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Abstract

Optimal investment, consumption and life insurance problem with stochastic environments for a CRRA wage-earner
is solved in this study. The wage-earner invests in the financial market with one risk-free security, one risky security,
receives labor income and has a life insurance policy in the insurance market. A life insurance policy is purchased to
hedge the financial wealth for the beneficiary in case of wage earner premature death. The interest rate and the volatility
are stochastic. The stochastic interest rate dynamics of risk-free security follow a Ho-Lee model and the risky security
follow Hestons model with stochastic volatility parameter dynamics following a Cox-Ingersoll-Ross (CIR) model. The
objective of the wage-earner is to allocate wealth between risky security and risk-free security but also buy a life insurance
policy during the investment period to maximize the expected discounted utilities derived from consumption, legacy and
terminal wealth over an uncertain lifetime. By applying Bellman’s optimality principle, the associated HJB PDE for the
value function is established. The power utility function is employed for our analysis to obtain the value function and
optimal policies. Finally, numerical examples and simulations are provided.

Keywords: Investment-consumption-life insurance problem, Ho-Lee model, Heston model, Cox-Ingersoll-Ross (CIR)
model, Value function, optimal policies

1. Introduction

The stochastic optimal control problem is key in practice. Such problems are a major concern to individual and institution-
al investors who seek to allocate the wealth among various assets over an uncertain lifetime. So far, different researchers
have explicitly solved stochastic optimal control problems via methods, such as the dynamic programming principle, the
maximum principle (Yong & Zhou, 1999), and the convex duality martingale method. Our research work builds on the
celebrated work of Merton (1969) and Merton (1971) who solved the stochastic optimal control problem for an agent
who invests in one risk-free asset and one risky asset but under constant interest rate and volatility rate. In reality, interest
rates and volatility rates are stochastic due to uncertain events such as Covid19, climate change, wars, inflation, natural
disasters, fiscal policy and financial policy adjustments e.t.c. Merton derived closed-form solutions by applying the dy-
namic programming principle. In our study, we solve optimal investment, consumption and life insurance problem for
a wage-earner who earns labour income and pay a life insurance premium with constant relative risk aversion (CRRA)
case. The wage-earner invests in life insurance to hedge against the risk of premature death. The wage-earner who earns
labour income can decide to invest it in money market account or bond, stock or stock index, life insurance policy, and can
make consumption decisions. The stochastic interest rate for a money market account evolves as a Ho-Lee model. The
stock price of the risky stock evolves as Hestons model with volatility following a CIR model. We extend Merton’s work
by choosing unique financial market models and life insurance models for a wage earner with labour income and has life
insurance contract. The objective of the wage-earner is to choose an optimal investment-consumption-insurance strategy
that maximizes the expected, discounted utilities derived from intermediate consumption, legacy and terminal wealth over
an uncertain horizon. Our major contribution in this study is considering stochastic interest rate, stochastic volatility and
life insurance product simultaneously in modeling wealth.

2. Links to the Literature

Mertons work has attracted a number of extensions. For instance, Richard (1975) was the first to extend Mertons work
in a study titled optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous-
time model. He added life insurance to Mertons work. Thus, combining the financial market and the insurance market.
(Pliska & Ye, 2007) extended Mertons work by adding life insurance but with constant labor income in the study titled
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Optimal life insurance purchase and consumption/investment under uncertain lifetime. In their study, the agent has an
initial wealth but also receives an income continuously which can be terminated upon premature death. They used the
dynamic programming principle to solve for explicit solutions for the CRRA utility case. (Shen & Wei, 2014) combined
the HamiltonCJacobiCBellman (HJB) equation and backward stochastic differential (BSD)equation to obtained closed-
form solutions in the study titled optimal investment-consumption-insurance with random parameters. They assumed that
some stochastic parameters are adapted to the filtration generated by Brownian motion. Ye (2006) explored the problem
of optimal life insurance purchase, consumption and portfolio investment strategies for a wage earner under an uncertain
horizon as a Ph.D. dissertation. Two methods adopted in this research include the dynamic programming principle method
and the martingale method to obtain explicit solutions for CRRA utility functions. Ye (2007) analyzed optimal Life
Insurance Purchase, Consumption and Portfolio under Uncertainty by applying the Martingale method to obtain closed-
form solutions for CRRA cases. Duarte et al. (2017) investigated a model for optimal insurance purchase, consumption
and investment for a wage earner with an uncertain lifetime. They considered an underlying financial market consisting of
one risk-free security and a fixed number of risky securities with diffusive terms evolving as a multidimensional Brownian
motion. They applied the dynamic programming principle technique to obtain explicit solutions for constant relative risk
aversion utility case. The study by (Bruhn & Steffensen, 2011) analyzed household consumption, investment and life
insurance. This paper developed optimizers of future utility from consumption by controlling consumption, investments
and purchase of life insurance for each person in the household. Huang et al. (2008) considered portfolio choice and life
insurance for the CRRA utility case. They considered the correlation between the dynamics of human capital and financial
capital and modeled the utility of the family as opposed to separating consumption and bequest. The Hamilton-Jacobi-
Bellman equation was determined and used the reduction technique to obtain a numerical solution. Results showed that
life insurance hedges human capital. Kwak et al. (2011) examined on optimal investment and consumption decision of a
family with life insurance. They applied the Martingale method to obtain analytic solutions for the value function and the
optimal controls. The study by (Liang & Guo, (2016) treated an optimal insurance-consumption-investment problem for a
wage earner in an incomplete market when the stock price has a mean-reverting drift. They applied the Martingale method
to determine explicit solutions for power and logarithmic utilities. The study by Pirvu et al. (2012) solved the problem
of optimal investment, consumption and life insurance for a wage earner who has CRRA preferences. They considered a
complete market model is complete with uncertainty driven by Brownian motion and the stock price has a mean-reverting
drift. They derived the HJB equation by applying the dynamic programming principle and found closed-form solutions.
(Guambe & Kufakunesu, 2018) explored optimal investment, consumption and insurance problems. They considered a
market with a real zero-coupon bond, the inflation-linked real money account and a risky share following a jump-diffusion
process. They applied backward stochastic differential equation (BSDE) with jumps to derive the explicit solutions.

