−BCC):= Dual
problem of the BCC model.

3.1 DEA-CCR Model

So et al. defined the DEA approach as a linear programming, based on a deterministic and non-parametric method, by
evaluating the relative efficiency of a decision-making unit to transform inputs into outputs. This tool makes it possible
to empirically determine the production frontier, without first having to define the form of this function. Charnes et al.
developed a model assuming constant returns to scale (CRS). The CCR model is appropriate when all DMUs operate at
their optimum size. The notion of efficiency measure is defined by Charnes et al., as being the maximum value of the ratio
(weighted outputs by weighted inputs), under the constraints that the similar ratio for each DMU are greater than or equal
to the unit. Taking the reverse, i.e. the minimum of the ratio (weighted inputs by weighted outputs), the mathematical
form of the CCR model for the selected entity k using m inputs to produce s outputs is given by the (P f−CCR). Note
that in this article, we have three (3) input variables, two (2) output variables and eighteen (18) DMUs. In other words,
m = 3, s = 2 and n = 18. For more information on the data, see section 4. The relation (1) is an objective function that
minimises quantity of inputs m to be used to produce a given quantity of outputs s for DMU k; The relation (2) is the
constraint that states the weighted sum of inputs in relation to the weighted sum of outputs must be greater than or equal
to unity. The constraints (3) and (7) states that the input and output variables must be strictly positive.

Minimize

m∑
i=1

vixik

s∑
r=1

uryrk

(1)

(P f−CCR) : subject to :
m∑

i=1
vixi j

s∑
r=1

uryr j

≥ 1 j = 1, . . . , n ; (2)

ur, vi > ε > 0 ∀r = 1, . . . , s ; i = 1 . . . ,m. (3)

Where: xik is the quantity of input i consumed by the DMU of k; yrk is the quantity of output r produced by the DMU of k.
s, m, and n are the number of outputs, the number of inputs and number of DMUs respectively and ε is a non-Archimedean
element (small positive value). (P f−CCR) is non-linear, fractional and admits an infinite number of solutions. To make it
linear, we use the transformations of Charnes and Cooper, this leads us to (Pl−CCR). The (Pl−CCR) is the multiplier form
of the CCR mathematical model. The relation (4) is an objective function. The inequation (5) is the constraint of the
variables (input and output), the relation (6) is the normalising constraint.

Minimize
m∑

i=1

νixik (4)

(Pl−CCR) : subject to :
m∑

i=1

νixi j −

s∑
r=1

µryr j ≥ 0 ; j = 1, . . . , n ; (5)

s∑
r=1

µryrk = 1 ; r = 1, . . . , s ; (6)

µr, νi ≥ ε > 0 ; r = 1, . . . , s ; i = 1, . . . ,m. (7)
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The orientation of the DEA model must be chosen according to the variables (inputs, outputs) and according to which
decision-makers exercise the greatest management power. According to Pallis et al., port efficiency is a multi-dimensional
concept that refers to operational performance, particularly the maximization of the produced output or the production of a
given output with limited possible resources. Given that the objective of port decision-makers is to maximize production
with the limited resources available on the one hand. On the other hand, given the assertion of Pallis et al., we use
output orientation DEA, which maximize outputs for a given level of input. Using the techniques of linear programming
in the (Pl−CCR) in other words, the notions of duality, we obtain the (Pd−CCR), which is the envelope form of the CCR
mathematical model. We use the (Pd−CCR) for the numerical simulations, because it possesses m + s constraints, whereas
the (Pl−CCR) possesses n + 1 constraints. The relation (8) is an fonction objective.

