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Abstract

In the paper, the eigenvalues of Sturm-Liouville problems (SLPs), generalized SLPs and periodic SLPs are solved. First,
we propose a new method to transform the SLP with mixed boundary conditions to a generalized SLP for a transformed
variable, for which the Dirichlet boundary conditions occur on two-side, but the coefficients are nonlinear functions of
eigenvalue. To computing the eigenvalue and eigenfunction, we further recast the transformed system to an initial value
problem for a new variable. In terms of the relative residual of two consecutive terminal values of the new variable a
nonlinear equation is solved for seeking the eigenvalue by the fictitious time integration method (FTIM), which mono-
tonically converges to the exact eigenvalue. We solve a numerically characteristic equation by the half-interval method
(HIM) and a derivative-free iterative scheme LHL (Liu, Hong & Li, 2021) to achieve high precision eigenvalues. Next,
the generalized SLP is transformed to a new one, so that the Dirichlet boundary condition happens on the right-end. By
using the boundary shape function method and the uniqueness condition of the transformed variable, a definite initial
value problem is derived for the new variable. To match the right-end Dirichlet boundary condition a numerically charac-
teristic equation is obtained and solved by the HIM and LHL. Finally, new techniques for solving the periodic SLPs with
three types periodic boundary conditions are proposed, which preserve the periodic boundary conditions with the aids of
boundary shape functions. Three iterative algorithms are developed, which converge quickly. All the proposed iterative
algorithms are identified by testing some examples.

Keywords: (Generalized, Periodic) Sturm-Liouville problem, Eigenvalues, Fictitious time integration method, Derivative-
free iterative scheme, Half-interval method

1. Introduction

During 1836-37, Sturm and Liouville created a new mathematical analysis of second-order ordinary differential equation
(ODE) equipped with the Sturm-Liouville boundary conditions (Lutzen, 1984). It is nowadays known as the Sturm-
Liouville theory to deal with the Sturm-Liouville problem (SLP):

−(p(x)u′(x))′ + q(x)u(x) = λw(x)u(x), x ∈ (a, b), (1)
hu(a) − p(a)u′(a) = 0, Hu(b) + p(b)u′(b) = 0, (2)

where p(x) > 0 and w(x) > 0 are strictly positive functions of x ∈ [a, b], and λ is a constant parameter to be determined.
Eqs. (1) and (2) is a regular SLP, which allows non-trivial solutions only for certain values of λ, known as the eigenvalues.

The Sturm-Liouville problem is very important in partial differential equations, vibrations in continuum mechanics, heat
conduction problems, Schrödinger equation, the transport of micro wave, and the Lax pair of KdV equation, etc. For
example, as an application of the Sturm-Liouville problem,

1
A(x)

∂

∂x

(
E(x)A(x)

∂u(x, t)
∂x

)
= ρ

∂2u(x, t)
∂t2 (3)

describes the longitudinal wave motion of a rod when the Young’s modulus E(x) is varying, with the cross section area
A(x), a constant density ρ of mass, and the axial displacement u(x, t). Let u(x, t) = eiωty(x) with ω a natural vibration
frequency; Eq. (3) reduces to Eq. (1) with

p(x) = E(x)A(x), q(x) = 0, w(x) = ρA(x), λ = ω2. (4)

In the design of engineering structure, knowing a first few frequencies ω is utmost important.

Besides some limited cases, there exists no general solution of the Sturm-Liouville problem. The Rayleigh minimal
principle was often employed to solve the Sturm-Liouville problem, which is carried out in a large space and leaves a finite
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number of free parameters to match the minimality condition, but it is effective only for a few lower-order eigenvalues
(Gould, 1995; Hinton & Schaefer, 1997; Ghelardoni1997). In general, for higher-order eigenvalues the accuracy is lost
very fast.