In our paper, we solve optimal investment, consumption and life insurance problem with stochastic interest and volatility
rates for an agent with a CRRA case. We let the wage-earner receive a stream of labour income i(t) and can decide to
consume, invest in a stock, bond and buy a life insurance policy. We let T be retirement time. A life insurance policy is
purchased in order to hedge the financial wealth. The risk-free interest rate evolves as a Ho-Lee model. In addition, the
risky stock evolves as Hestons model with volatility following a CIR model. We extend Mertons work in a unique way
by considering stochastic interest rate, stochastic volatility and life insurance policy simultaneously.

The outline of this paper is as follows. Section 1, introduction. Section 2, literature review. Section 3, description of
the financial market model. Section 4, description of the insurance market model. In Section 5, we determine the wealth
model using models identified in sections 3 and 4. In Section 6, we describe the optimization criterion. In Section 7,
we show results and discussion. In Section 8, numerical examples and simulations are provided, and in Section 9, we
conclude and suggest possible future research work.

3. Financial Market Model

Let (Ω,F,F ,P) be a filtered complete probability space with filtration (Ft)0≤t≤T satisfying the usual conditions such as
(Ft)0≤t≤T being right continuous complete filtration and P-complete. Let all stochastic processes be well-defined and
adapted in the filtered complete probability space (Ω,F,F ,P). Let T be a finite time horizon.

Consider a financial market of a single wage-earner with a portfolio consisting of one risk-free security (e.g. a money
market account or bond) B(t), one risky security (e.g. a stock or stock index) S(t) and life insurance policy to protect
the beneficiary in case of wage-earner premature death. We start by describing the financial market, followed by the
description of the insurance market and finally, define the wealth model for the wage earner.

Let the price dynamics of the risk-free security B(t) evolve as follows:dB(t) = r(t)B(t)dt,
B(0) = 1,

(1)
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with stochastic interest rate r(t) following a Ho-Lee model given by:dr(t) = θ0(t)dt + σ0dWr(t),
r(0) = r0 > 0,

(2)

where θ0(t) is the expected instantaneous change in the interest rate, σ0 > 0 is a constant volatility factor and Wr(t)
is a one-dimensional wiener process on a filtered probability space (Ω,F,F ,P). Assumed that θ0(t) can be written as
θ0(t) = γ

[
β − r(t)

]
, where γ and β are constants.

Let the price dynamics of the risky security S(t), follow a Heston’s model given by:dS(t) = S(t)[r(t) + kη(t)]dt + σ1
√
η(t)S (t)dWS(t),

S(0) = S,
(3)

where kη(t) is the appreciation factor, σ1
√
η(t) is the volatility of the risky price and WS (t) is a Wiener process on a filtered

probability space (Ω,F,F ,P). Note that S (t) is risky stock price, r(t) is risk-free interest rate, k > 0 is the expected returns
parameter of risky asset and σ1 is the volatility of the volatility

√
η(t) of risky asset.

In addition, let η(t) follow a Cox-Ingersoll-Ross (CIR) model given by:dη(t) = [θ2 − bη(t)]dt + σ2
√
η(t)dWη(t),

η(0) = η0 > 0,
(4)

where θ2 > 0, b > 0, and σ2 > 0 are constants. Also note that η(t) > 0 for all t > 0. Wη is a wiener process on a filtered
probability space (Ω,F,F ,P).

4. Life Insurance Market Model

Suppose the wage-earner has nonnegative lifetime denoted by τ defined on the probability space (Ω,F ,P) and is alive at
time t = 0. Assume that the lifetime τ is independent of the filtration Ft, ∀t ∈

[
0,T

]
. Let the instantaneous death rate for

the wage-earner denoted by λ(t) be defined by has a distribution function given by:

λ(t) := lim
∆t→0

P(t ≤ τ < t + ∆t|τ ≥ t)
∆t

. (5)

Implying the conditional probability survival function denoted by F(t) is defined as:

F(s, t) = P(τ > s | τ > t). (6)

Alternatively, the conditional probability survival function F(t) can be defined in terms of λ(t) as follows:

F(t, s) := exp
[
−

∫ s

t
λ(u)du

]
. (7)

The conditional probability density for death denoted by F(t) of the wage-earner at time s conditional upon the wage-
earner being alive at time t ≤ s is related to the hazard rate and defined as follows:

F(t) = λ(s)exp
[
−

∫ s

t
λ(u)du

]
. (8)

Going back to the insurance market, we make the following assumptions about the market. Let the wage-earner receive
deterministic and non-negative income streams i(t) up to time τ ∧ T , which means the income will be terminated by the
death or retirement of the wage-earner.