Maximize θk (8)
(Pd−CCR) : subject to :

n∑
j=1

λ jyr j − θkyrk ≤ 0 r = 1, ..., s; (9)

n∑
j=1

λ jxi j − xik ≤ 0 i = 1, ...,m; (10)

λ j ≥ 0 j = 1, ..., n. (11)

where: 1
θk

is the technical efficiency for DMU k. If 1
θk

= 1, the observed DMU is on the boundary, that is, it is efficient in
the sense of Farrell, otherwise if 0 < 1

θk
≤ 1, this shows the existence of technical inefficiency. The inequations (9) and

(10) are, respectively, the constraints of the outputs and the inputs. The inequation (11), where λ j = (λ1, λ2 . . . , λn) is a
n-vector of constants represent the constraint multipliers of CCR model. In other words, the weights associated with the
outputs and inputs of DMU j.

3.2 DEA-BCC Model

The assumption of the CRS is only really appropriate if all DMUs operates on an optimal scale. This is not always the case
(imperfect competition, financial constraints, etc.). Banker et al. have proposed a model that can be used to determine
if production is in an area of constant, increasing or decreasing returns. The (Pl−BCC) mathematical model from Banker
et al. is obtained by adding a free variable vo to the (Pl−CCR). The (Pd−BCC) mathematical model from Banker et al.

is obtained by adding a the convexity constraint (
n∑

j=1
λ j = 1) to the (Pd−CCR). We recall that we use the (Pd−BCC) for

numerical simulations, because it has fewer constraints than the (Pl−BCC). In addition, Coelli et al. proposed another
model, called the non-increasing returns to scale model (Non-Increasing Returns to Scale model-NIRS) to identify the

nature of scale efficiency. This model is obtained by replacing the convexity constraint (
n∑

j=1
λ j = 1) in the BCC model by

the constraint (
n∑

j=1
λ j ≤ 1).

3.3 Scale Efficiency (SE) and Returns To Scale (RTS)

According to Färe et al., scale efficiency is defined as the ratio of the CRS efficiency score to the VRS efficiency score. In
other words, it is the ratio of the CCR efficiency score to the BCC efficiency score. Mathematically, this is expressed by
the problem (12), where 0 < S E ≤ 1.

S E =
θCCR

θBCC
(12)

We have a scale efficiency, if S E = 1, if 0 < S E < 1, we have a scale inefficiency. The RTS are considered to be increasing
if a proportionate increase in all the inputs results in a more than proportionate increase in the single output (Banker &
Thrall, 1992). The RTS are increasing, if a proportional increase in all inputs leads to a more than proportional increase
in outputs. The RTS are decreasing, if a proportional increase in all inputs results in a less than proportional increase in
inputs. We use the approach in Coelli et al. to determine the nature of the returns to scale. For more details in relation
to DEA mathematical models, see Cooper, Seiford & Zhu, 2011; Charnes, Cooper & Rhodes, 1978; Banker, Charnes &
Cooper, 1984.

3.4 DEA-bootstrap Approach

Any efficiency measure will depend on the sample selected, the time period chosen, and the data used. Taking these
factors into account, there may be erroneous choices. The DEA method also sometimes leads to erroneous results, for
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example, a DMU may be on the efficiency frontier due to measurement error. To account for this, here we use the
bootstrap approach to correct the errors and determine the confidence intervals. The bootstrap can be either parametric or
non-parametric see Jal, 2003. We are interested in the non-parametric case because the DEA method is a non-parametric
and deterministic method. Simar and Wilson proposed a bootstrap strategy for analyzing the sensitivity of the efficiency
measures to sampling variation, providing confidence intervals and corrections for the bias inherent in the DEA procedure
(Simar & Wilson, 2007). The principle of the bootstrap method is as follows: first, build a number B of samples of
size n, coming from the initial sample. In our case B is the efficiency scores obtained by the DEA method (CCR and
BCC). Second, take a series of simple random samples with submission of n observations in the initial sample. Let θ̂∗(b)

= θ̂∗1, θ̂
∗
2, ..., θ̂

∗
b, where b = 1, 2, ..., B the sample taken from the initial sample. Efron and Tibshirani suggests to take B

equal to at least 200 in order to get a decent estimate, in our study we take B = 2000. Problems (13) to (17) concerns
the estimation, variance, bias, corrected bias and confidence intervals of the bootstrap approach respectively. Bootstrap
estimation is given by the problem (13).