Many numerical methods have been developed to solve the SLPs (El-Gamel & El-Hady, 2013; Alquran & Al-Khaled,
2010; Abbasbandy & Shirzadi, 2011; Ghelardoni & Gheri, 2001; Liu, 2008, 2010). The Sturm-Liouville theory is widely
discussed and efficient and accurate codes have been developed, like as SLEIGN (Bailey, Gordon & Shampine, 1978;
Bailey, Everitt & Zettl, 1991), SLEIGN2 (Bailey, Everitt & Zettl, 2001), SLEDGE (Pruess & Fulton, 1993), and SL02FM
(Pruess & Marletta, 1992). An alternative code is MATSLISE (Ledoux, van Daele & vanden Berghe, 2005), which
is based on the CP methods (Ixaru, de Meyer & vanden Berghe, 1999). In comparison with the corrected Numerov’s
method, some competitive results have been achieved by the boundary value methods (Aceto, Ghelardoni & Magherini,
2009a, 2009b) and the high order difference schemes (Amodio & Settanni, 2015).

As to be proved in Theorem 1 below, the SLP with mixed boundary conditions can be transformed to a generalized Sturm-
Liouville problem with the coefficients depending on λ nonlinearly. In the existent literature, the three problems of SLP,
generalized SLP and periodic SLP were tackled separately. We will propose a unified treatment of these three SLPs by
designing different boundary shape functions and transforming them to the corresponding initial value problems, and then
some solvers of nonlinear equation are used to solve different target equations for computing the eigenvalues.

We arrange the paper as follows. In Section 2, we describe the SLP which with the Liouville transformation is recast
to a canonical form equipped with a single potential function in the unit interval, and then we further transform it to a
generalized SLP with the Dirichlet boundary conditions happened on two-side. With the aid of a simple transformation
made in Section 3, we derive an initial value problem which together with the fictitious time integration method (FTIM)
is used to determine the eigenvalue iteratively, and two numerical examples are given to test the FTIM. In Section 4,
we propose a normalization condition for the transformed variable to ascertain the terminal value of the new variable
explicitly, such that a definite initial value problem is derived for a new variable. To precisely match the right-end
Dirichlet boundary condition, a numerically characteristic equation provides a medium to obtain the eigenvalues, which
is solved by the half-interval method (HIM) and a derivative-free iterative scheme (LHL), and very accurate eigenvalues
are revealed. In Section 5, we solve the generalized SLP which is transformed to a new generalized SLP with a simplified
Dirichlet boundary condition on the right-end. By developing the boundary shape function method and a definite initial
value problem method, we then apply the HIM and LHL to solve the numerically characteristic equation. In Section 6,
we discuss the periodic SLP by developing the boundary shape function methods. The iterative algorithms are developed
in Section 7 to determine the eigenvalues. The conclusions are drawn in Section 8.

2. A generalized Sturm-Liouville Problem with Two-Side Dirichlet Boundary Conditions

The Liouville transformation (Fu, Wang & Wei, 2015) is given by

v(t) = g(x)u(x), g(x) = [w(x)p(x)]1/4, (5)

t =
1
c

∫ x

a

(
w(τ)
p(τ)

)1/2

dτ, c =

∫ b

a

(
w(τ)
p(τ)

)1/2

dτ, (6)

which are used to transform Eqs. (1) and (2) to the following canonical form of the SLP, endowing with the mixed
boundary conditions:

−v̈(t) + Q(t)v(t) = µv(t), t ∈ (0, 1), (7)
h∗v(0) − v̇(0) = 0, H∗v(1) + v̇(1) = 0, (8)

where

Q(t) = c2 q(x)g(x) − [p(x)g′(x)]′

w(x)g(x)
, µ = c2λ, (9)

h∗ = cg(a)[hg(a) − p(a)g′(a)], H∗ = cg(b)[Hg(b) + p(b)g′(b)]. (10)

The original SLP becomes a new SLP in the unit interval with the same eigenvalues multiplied by a constant factor c2,
and only the potential function Q(t) is required.

Therefore, we consider a specific SLP by

u′′(x) + q(x, λ)u(x) = 0, x ∈ (0, 1), (11)
a1u(0) + b1u′(0) = 0, a2u(1) + b2u′(1) = 0, (12)
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where q(x, λ) is a linear function of λ. It is different from the Liouville transformation in Eq. (5) that a new one in terms of
u(x) and u′(x) is derived below, which can transform the above SLP with mixed boundary conditions to a new generalized
SLP with the Dirichlet boundary conditions happened on two-side.