Let the wage-earner pay premiums at the rate p(t) at time t for the life insurance contract and the insurance company will
pay p(τ)

ψ(τ) to the beneficiary upon his death, where ψ(τ) is the insurance premium-payout ratio. The policy end when the
wage-earner dies or retires. When the wage-earner dies, the total legacy to his beneficiary is given by

Z(τ) = X(τ) +
p(τ)
ψ(τ)

, (9)
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where X(τ) is the net wealth process of the wage-earner at time τ from the financial market and p(τ)
ψ(τ) is the insurance

benefit paid by the insurance company to the beneficiary from the insurance market if death occurs at time τ. That is, for
p(τ) = P20, 000, ψ(τ) = 0.4, then the benefit paid by the insurance is p(τ)

ψ(τ) = P50, 000. In general, ψ(τ) > λ(τ) in order for
the insurance to also benefit, but in this study, we assume ψ(τ) = λ(τ).

5. The Wealth Model

Consider a wage-earner with initial amount of money X(0) = x0 > 0. Let C(t) denote the rate of continuous consumption.
Let π(t) denote the wealth invested in the risky security, S(t), then the amount invested in the risk-free security is given by
X(t) − π(t). Let (π(t),X(t) − π(t)) be the vector (portfolio process) of the financial market amounts the wage earner invest
in the money market account B(t) and the risky security account S(t), respectively. Let the wage-earner pay premiums
at the rate p(t) at time t for the life insurance policy. Let the wage-earner receive deterministic and non-negative income
stream i(t) up to time τ ∧ T . Note that the pair (C(t), π(t), p(t)) is a trading strategy.

The wealth evolve as a stochastic differential equation (SDE) given as follows:dXi(t) =
[
X(t)r(t) − C(t) − p(t) + i(t) + π(t)kη(t)

]
dt + π(t)σ1

√
η(t)dWS (t),

X(0) = x0 > 0.
(10)

We follow the idea of (Munk & Sorensen, 2010) to discount the future labour income stream (human capital) i(t) and
change our problem to a problem without labour income. Let the wage-earner sell the remaining labour income stream.
This will result in converting our problem to one without labour income at time t. The net wealth 10 changes to the
stochastic differential equation (SDE) without labour income stream i(t) given as follows:dX(t) =

[
X(t)r(t) − C(t) − p(t) + π(t)kη(t)

]
dt + π(t)σ1

√
η(t)dWS (t),

X(0) = x0 > 0.
(11)

In case of wage-earner’s premature death, the total legacy Z(τ) is calculated as wealth plus the insurance company amount
as follows:

Z(τ) = X(τ) +
p(τ)
ψ(τ)

. (12)

Remark 1. For the sake of explicit solution we assume:

• The correlation coefficient ρ ∈ {−1, 1} of dWrdWS , dWηdWS and dWrdWη.

• Interest rate for risk-free security and risky security are equal.

• A premature death occurs on the set {ω ∈ Ω | τ(ω) < T }.

Taking ρ ∈ {−1, 1} is not realistic as it implies that the risks of stock and the risks of volatility are the same. But such an
assumption will enable us to determine closed-form solutions.

6. The Optimization Criterion

Suppose the set of all admissible strategies is denoted byA.

Definition 1

An investment, consumption and life insurance triple strategyA = (π(t),C(t), p(t)) is said to be admissible if the following
conditions are satisfied.

• The triple (π(t),C(t), p(t)) is progressively Ft − measurable and
∫ T

0 π(t)2dt < ∞,
∫ T

0 C(t)dt < ∞,
∫ T

0 | p(t) | dt < ∞.

• E
[ ∫ T

0 (π(t)σ1
√
η(t))2dt

]
< ∞.

• For all pair (π(t),C(t), p(t)), the wealth process 11 with X(0) = x0 ≥ 0 has a path wise unique solution.

Remark 1

The wage-earners problem is to find strategies (π(t),C(t), p(t)) ∈ A that maximize the expected discounted utility obtained
from

• intermediate consumption during
[
0, τ ∧ T

]
,
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• Legacy if premature death occur before time T and

• Terminal wealth at retirement date T if still alive.

Mathematically, for t ∈
[
0, τ ∧ T

]
, remark can be formulated as follows:

max
(π(t),C(t),p(t))∈A

E
[ ∫ T∧τ

0
e−γsU1(C(s), s)ds + λe−γτU2(Z(τ), τ)1τ≤T

+ e−γTU3X((T ))1τ>T | τ > t
]
, (13)

where E is conditional expectation given the following initial values:
X(0) = x0,

t(0) = t0,
r(0) = r0,

η(0) = η0.

(14)

and λ is the weight on the wage-earners legacy in case of premature death. The positive constant γ denotes time preference.

Definition 2

For any admissible strategies (π(t),C(t), p(t)), the value function is defined as:

V(t, r, η, x) = sup
(π(t),C(t),p(t))∈A

E
[ ∫ T∧τ

0
e−γsU1(C(s), s)ds + λe−γτU2(Z(τ), τ)1τ≤T

+ e−γTU3X((T ))1τ>T | τ > t
]
, (15)

where E is conditional expectation given the following initial values:
X(0) = x0,

t(0) = t0,
r(0) = r0,

η(0) = η0,

(16)

andU1(C, .) is the utility function of consumption in the time interval [0, τ ∧ T ] and is assumed to be strictly concave in
C. U2(Z, .) is the wage earners legacy in case of premature death and is assumed to be strictly concave in Z. U3(X) is
the terminal wealth at time T in the case the wage earner survives and is assumed to be strictly concave in X. 1A is the
indicator function of eventA.