θ̂boot =
1
B

B∑
b=1

θ̂∗(b) (13)

The problem (14) is the variance of the bootstrap estimate.

Var2
boot(θ̂) =

1
B − 1

B∑
b=1

(θ̂(b) − θ̂boot)2 (14)

Problems (15) and (16) concern the bias and the bias corrected.

Biasboot(θ̂) = θ̂boot − θ̂ (15)

θ̂∗ = θ̂ − Biasboot(θ̂) = 2θ̂ − θ̂boot (16)

Finally, the problem (17) concerns the confidence intervals.

Pr(ẑ α
2
< θ̂∗b − θ̂ < ẑ1− α

2
|T̂ ) = 1 − α (17)

where T̂ is the estimated DEA technology ẑ α
2

and ẑ1− α
2

the estimated upper and lower quantiles, respectively. For more
information on bootstrapping, see Barros & Managi, 2008; Nguyen, Nguyen, Chang, Chin & Tongzon, 2016.

4. Case Study

In this section, the DMUs is described in subsection 4.1, while the data description and decision variables are reported in
subsection 4.2. The Table 2 shows the DMUs and table 3 the statistical description and the Spearman correlation matrix
of variables (inputs and output).

4.1 Decision Making Units (DMUs)

The APD in Senegal (west Africa) is the first deep water port for northern shipments and the last transit port to come up
from the south. It covers 10km and has 40 posts for ships, 11 meters maximum, 80900m2 of unmarked land for short-term
storage, 170600m2 of gross area (container yard) and 60597m2 of covered area. The APD has terrestrial infrastructures
spread over two distinct zones separated by a fishing port (FP), naval repair workshops (NRW) and the military zone
(MZ). The south zone is composed of three moles (M1, M2, and M3). The north zone is composed of four moles (M4,
M5, M6, and M8), Container Terminals (CT1, CT2, CT3, CT4, and CT5), Container Terminal Extension (CTE) and
petroleum wharf (PW). We consider the different parts of each area listed above as DMUs. We have a total of 18 DMUs
with: 13 in the north zone, 3 in the south zone, 1 in the fishing port and 1 in military zone. The container terminals are
managed by the Dubai Ports Word (DPW) group in Dakar, the Ro-Ro Terminal (RRT) by the Bollor group and the bulk
terminal (BT) is managed by the Necotrans group. The first column in table 2 concerns the number of DMUs and the
second the name of the DMUs. The columns, three and four, are the area where the DMUs are located and the handling
companies, respectively. The figure 1 illustrate the some DMUs of the different areas of APD (DMUs 1, 6, 7, 9, 14, 15,
17 and 18) of APD. For more information on the APD, see Dakar, 2021; Sureté, 2008.
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Table 2. Descriptive of Decision Making Units (DMUs)

DMUs Name of DMUs Zone Material handling company
1 Container Terminal (CT1) North DPW
2 Container Terminal 2 (CT2) North DPW
3 Container Terminal 3 (CT3) North DPW
4 Container Terminal 4 (CT4) North DPW
5 Container Terminal 5 (CT5) North DPW
6 Ro-Ro Terminal (RRT) North Necotrans
7 Bulk Terminal (BT) North Bollor
8 GCO Terminal (GCOT) North Mixte
9 Mole 4 (M4) North Mixte

10 Mole 5 (M5) North Mixte
11 Mole 6 (M6) North Mixte
12 Mole 8 (M8) North Mixte
13 Military Zone (MZ) – Mixte
14 Petroleum Wharf (PW) – Mixte
15 Fishing Port (FP) – Mixte
16 Mole 1 (M1) South Mixte
17 Mole 2 (M2) South Mixte
18 Mole 3 (M3) South Mixte

TC1 (DMU 1) BT (DMU 7) Mole 2 (DMU 17) PW (DMU 14)

Mole 4 (DMU 9) Ro-Ro (DMU 6) Mole 3 (DMU 18) FP (DMU 15)
Figure 1. Some DMUs of the different areas of APD

4.2 Data Description and Variables (Input, Output)

The data were collected through reports from the National Agency for Statistics and Demography (NASD) and the Dakar
port authority. The choice of input and output variables, is a key element of DEA method. The DEA method does not
provide criteria for defining input and output variables, it’s up to the decision makers. The choice is made according to
the decision-makers and the objectives of the study. According to Cooper et al., the number of DMU must be greater than
or equal to the maximum between the number of inputs and outputs or three times the number of inputs plus the number
of outputs.