Theorem 1 The Sturm-Liouville problem (11) and (12) can be transformed to a generalized Sturm-Liouville problem
with two-side Dirichlet boundary conditions:

v′′(x) = F1(x, λ)v′(x) + F2(x, λ)v(x), (13)
v(0) = 0, v(1) = 0, (14)

in which the transformed variable v(x) is related to u(x) and u′(x) by

v(x) = [a2a3(λ) − (1 − x)q(x, λ)b2b3]u(x) + [a3(λ)b2 + (1 − x)a2b3]u′(x), (15)

and the coefficients F1(x, λ) and F2(x, λ) are given by

F1(x, λ) =
a11(x, λ)a12(x, λ)

D(x, λ)
−

a12(x, λ)a21(x, λ)
D(x, λ)

, (16)

F2(x, λ) =
1

D(x, λ)
[a11(x, λ)a21(x, λ) + a′12(x, λ)a21(x, λ)

+a12(x, λ)a22(x, λ)q(x, λ) − a22(x, λ)a′11(x, λ)], (17)

where

a3(λ) = a1a2 + b1b2q(0, λ), (18)
b3 = a2b1 − a1b2, (19)
a11(x, λ) = a2a3(λ) − (1 − x)q(x, λ)b2b3, (20)
a12(x, λ) = a3(λ)b2 + (1 − x)a2b3, (21)
a21(x, λ) = a′′11(x, λ) − 2a′12(x, λ)q(x, λ) − a12(x, λ)q′(x, λ) − a11(x, λ)q(x, λ), (22)
a22(x, λ) = 2a′11(x, λ) − a12(x, λ)q(x, λ), (23)
D(x, λ) = a11(x, λ)[a11(x, λ) + a′12(x, λ)] + a12(x, λ)[a12(x, λ)q(x, λ) − a′11(x, λ)]. (24)

Proof. Inserting x = 0 and x = 1 into Eq. (15) and taking Eqs. (18), (19) and (12) into account, we have

v(0) = [a2a3(λ) − q(0, λ)b2b3]u(0) + [a3(λ)b2 + a2b3]u′(0)
= a2[a1a2 + b1b2q(0, λ)]u(0) − q(0, λ)b2[a2b1 − a1b2]u(0)
+b2[a1a2 + b1b2q(0, λ)]u′(0) + a2[a2b1 − a1b2]u′(0)
= [a2

2 + b2
2q(0, λ)][a1u(0) + b1u′(0)] = 0, (25)

v(1) = a2a3(λ)u(1) + a3(λ)b2u′(1) = a3(λ)[a2u(1) + b2u′(1)] = 0. (26)

Hence, the homogeneous boundary conditions in Eq. (14) are verified. Eq. (15) is re-written as

v(x) = a11(x, λ)u(x) + a12(x, λ)u′(x), (27)

where a11(x, λ) and a12(x, λ) are given by Eqs. (20) and (21). Differentiating Eq. (27) to x and inserting Eq. (11) for u′′(x),
leads to

v′(x) = [a′11(x, λ) − q(x, λ)a12(x, λ)]u(x) + [a11(x, λ) + a′12(x, λ)]u′(x). (28)

Expressing u(x) and u′(x) in terms of v(x) and v′(x) by using Eqs. (27) and (28), we can obtain the inverse transformations
by

u(x) =
a11(x, λ) + a′12(x, λ)

D(x, λ)
v(x) −

a12(x, λ)
D(x, λ)

v′(x), (29)

u′(x) =
a12(x, λ)q(x, λ) − a′11(x, λ)

D(x, λ)
v(x) +

a11(x, λ)
D(x, λ)

v′(x), (30)

where D(x, λ) is defined by Eq. (24). Further differentiating Eq. (28) to x, gives

v′′(x) = a21(x, λ)u(x) + a22(x, λ)u′(x), (31)
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where a21(x, λ) and a22(x, λ) are defined by Eqs. (22) and (23). Inserting Eq. (29) for u(x) and Eq. (30) for u′(x) into
Eq. (31), we can derive Eq. (13). The proof is completed. 2

Although q(x, λ) as usual is a linear function of λ for the SLP, F1(x, λ) and F2(x, λ) as shown by Eqs. (16) and (17) are
nonlinear functions of λ; hence, the resultant system in Eqs. (13) and (14) is a generalized SLP.