7. Results and Discussions

7.1 The Hamilton-Jacobi-Bellman Equation

We redefine the stochastic control problem in 13 into dynamic programming form to include fixed planning horizon in
order to apply the Dynamic Programming Principle (DPP) and obtain the HJB PDE. The value function and closed-form
expression of optimal strategies are then derived for the power utility function. In this case, the stochastic optimal control
problem is equivalent to the problem of finding a solution to the HJB PDE.

7.2 Dynamic Programming Principle (DPP)

Redefining 13 into dynamic programming form by fixed planning horizon imply that the wage-earner facing premature
death acts as if he will live until retirement time T and

sup
(π(t),C(t),p(t))∈A

E
[ ∫ T∧τ

0
e−γ(s−t)U1(C(s), s)ds + λe−γ(τ−t)U2(Z(τ), τ)1τ≤T

+ e−γ(T−t)U3X((T ))1τ>T | τ > t
]
, (17)
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where E is conditional expectation at time t given the following initial values:


X(t) = x,
r(t) = r,
η(t) = η.

(18)

Note that using 7 and 8, the value function for 17 can be rewritten as a recursive relationship for the maximum expected
discounted utility as a function of the wage-earners age and his wealth as follows:

V(t, r, η, x) = sup
(π(t),C(t),p(t))∈A

E
[ ∫ T

t
F(s, t)e−γ(s−t)U1(C(s), s)ds

+

∫ T

t
F(s, t)e−γ(τ−t)U2(Z(τ), τ)1τ≤T

+ F(T, t)e−γ(T−t)U3X((T ))1τ>T | τ > t
]
. (19)

where F(s, t) is the conditional probability density function for the wage-earners death to occur at time s conditional upon
the wage earner being alive at time t ≤ s, F(s, t) is the conditional probability survival function for the wage-earner to be
alive at time s conditional upon the wage-earner being alive at time t ≤ s and the nonnegative constant γ stands for the
time preference. For proof see Ye (2007).

For any strategy (π(t),C(t), p(t)) ∈ A, the corresponding HJB PDE for 17 given 19 is stated as follows:

Ṽt(t, r, η, x) − (γ + ψ(t))Ṽ(t, r, η, x) +

[
X(t)r(t) − C(t) − p(t) + π(t)kη(t)

]
Ṽx

+
1
2
π2σ2

1ηṼxx + θ0Ṽr +
1
2
σ2

0Ṽrr + (θ2 − bη)Ṽη +
1
2
σ2

2ηṼηη

+ πσ1σ2ηρṼxη + U1(C) + λ(t)U2

(
x +

p(t)
ψ(t)

)
= 0. (20)

Next, we proceed to solving HJB PDE for 17 given 19 as follows.

Assume the value function is given as follows:

V(t, r, η, x) = e
∫ t

0 (γ(u)+ψ(u))duṼ(t, r, η, x). (21)

Implying, we obtain the following partial of Ṽ(t, r, η, x):



Ṽt(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVt(t, r, η, x) −
[
γ(t) + ψ(t)

]
Ṽ(t, r, η, x),

Ṽr(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVr(t, r, η, x),

Ṽrr(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVrr(t, r, η, x),

Ṽx(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVx(t, r, η, x),

Ṽxx(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVxx(t, r, η, x),

Ṽη(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVη(t, r, η, x),

Ṽηη(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVηη(t, r, η, x),

Ṽxη(t, r, η, x) = e−
∫ t

0 (γ(u)+ψ(u))duVxη(t, r, η, x).

(22)

The associated HJB PDE upon applying Ito’s differentiation rule to Ṽ(t, r, η, x) is then given in terms of V(t, r, η, x) as
follows:
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Vt(t, r, η, x) − (γ + ψ(t))V(t, r, η, x) +

[
X(t)r(t) − C(t) − p(t) + π(t)kη(t)

]
Vx

+
1
2
π2σ2

1ηVxx + θ0Vr +
1
2
σ2

0Vrr + (θ2 − bη)Vη +
1
2
σ2

2ηVηη

+ πσ1σ2ηρVxη + U1(C) + λ(t)U2

(
x +

p(t)
ψ(t)

)
= 0. (23)

Next, we determine the candidate policies:

Applying the first-order maximizing conditions to 23 result to the following candidate optimal policies (optimizers):

π∗(t) = −
kVx

σ2
1Vxx

−
σ2ρVxη

σ1Vxx
. (24)

C∗(t) =
[
Vx

]− 1
δ (25)

and

p∗(t) = ψ(t)
[ψ(t)
λ(t)

Vx

]− 1
δ

− x
 . (26)

Definition 3

Let X(0) > 0 be the initial wealth, the wage-earners optimal investment, consumption and life insurance problem
is to maximize the expected utility over the pair of all admissible strategies A = (π(t),C(t), p(t)) such that for all
(π?(t),C?(t), p?(t)) ∈ A,

V(π?(t)) = sup
(π(t),C(t),p(t))∈A

V(π), (27)

V(C?) = sup
(π(t),C(t),p(t))∈A

V(C) (28)

and

V(p?(t)) = sup
(π(t),C(t),p(t))∈A

V(p). (29)

Substituting the candidate optimal policies 24, 25 and 26 into the HJB PDE 23, we obtain the following PDE:

Vt −
[
γ + ψ(t)

]
V + rxVx + xψ(t)Vx −

k2ηV2
x

2σ2
1Vxx

−
σ2

2ρ
2ηV2

xη

2Vxx
+ θ0Vr

+
σ2

0Vrr

2
+ (θ2 − bη)Vη +

σ2
2ηVηη

2
−

kσ2ρη

σ1

VxVxη

Vxx

+
δ

1 − δ
(Vx)