N ≥ max{s × m, 3(s + m)} (18)

where N is a number of DMUs, s is a number of outputs and m is a number of inputs.
However, several authors have done studies on the choice of input and output variables (Nataraja & Johnson, 2011; and
references inside). Most of these studies are based on statistical tests. In this article, we have chosen our input and output
variables based on their availability and the objectives. In addition, the total number of berths, terminal area and number
of handling equipment in a port are very appropriate, and can be considered as input variables. The number of tonnages
treated per year, the annual flux of containers, the number of ships treated per year, can be considered as output variables.
For more details regarding the choice of variables input and output in the general case, see Coelli et al..
Based on previous studies relating to the measurement of efficiency in the port sector (Cullinane, Song & Wang, 2005;
Cullinane, Wang, Song & Ji, 2006), we use, in this article, three input variables and two output variables.
The input variables are: the length of the quay (m), the total area of land (ha) and the total number of handling equipment
(tugs, cranes, forklifts, etc.). Where: the length of the quay captures the nautical capacities of the port and makes it
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possible to integrate the size and number of vessels that can be received simultaneously by the port. The output variables
are: the number of tonnages and the number of ships treated per year; with the number of tonnages handled per year
measures the amount of traffic of containerized goods. It is expressed in thousands of tonnes and is composed of the
tonnages handled for import and export per year. In the following, we denote by X1, X2 and X3 the input variables, Y1
and Y2 the output variables, with:

• X1:= the length of the quay (m);

• X2:= the total area of land (ha);

• X3:= the total number of machines (tugs, cranes, forklifts, etc.);

• Y1:= the number of tonnages (metric tons);

• Y2:= the number of ships (number).

In table 3, we have the statistical description and the matrix of Spearman correlation coefficients of our input and output
variables. Given the inputs and outputs are not strongly correlated our choices of variables are valid according to the
criteria of selection of variables in the literature.

Table 3. Descriptive statistics and Sperman matrix the correlation of variables on the period 2021

Inputs Min Max Mean Standard deviation
X1 350 1000 647.222 224.520
X2 4.5 13.8 10.011 3.020
X3 12 54 34.666 13.758

Outputs
Y1 650000 1000000 836611.111 99524.244
Y2 200 800 478.6111 164.261

Spearman matrix correlation
X1 X2 X3 Y1 Y2

X1 1.000
X2 0.448 1.000
X3 0.044 0.446 1.000
Y1 -0.007 -0.192 0.062 1.000
Y2 0.552∗ 0.448 0.300 -0.083 1.000

Source: authors
* Significant correlations at a 0.05 level

5. Numerical Simulations

We use DEAP software version 2.1, developed by Coelli for the DEA method and the rDEA version 1.2-5 package, for
the bootstrap method. Here, the condition (18) is verified. In sub-sections 5.1 and 5.2, the results of the CCR and BCC
models are presented and discussed. In the sub-section 5.3, we find interpretation of the efficiency of scale and the nature
of returns to scale, where: SE: is the scale efficiency, -: is the constant returns to scale, irs: the increasing returns to
scale and drs: is the decreasing returns to scale. In sub-section 5.4, the results related to the bootstrap DEA approach are
presented and discussed. The figure 2 illustrates the efficiency scores and bias-corrected of both models (CCR and BCC),
and figure 3 shows the confidence intervals and bias-corrected of both models (CCR and BCC).