3. Transforming to an Initial Value Problem

With the aid of Theorem 1, we derive new methods in Sections 3 and 4 to solve Eqs. (11) and (12), and give examples to
test the proposed methods.

Theorem 2 For a new variable y(x) ∈ C2[0, 1], the transformed variable v(x) is given by

v(x) = y(x) − (1 − x)y(0) − xy(1), (32)

which satisfies the boundary conditions in Eq. (14).

Proof. It is straightforward to prove that v(0) = y(0) − y(0) = 0 and v(1) = y(1) − y(1) = 0. 2

3.1 Fictitious Time Integration Method

For solving a nonlinear equation:
F(λ) = 0, (33)

we can transform it to a first-order differential equation (Liu & Atluri, 2008):

λ′(ξ) =
ν

1 + ξ
F(λ(ξ)), (34)

where ξ is a fictitious time variable and ν is a constant parameter. Integrating Eq. (34) by the forward Euler scheme, yields

λ(k + 1) = λ(k) +
ν∆ξ

1 + ξk
F(λ(k)), k = 0, 1, . . . , (35)

where ξk = k∆ξ, ∆ξ > 0 is an increment of fictitious time, and λ(k) denotes the eigenvalue at the kth iteration. Eq. (35) is
the fictitious time integration method (FTIM) developed by Liu and Atluri (2008) to solve nonlinear equation (33).

Now, we explore the FTIM (Liu & Atluri, 2008) to determine λ in Eqs. (11) and (12) with the aids of Theorems 1 and 2.
It follows from Eqs. (13) and (32) that y(x) replacing v(x),

y′′(x) = F1(x, λ)[y′(x) + y(0) − y(1)] + F2(x, λ)[y(x) − (1 − x)y(0) − xy(1)], (36)

where y(1) is an unknwon constant to be determined by the iteration method. With the given initial values y(0) and y′(0),
if y can be integarted from Eq. (36), Theorem 2 guarantees that v(x) satisfies the Dirichlet boundary conditions in Eq. (14).
Then, by Eqs. (25) and (26), u(x) satisfies the mixed boundary conditions in Eq. (12).

Let λ(k) be the eigenvalue λ and yk(1) be the terminal value of y(1) in Eq. (36) at the kth iteration. We set

F(λ(k)) = |yk+1(1) − yk(1)|, (37)

which is using the relative residual of the iterative sequence yk(1) as a driving force in Eq. (35), so that we can enforce the
iterative sequence of λ(k) tending to its limit point as an approximation to the exact eigenvalue λ with F(λ) = 0.

Based on FTIM and Theorems 1 and 2, the iterative algorithm for solving Eqs. (11) and (12) is depicted as follows. (i)
Give y(0), y′(0), the initial guesses of λ(0) and y0(1), ∆ξ, ν, ε1, and N. (ii) For k = 0, 1, 2, . . ., integrate Eq. (36) with N
steps from x = 0 to x = 1 to obtain yk+1(1), and iterate λ(k) by Eqs. (35) and (37) until F(λ(k)) < ε1.

If λ is an eigenvalue to be sought, we can take λ(0) < λ and ν > 0, and Eqs. (35) and (37) generate a monotonically
increasing sequence with λ(k + 1) > λ(k), k = 0, 1, . . . due to ν∆ξF(λ(k))/(1 + ξk) > 0, which converges to the exact
eigenvalue λ very fast.

Taking x = 0 and inserting v(0) = 0 and v′(0) = y′(0) − y(1) + y(0) into Eqs. (29) and (30), leads to

u(0) = −
a12(0, λ)
D(0, λ)

[y′(0) − y(1) + y(0)], (38)

u′(0) =
a11(0, λ)
D(0, λ)

[y′(0) − y(1) + y(0)]. (39)
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Using the initial values u(0) and u′(0) and integrating Eq. (11), the eigenfunction can be obtained.