δ−1
δ

[
λ(t)

(
ψ(t)
λ(t)

) δ−1
δ

+ 1
]

= 0, (30)

with boundary conditions

V(T, r, η, x) =
x1−δ

1 − δ
. (31)
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Let

Q(t) =

[
λ(t)

(
ψ(t)
λ(t)

) δ−1
δ

+ 1
]
, (32)

implying 30 becomes:

Vt −
[
γ + ψ(t)

]
V + rxVx + xψ(t)Vx −

k2ηV2
x

2σ2
1Vxx

−
σ2

2ρ
2ηV2

xη

2Vxx
+ θ0Vr

+
σ2

0Vrr

2
+ (θ2 − bη)Vη +

σ2
2ηVηη

2
−

kσ2ρη

σ1

VxVxη

Vxx

+
δ

1 − δ
(Vx)

δ−1
δ Q(t) = 0, (33)

with boundary conditions:

V(T, r, η, x) =
x1−δ

1 − δ
. (34)

7.3 The Value Function and Optimal Policies

In this study, we assume that the wage-earners preference towards risk is given by a power utility function defined as
follows:

Definition 4

Power utility function is defined as: 
U1(x) = U2(x) = U3(x) = x1−δ

1−δ ,

δ > 0,
δ , 1,

(35)

where δ is the risk aversion factor.

This is a case where the wage-earner has the same power utility functions for consumption, the legacy and his terminal
wealth.

Assume the solution V for 33 take the form: V(t, r, η, x) = x1−δ

1−δ g(t, r, η),
g(T, r, η) = 1.

(36)

Implying: 

Vt = x1−δ

1−δ gt,

Vx = x−δg,
Vxx = −δx−δ−1g,
Vr = x1−δ

1−δ gr,

Vrr = x1−δ

1−δ grr,

Vη = x1−δ

1−δ gη,
Vηη = x1−δ

1−δ gηη,
Vxη = x−δgη.

(37)

Substituting 36 and 37 into 33, gives:

gt +

(1 − δ)
[
r + ψ − λ − γ +

1
2

k2η

σ2
1δ

] g −
1
2
σ2

2ρ
2η(1 − δ)
(δ)

gηgη
g

+ θ0gr +
1
2
σ2

0grr

+
1
2
σ2

2ηgηη +

(
θ2 − bη −

kησ2ρ

σ1

1 − δ
δ

)
gη + δg

δ−1
δ Q(t) = 0. (38)
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Assume the solution of 38 is of the form: g(t, r, η) = f (t, r, η)δ,
f (T, r, η) = 1.

(39)

The partial derivatives for 39 are given as follows:

gt = δ f δ−1 ft,
gr = δ f δ−1 fr,
grr = δ(δ − 1) f δ−2 f 2

r + δ f δ−1 frr

gη = δ f δ−1 fη,
gηη = (δ)(δ − 1) f δ−2 f 2

η + δ f δ−1 fηη.

(40)

Substituting 40 into 38, we obtain:

ft +

1 − δ
δ

[
r + ψ − λ − γ +

1
2

k2η

σ2
1δ

] f +
1
2
σ2

2η(δ − 1)[ρ2 − 1] f −1 f 2
η

+ θ0 fr +
1
2
σ2

0 frr −
1
2
σ2

0(δ − 1) f −1 f 2
r +

1
2
σ2

2η fηη +

(
θ2 − bη −

kησ2ρ

σ1

δ

δ − 1

)
fη

+ Q(t) = 0. (41)

The equation 41 is still nonlinear second-order PDE which is difficult to solve. Inspired by [Liu (2007), (Guan & Liang,
2014), (Guan & Liang, 2014)], we assume the following:

Lemma 1

Assume f given by:

f (t, r, η) =

∫ T

t
f̂ (u, r, η)du + f̂ (t, r, η), (42)

is the solution to 41.

Then f̂ (t, r, η) can be written as:

f̂t +

1 − δ
δ

[
r + ψ − λ − γ +

1
2

k2η

σ2
1δ

] f̂ +
1
2
σ2

2η(δ − 1)[ρ2 − 1] f̂ −1 f̂ 2
η + θ0 f̂r +

1
2
σ2

0 f̂rr

−
1
2
σ2

0(δ − 1) f̂ −1 f̂ 2
r +

1
2
σ2

2η f̂ηη +

(
θ2 − bη −

kησ2ρ

σ1

δ

δ − 1

)
f̂η = 0, (43)

with the boundary condition f̂ (T, r, η) = 1.

Proof.

In lemma , we seek to convert PDE 41 to PDE 43. Define the differential operator ∆ on any function f (t, r, η) as:

∆ f =

1 − δ
δ

[
r + ψ − λ − γ +

1
2

k2η

σ2
1δ

] f +
1
2
σ2

2η(δ − 1)[ρ2 − 1] f −1 f 2
η

+ θ0 fr +
1
2
σ2

0 frr −
1
2
σ2

0(δ − 1) f −1 f 2
r +

1
2
σ2

2η fηη +

(
θ2 − bη −

kησ2ρ

σ1

δ

δ − 1

)
fη. (44)

Then equation 41 can also be written as:

∂ f
∂t

+ ∇ f + Q(t) = 0, (45)

where

f (T, r, η) = 1. (46)
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Notice that, on the other hand, we find:

∂ f
∂t

+ ∇ f =
∂

∂t

(∫ T

t
f̂ (u, r, η)