5.1 Results of DEA-CCR

We recall that a DMUs said to be efficient if it solves problem (8), and θ obtains an efficiency score, which is equal to 1
(θ = 1). In table 4, line 2 illustrates the results of the CCR model, with six (6) DMUs (2, 4, 5, 8, 9 and 10) efficient. The
CCR model assumes that all DMUs run in a situation of constant returns to scale (CRS). This happens, when all DMUs
reach their optimal size. On average, the port has an efficiency score of 0.858. For the port to become 100 percent efficient
with this CCR model, production will have to be increased by 14.2 percent. When we take the fishing port (FP), DMU
15, in table 4, line 2 of column 16 it got an efficiency score of 0.670. To improve its performance and become 100 percent
efficient, it will have to increase its efficiency score by 0.33. To be able to increase this score, we propose a solution

58



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 4; 2022

through the projected values obtained during the numerical simulations. To obtain this 33 percent, it will be necessary
to increase production by 33.046 percent for Y1 and 33.046 for Y2. The projected values obtained are 1269539.646
and 821.467, respectively. The improvement margins are obtained by the following calculations: [((1269539.646 −
850000)/1269539.646)× 100] for Y1 (where 850000 is the original value) and [((821.467− 550)/821.467)× 100] for Y2
(where 550 is the original value). Moreover, the DEA method identifies for each inefficient DMU, which comes closest
to its production function. Under the CCR model, in table 4, column 3, the DMUs (2, 4, 5, 8, 9 and 10) are located on
the efficiency frontier. Therefore, they are identified as the reference pairs. If inefficient DMU want to improve their
efficiency, they need to analyze the best practices developed by their respective peers. For example, the FP (DMU 15) has
a peer the CT4, GCOT and M4 (DMUs 4, 8 and 9). To be efficient, it must refer to these reference peers (CT4, GCOT and
M4).

5.2 Results of DEA-BCC

In table 4, line 4, we have a results BCC model, with nine (9) DMUs (1, 2, 3, 4, 5, 8, 9, 10 and 13) efficient. The BCC
model assumes that the DMUs, evaluate in a situation of variable returns to scale (VRS). This happens, when not all
DMUs operate at their optimal size. The efficiency scores of the BCC model are always higher or equal to the scores of
the CCR model (θBCC ≥ θCCR). The port obtained an average efficiency score of 0.951, this average verifies the hypothesis
(θBCC ≥ θCCR), because with the CCR model we obtained an average efficiency score of 0.858. To be efficient, on average,
production must be increased by 4.9 percent.
Ro-Ro Terminal (RRT) has an efficiency score of 0.878. It must increase its production by 12.2 percent with an improve
margin of 12.154 percent on Y1 and 17.526 percent on Y2. The improvement margins of 12.154 percent and 17.526 per-
cent are obtained from the projected values provided by the DEA method. The projected values obtained are 967600 and
485, respectively. The improvement margins are obtained by the following calculations: [((967600 − 850000)/967600) ×
100] for Y1 where 850000 is the original value and [((485 − 400)/485) × 100] for Y2 where 400 is the original value. In
table 4, column 5, the DMUs (1, 2, 3, 4, 5, 8, 9, 10 and 13) are located on the efficiency frontier and are identified as
reference pairs. RRT (DMU 6), has two reference pairs, the CT1 and M4 (DMUs 2 and 9). To improve its performance
in order to be efficient, it must analyze these benchmarks. Figure 2, asserting the theory that the efficiency scores of the
CCR model are always less than or equal to the efficiency scores of the BCC model from Coelli et al.. The points at which
the CCR and BCC efficiency scores are equal, coincide. We have a coincidence between the DMUs (CT2, CT4, GCOT,
M4, M5 and M8), whose CCR and BCC lines coincide in one line. It was found that all the corrected efficiency scores
of the CCR model are lower than the corrected efficiency scores of the BCC model. In table 4, θCCR: is the original DEA
score for model CCR, θBCC the original score DEA for model BCC, SE the scale efficiency and RTS the returns to scale.
Figures 2 and 3 are simulated by using Python version 3.8.10 (Python, 2021).