)
+ ∇(

∫ T

t
f̂ (u, r, η)du) +

(
∂

∂t
f̂ (t, r, η) + ∇ f̂ (t, r, η)

)
= − f̂ (t, r, η)) +

(∫ T

t
∇ f̂ (u, r, η)du

)
+

(
∂

∂t
f̂ (t, r, η) + ∇ f̂ (t, r, η)

)
= −Q(t). (47)

Note also that  f̂ (t, r, η) +
∫ T

t ∇ f̂ (u, r, η)du = 1
∂
∂t f̂ (t, r, η) + ∇ f̂ (t, r, η) = 0

. (48)

Therefore,

∂ f̂
∂t

+ ∇ f̂ = 0, (49)

where

f̂ (T, r, η) = 1. (50)

Thus, 41 can be converted to the following:

f̂t +

[1 − δ
δ

r + ψ − λ − γ +
1
2

k2η

σ2
1δ

 ] f̂ +
1
2
σ2

2η(δ − 1)[ρ2 − 1] f̂ −1 f̂ 2
η + θ0 f̂r +

1
2
σ2

0 f̂rr

−
1
2
σ2

0(δ − 1) f̂ −1 f̂ 2
r +

1
2
σ2

2η f̂ηη +

(
θ2 − bη −

kησ2ρ

σ1

δ

δ − 1

)
f̂η

= 0, (51)

with the boundary condition f̂ (T, r, η) = 1.

Thus, solving 33 or 41 is equivalent to solving 43. The nature of PDE 43 has well defined solutions.

Theorem 1 Suppose V(t, r, η, x) is continuously differentiable and twice continuously differentiable for all t ∈ [0,T ] and
(r, x, η) ∈ R × R × R, then the solution of the PDE 33 is given by

V(t, r, η, x) =
x1−δ

1 − δ
[
f (t, r, η)

]δ
, (52)

where

f (t, r, η) =

∫ T

t
exp{H(u)η +L(u)r +M(u)}du

+ exp{H(t)η +L(t)r +K(t)}. (53)

andH(t), L(t) andM(t) are determined in 71, 72 and 73 respectively.

In addition, the pair (π∗,C∗, p∗(t)) ∈ A given by:

π∗(t) =
k
σ2

1δ
X(t) +

σ2ρ fη
σ1 f

X(t), (54)

C∗(t) = X(t) f −1 (55)

and

p∗(t) = ψ(t)
[
ψ(t)
λ(t)

]− 1
δ

X(t) f −1 − ψ(t)X(t), (56)
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are the optimal policies.

Proof.

In theorem , assume the solution f̂ (t, r, η) is given by

f̂ (t, r, η) = exp{H(t)η +L(t)r +M(t)}, (57)

with the boundary conditionH(T ) = L(T ) =M(T ) = 0.

From equation 57, we can obtain the following partial derivatives:

f̂t = [H ′(t)η +L′(t)r +M′(t)] f̂ (t, r, η),
f̂r = L(t) f̂ (t, r, η),
f̂rr = L2(t) f̂ (t, r, η)
f̂η = H(t) f̂ (t, r, η),
f̂ηη = H2(t) f̂ (t, r, η).

(58)

Substituting of 58 into 43, we obtain:

(H ′(t)η +L′(t)r +M′(t)) f̂ (t, r, η) +

[1 − δ
δ

r + ψ − λ − γ +
1
2

k2η

σ2
1δ

 ] f̂ (t, r, η)

+
1
2
σ2

2η(δ − 1)[ρ2 − 1]H2 f̂ (t, r, η) + θ0L(t) f̂ (t, r, η) +
1
2
σ2

0L
2(t) f̂ (t, r, η) −

1
2
σ2

0(δ − 1)L2(t) f̂ (t, r, η)

+
1
2
σ2

2ηH
2(t) f̂ (t, r, η) +

(
θ2 − η −

kσ2ρη

σ1

δ

δ − 1

)
H(t) f̂ (t, r, η)

= 0. (59)

Canceling the term f̂ (t, r, η) on both sides of 59 gives:

(H ′(t)η +L′(t)r +M′(t)) +

[1 − δ
δ

r + ψ − λ − γ +
1
2

k2η

σ2
1δ

 ]
+

1
2
σ2

2η(δ − 1)[ρ2 − 1]H2 + θ0L(t) +
1
2
σ2

0L
2(t)

−
1
2
σ2

0(δ − 1)L2(t) +
1
2
σ2

2ηH
2(t) +

(
θ2 − bη −

kσ2ρη

σ1

δ

δ − 1

)
H(t)

= 0. (60)

Rewrite equation 60 to collect like terms in r and η gives:

η
[
H ′(t) +

1
2
σ2

2

[
(δ − 1)(ρ2 − 1) + 1

]
H2(t) −

(
b +

kρσ2

σ1

δ

δ − 1

)
H(t) +

1
2

k2

σ2
1

(1 − δ)
δ2

]
+ r

[
L′(t) +

1 − δ
δ

]
+

[
M′(t) −

1
2
σ2

0δL
2(t) + θ0L(t) + θ2H(t) − (−ψ + λ + γ)

1 − δ
δ

]
= 0. (61)

Eliminating η and r, we split equation 61 into three ODE’s as follows:

H
′(t) = − 1

2σ
2
2

[
(δ − 1)(ρ2 − 1) + 1

]
H2(t) +

(
b +

kρσ2
σ1

δ
δ−1

)
H(t) − 1

2
k2

σ2
1

(1−δ)
δ2 ,

H(T ) = 0.
(62)

L′(t) = − 1−δ
δ
,

L(T ) = 0.
(63)
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and M′(t) = 1
2σ

2
0δL

2(t) − θ0L(t) − θ2H(t) + (ψ + λ + γ) 1−δ
δ
,

M(T ) = 0.
(64)

Rewriting equation 62, we obtain:

H ′(t) = −
1
2
σ2

2
[
(δ − 1)(ρ2 − 1) + 1

][
H2(t) −

2
σ2

2
[
(δ − 1)(ρ2 − 1) + 1

] (
b +

kρσ2

σ1

δ

δ − 1

)
H(t)

+
k2

σ2
1

(1 − δ)
δ2σ2

2
[
(δ − 1)(ρ2 − 1) + 1

] ]. (65)

Let ∆H denote the discriminant of the quadratic equation

H2(t) −
2

σ2
2
[
(δ − 1)(ρ2 − 1) + 1

] (
b +

kρσ2

σ1

δ

δ − 1

)
H(t) +

k2

σ2
1

(1 − δ)
δ2σ2

2
[
(δ − 1)(ρ2 − 1) + 1

] (66)

Implying

∆H =
4

σ4
2σ

2
1((δ − 1)(ρ2 − 1) + 1)2

(
b +

kρσ2

σ1

δ

δ − 1

)2

−
4k2

σ2
1

δ

δ2σ2
2((δ − 1)(ρ2 − 1) + 1)

=
4

σ4
2σ

2
1((δ − 1)(ρ2 − 1) + 1)2

[
−k2

δ − 1
+

δ

δ − 1
[
(kρ + kρ)2 + b2(1 − ρ2)

]]
. (67)

Let the discriminant ∆H have distinct real solutions, that is ∆H > 0, then we obtain the following condition for δ necessary
for numerical analysis.

δ <
k2

(kρ + kρ)2 + b2(1 − ρ2)
< 1. (68)

Considering condition 68, if we integrate both sides of 65 with respect to t, we obtain

1
ξ1 − ξ2

∫ T

t

[ 1
H − ξ1

−
1

H − ξ2

]
dH(t) =

−1
2
σ2

2σ1((δ − 1)(ρ2 − 1) + 1)(T − t), (69)

where ξ1 and ξ2 are two distinct real solutions for 65 given by:

ξ1,2 =
1

σ2
2σ1((δ − 1)(ρ2 − 1) + 1)2

[
b +

kρσ2

σ1

δ

δ − 1

]
±

√
1

σ4
2σ

2
1((δ − 1)(ρ2 − 1) + 1)2

[
−k2

δ − 1
+

δ

δ − 1
[
(kρ + kρ)2 + b2(1 − ρ2)

]]
. (70)

Solving 69 with terminal conditionsH(T ) = 0, we obtain:

H(t) =

ξ1ξ2

[
1 − exp

[
−

σ2
2σ1

2
[
(δ − 1)(ρ2 − 1) + 1

]
(ξ1 − ξ2)(T − t)

]]
(ξ1 − ξ2)exp

[
−

σ2
2σ1

2
[
(δ − 1)(ρ2 − 1) + 1

]
(ξ1 − ξ2)(T − t)

] . (71)

The solutions to the equations 63 and 64 is obtained directly as follows:

L(t) =
1 − δ
δ

(T − t) (72)

and

M(t) =

∫ T

t

[
1
2
σ2

0δL
2(t) − θ0L(t) − θ2H(t) + (−ψ + λ + γ)

1 − δ
δ

]
ds. (73)
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We characterize the value function as a classical solution of the HJB equation 33. Therefore, the value function V is
represented as follows:

V(t, r, η, x) =
x1−δ

1 − δ

[
f (t, r, η)

]δ
, (74)

where

f (t, r, η) =

∫ T

t
exp{H(u)η +L(u)r +M(u)}du

+ exp{H(t)η +L(t)r +K(t)}, (75)

andH(t), L(t) andM(t) are determined in 71, 72 and 73 respectively.

In addition, the pair (π∗,C∗, p∗(t)) ∈ A given by

π∗(t) =
k
σ2

1δ
X(t) +

σ2ρ fη
σ1 f

X(t), (76)

C∗(t) = X(t) f −1 (77)

and

p∗(t) = ψ(t)
[
ψ(t)
λ(t)

]− 1
δ

X(t) f −1 − ψ(t)X(t), (78)

are the optimal policies.

8. Numerical Examples and Simulations

In this section, we show numerical examples, simulations and determine the relationship between optimal policies with
different parameters.

When θ0(t) = σ0 = σ2 = 0, then the risk-free interest rate r(t) and volatility term η(t) of the stock are constants implying
our problem becomes an investment, consumption and life insurance problem with constant interest rate and constant
volatility rate with the following optimal policies

π∗(t) =
k
σ2

1

·
1

1 − δ
X(t), (79)

C∗(t) = X(t) f −1. (80)

and

p∗(t) = ψ(t)
[
ψ(t)
λ(t)

]− 1
δ

X(t) f −1 − ψ(t)X(t). (81)

When ρ = 1, then the problem becomes an investment, consumption and life insurance problem with stochastic interest
rate and stochastic volatility having the following optimal policies.