Table 4. Results of DEA (CCR, BCC), Benchmarks (CCR, BCC), scale efficiency and RTS

DMUs θCCR BenchmarksCCR θBCC BenchmarksBCC SE RTS
1 0.840 2, 10, 4 1.000 0.840 drs
2 1.000 1.000 1.000 -
3 0.873 2 1.000 0.873 irs
4 1.000 1.000 1.000 -
5 1.000 1.000 1.000 -
6 0.873 9, 2 0.878 2, 9 0.993 drs
7 0.972 9, 10 1.000 0.972 irs
8 1.000 1.000 1.000 -
9 1.000 1.000 1.000 -
10 1.000 1.000 1.000 -
11 0.445 9, 2 0.674 9, 1 0.661 drs
12 0.864 8, 5 0.982 8, 9 0.880 drs
13 0.832 9, 10 1.000 0.832 drs
14 0.638 9 10 0.787 9, 1 0.810 drs
15 0.670 4, 8, 9 0.889 1, 9 0.753 drs
16 0.731 9, 10 0.954 9, 13 0.766 drs
17 0.809 9, 10 0.949 13, 9 0.852 drs
18 0.901 9, 2 0.997 1, 2 0.904 drs

Mean 0.858 0.951 0.897
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5.3 Results of Scale Efficiency (SE) and Returns to Scale (RTS)

In table 4, columns 4 and 5, are respectively the scale efficiency and the nature of the returns to scale. In total, we obtained
ten (10) DMUs (1, 6, 11, 12, 13, 14, 15, 15, 16, 17, 18) evolving in a situation of decreasing returns to scale (drs), two
(2) DMUs (3, 7) evaluating in a situation of increasing returns to scale and six (6) DMUs (2, 4, 8, 9, 10) evolving in
a situation of constant returns to scale (–). The DEA method allows us to identify the two sources of inefficiency by
breaking down technical efficiency into pure technical efficiency and scale efficiency. Pure technical efficiency refers to
inefficiency related to poor management, while scale efficiency refers to inefficiency related to non-optimal size. The mole
8 (DMU12, zone north) in table 4, has a pure efficiency score of 86.4 % and an efficiency scale of 88% and evolves in a
situation of decreasing returns to scale (drs). By improving mole management (DMU 12, zone north), production could
be increased by 1.8% (100-98.2); and by adjusting mole size, production could be increased by 12% (100-88).

5.4 Results of Bootstrap

In table 5 θCCR is the original score, BcCCR the bias-corrected, BiasCCR the bias, LBCCR the lower bounds and UBCCR the
upper bounds for CCR model. θBCC is the original score, BcBCC the bias-corrected, BiasCCR the bias, LBBCC the lower
bounds and UBBCC the upper bounds for BCC model. In total, with the DEA method, we have six (6) efficient DMUs with
the CCR model, ten (10) with the BCC model. After using the bootstrap approach, we find that none of the DMUs are
efficient with both models (CCR and BCC). This show the advantage and the necessity of using the bootstrap approach
before proposing the solution to the decision makers (port authority). Comparing the results of the classical DEA method
in table 4 and the combination of DEA and bootstrap approach in table 5, we observe average bias scores of 0.159 for
the CCR model and 0.077 for the BCC model. Concerning the bias-corrected, we obtain an average score of 0.700 for
CCR model (with confidence intervals of [0.324; 1.291]) and 0.870 for BCC model (with confidence intervals of [0.620;
1.197]). The figure 3 illustrates the confidence intervals and bias-corrected of the both models (CCR and BCC), where the
DMU 11 admits the lowest lower bound and DMU 8 admits the highest upper bound [0.324; 1.291] for CCR. The DMU
11 admits the lower bound and DMU 7 admits the highest upper bound [0.620; 1.197] for BCC. The corrected bias and
confidence interval of the BCC model of DMU 11 are very close values (0.919, 0.874 and 0.999) in terms of efficiency
scores (see the figure 3).