π∗(t) =
k
σ2

1

·
1

1 − δ
X(t) +

σ2

σ1
·

fη
f
X(t), (82)

C∗(t) = X(t) f −1. (83)

and

p∗(t) = ψ(t)
[
ψ(t)
λ(t)

]− 1
δ

X(t) f −1 − ψ(t)X(t). (84)
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When p(t) = 0, the problem becomes an optimal investment and consumption without life insurance but with stochastic
interest rate and stochastic volatility. The optimal policies are given as follows:

π∗(t) =
k
σ2

1

·
1

1 − δ
X(t) +

σ2

σ1
·

fη
f
X(t) (85)

and

C∗(t) = φ
1

1−δX(t) f −1. (86)

Figure 1. The effects of hazard rate λ(t) on optimal premiums p∗(t) when t = 0 : 0.001 : 1; σ0 = 0.2; a = 0.8; b = 0.9;
σ1 = 1.2 ; η = 0.6; δ = 0.5; λ = 0 : 0.001 : 1; θ0 = 0.25; θ2 = 0.26; γ = 1; ψ = 0.00511; X = 2000 and σ2 = 1.1

In figure 1, the hazard rate λ(t) has positive effect on optimal premium p∗(t). In reality, mortality risk increases as the
hazard rate increases. Thus, high mortality risk led to higher premiums. This agrees with practical investments and our
intuition.

46



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 4; 2022

Figure 2. The effects of risk aversion δ on optimal premiums p∗(t) when t = 0 : 0.1 : 0.5; σ0 = 0.2; a = 0.8; b = 0.9;
σ1 = 1.2 ; η = 0.6; δ = 0 : 0.1 : 0.5; λ = 1; θ0 = 0.25; θ2 = 0.26; γ = 1; ψ = 0.005; X = 2000 and σ2 = 1.1

In figure 2, the risk-aversion δ has negative effect on optimal premium p∗(t). The wage-earner’s relative risk aversion is
1 − δ, so the wage-earner with high risk aversion purchases more life insurance.

Figure 3. The effects of wealth X(t) on optimal premiums p∗(t) when t = 0 : 0.1 : 1; σ0 = 0.2; a = 0.8; b = 0.9; σ1 = 1.2
; η = 0.6; δ = 0.5; λ = 1; θ0 = 0.25; θ2 = 0.26; γ = 1; ψ = 0.005; X = 0 : 0.1 : 1 and σ2 = 1.1

In figure 3, accumulation of wealth has a positive effect on optimal premium p∗(t). Note that the larger the wealth the
more the wage-earner purchases life insurance to hedge against the risk in the financial market. Hence the wage-earner
tends to invest more in the insurance market with the accumulation of wealth.
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Figure 4. The effects of premium-insurance ratio ψ(t) on optimal premiums p∗(t) when t = 0 : 0.01 : 0.4; σ0 = 0.2;
a = 0.8; b = 0.9; σ1 = 1.2 ; η = 0.6; δ = 0.5; λ = 1; θ0 = 0.25; θ2 = 0.26; γ = 1; ψ = 0 : 0.01 : 0.4; X = 2000 and

σ2 = 1.1

In figure 4, the premium- insurance ratio ψ(t) has negative effect on premium p∗(t). Note that p(t)
ψ(t) determines how big

the benefit to be given to the beneficiary upon the wage-earners death at time τ < T . For higher premium, the premium-
insurance ratio, must be low in order for the policy to

Figure 5. The effects of stochastic interest rate r(t) on optimal premiums p∗(t) when t = 0 : 0.01 : 0.4; σ0 = 0.2; a = 0.8;
b = 0.9; σ1 = 1.2 ; η = 0.6; r = 0 : 0.01 : 0.4; δ = 0.5; λ = 1; θ0 = 0.25; θ2 = 0.26; γ = 1; ψ = 0.005; X = 2000 and

σ2 = 1.1

In figure 5, the stochastic interest rate r(t) has positive effect on optimal premium p∗(t). In reality, when the stochastic
interest rate increases the wage-earner invests less in the financial market. Thus, the wage-earner invests more in the
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insurance market when he/she faces higher interest rates in the financial market. This agrees with practical investments
and our intuition.

Figure 6. The effects of stochastic volatility rate η(t) on optimal premiums p∗(t) when t = 0 : 0.01 : 0.4; σ0 = 0.2;
a = 0.8; b = 0.9; σ1 = 1.2 ; η = 0 : 0.01 : 0.4; r = 0.4; δ = 0.5; λ = 1; θ0 = 0.25; θ2 = 0.26; γ = 1; ψ = 0.005; X = 2000

and σ2 = 1.1

In figure 6, the stochastic volatility rate η(t) has positive effect on optimal premium p∗(t). When the stochastic volatility
rate is high, the wage-earner invests less in the financial market. Instead, he/she invest more in the insurance market. This
agrees with practical investments and our intuition.

9. Conclusion

We investigated an optimal investment, consumption and life insurance problem with stochastic interest rate and stochastic
volatility. We considered a single wage-earner with a portfolio consisting of one risk-free security and one risky security
and life insurance policy. The wage-earner invests in life insurance to hedge against the risk of unexpected death. By
applying Bellman’s optimality principle, we obtain the HJB PDE for the value function. Closed-form solutions when
the risky preference of an investor satisfies a power utility are also established. Results showed that the risk aversion
parameter δ and the premium-insurance ratio have negative effects on optimal premium p∗(t). However, the Hazard rate
λ(t), wealth X(t), stochastic interest rate r(t) and stochastic volatility η(t) had positive effects on optimal premium. Our
study can be extended in so many directions. For instance, we can introduce other utility functions. We can also consider
other life insurance products on the market. Furthermore, we can also introduce multiple risky securities which leads to
more sophisticated nonlinear second-order partial differential equations.
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