Table 5. Results DEA bootstrap (original scores, bias-corrected, bias and the confidence intervals of both models (CCR,
BCC)

DMUs θCCR BcCCR BiasCCR θBCC BcBCC BiasBCC LBCCR UBCCR LBBCC UBBCC

1 0.840 0.698 0.142 1.000 0.931 0.005 0.606 0.838 0.882 1.004
2 1.000 0.804 0.196 1.000 0.898 0.102 0.663 0.992 0.814 1.056
3 0.873 0.746 0.127 1.000 0.890 0.110 0.667 0.877 0.798 1.138
4 1.000 0.753 0.247 1.000 0.890 0.110 0.567 1.023 0.798 1.155
5 1.000 0.732 0.268 1.000 0.892 0.108 0.521 1.088 0.804 1.168
6 0.873 0.757 0.116 0.878 0.820 0.058 0.692 0.853 0.777 0.897
7 0.972 0.841 0.131 1.000 0.890 0.110 0.765 0.948 0.799 1.197
8 1.000 0.703 0.297 1.000 0.887 0.113 0.464 1.291 0.793 1.172
9 1.000 0.747 0.233 1.000 0.892 0.108 0.553 1.029 0.802 1.182

10 1.000 0.771 0.229 1.000 0.892 0.108 0.604 0.944 0.804 1.164
11 0.445 0.371 0.074 0.674 0.640 0.034 0.324 0.459 0.620 0.673
12 0.864 0.721 0.143 0.982 0.919 0.092 0.628 0.876 0.874 0.999
13 0.832 0.731 0.101 1.000 0.908 0.045 0.678 0.828 0.835 1.019
14 0.638 0.538 0.100 0.787 0.742 0.047 0.476 0.634 0.712 0.794
15 0.670 0.558 0.12 0.889 0.842 0.056 0.487 0.653 0.812 0.893
16 0.731 0.634 0.097 0.954 0.898 0.047 0.581 0.726 0.859 0.957
17 0.808 0.707 0.102 0.949 0.889 0.060 0.651 0.801 0.846 0.962
18 0.901 0.780 0.121 0.997 0.942 0.055 0.710 0.882 0.905 1.009

Mean 0.858 0.700 0.159 0.951 0.870 0.077 0,591 0.875 0.807 1.024
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Figure 2. Scores efficiency and bias-corrected for CCR and BCC models

Figure 3. Confidence intervals and bias-corrected for CCR and BCC models

6. Conclusion and Perspectives

In this article, we proposed an applied research work to propose a more adequate tool for the port of Dakar. The DEA
(CCR and BBC) models and the bootstrap approach have been successfully used to measure its efficiency. The CCR,
BCC and SE scores were first determined, then the corrected scores and confidence intervals of the CCR and BCC models
were determined through the bootstrap approach. The efficient units are 33.33% for the CCR model and 55.55% for the
BBC model. It confirms that the CCR model scores are all less than or equal to the BCC model scores as reported in
the literature. The results may have implications for economic policy at the APD level by improving the units of some
container terminals. The terminals to be improved are Container Terminals (DMUs 1, 3), Moles (DMUs 11, 12, 16, 17,
18) , the Bulk Terminal (DMU 6), the Ro-Ro Terminal (DMU 7), the Military zone (DMU 13), the Fishing Port (DMU15)
and the Petroleum wharf (DMU 14) for CCR model. In addition, with BCC model, the terminals to be improved are the
Bulk Terminal (DMU 6), the moles (DMU 11, 16, 17, 18), the Petroleum wharf (DMU 14) and the Fishing Port (DMU
15). At least some of the commodity DMUs are effective. Therefore, the implications are, among others, all the DMUs
mentioned above are inefficient and already, the study gave projected values to make them efficient. Given the focus of the
article on output orientation, these values are nothing more than the number of outputs (number of ships and tonnages) to
be produced annually to make them efficient.

In future work, we plan to study the same problem using fuzzy logic, stochastic DEA and dynamic DEA taking into
account quasi-fixed input and output variables, and many other factors.
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