For the SLP endowed with the mixed boundary conditions, we can transform it to the Dirichlet type generalized SLP as
shown in Theorem 1. Two examples are given below to demonstrate the usefulness of Theorem 1 and the FTIM.

3.2 Example 1

To explore the efficiency and accuracy of the proposed iterative algorithm, we consider

u′′(x) + λu(x) = 0, x ∈ (0, 1), (40)
u(0) + µ1u′(0) = 0, u(1) + µ2u′(1) = 0, (41)

where λk, k = 0, 1, 2, . . . are solved from the characteristic equation:

f (λ) = µ1µ2λ sin
√
λ + (µ2 − µ1)

√
λ cos

√
λ + sin

√
λ = 0, (42)

while the kth order eigenfunction is given by uk(x) = µ1
√
λk cos(

√
λk x) − sin(

√
λk x).

With µ1 = 1, µ2 = −2, in the iterative algorithm we take y(0) = 1, y′(0) = 0, y0(1) = 10, ε1 = 10−10, ∆ξ = 0.001
and N = 500 and iteratively determine λ by Eqs. (35) and (37), whose results are listed in Table 1 to show λ(0), the
computed λ, the exact λ, the absolute error of eigenvalue (EE), ν, the number of iterations (NI), the absolute error of
right boundary condition (ERBC) and the maximum error (ME) of eigenfunction. Notice that the absolute error of left
boundary condition is zero, so that it is not listed in the table.

Table 1. For Eqs. (40) and (41) solved by the FTIM with Eqs. (35) and (37), listing the computed eigenvalues and other
parameters

λ(0) Computed λ Exact λ EE ν NI ERBC ME
6.5 6.65898104446 6.65898104424 2.27 × 10−10 2500 8 2.89 × 10−10 2.93 × 10−11

36 36.4377786495 36.4377786333 1.62 × 10−8 8900 6 1.64 × 10−8 1.07 × 10−9

80 85.8090551476 85.8090549627 1.23 × 10−7 19100 9 1.85 × 10−7 5.85 × 10−9

3.3 Example 2

We test the following SLP:

−u′′(x) +
2

(x + g0)2 u(x) = λu(x), x ∈ (0, 1), (43)

u(0) + µ1u′(0) = 0, u(1) + µ2u′(1) = 0, (44)

where µ1 = g0 = 1 and µ2 = 1 + g0 = 2. This problem has the eigenvalues λk = (k + 1)2π2, k = 0, 1, 2, . . .. However, the
exact form of the eigenfunction u(x) does not exist.

We fix y(0) = 1, y′(0) = 0, y0(1) = 10, ε1 = 10−10, ∆ξ = 0.001 and N = 500 and iteratively determine λ by Eqs. (35) and
(37), whose results are shown in Table 2 for λ(0), the computed λ, the exact λ, EE, ν, NI, and ERBC.

Table 2. For Eqs. (43) and (44) solved by the FTIM with Eqs. (35) and (37), listing the computed eigenvalues and other
parameters

λ(0) Computed λ Exact λ EE ν NI ERBC
9 9.86960440127 9.86960440109 1.84 × 10−10 1820 8 2.78 × 10−13

30 39.4784176208 39.4784176044 1.64 × 10−8 7500 7 1.86 × 10−12

80 88.8264397964 88.8264396098 1.87 × 10−7 18800 9 1.38 × 10−12

The above two examples as shown in Tables 1 and 2 show that the FTIM is convergent very fast with small numbers of
iterations. The parameter ∆ξ must be small enough to avoid over-shooting, while the value of the parameter ν can be
chosen as large as possible to accelerate the convergence speed. However, the accuracy of eigenvalues can be further
improved by other methods given below.
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4. Numerically Characteristic Equation

4.1 Terminal Value y(1) of the New Variable y(x)

In view of Eqs. (13) and (14), if v(x) is a transformed eigenfunction, then γv(x), γ , 0 is also a transformed eigenfunction.
For the uniqueness of v(x) and then u(x) by Eq. (29), we can consider a normalization condition as follows:

v′(0) = A0, (45)

where A0 is a given nonzero constant. We fix A0 = 1.

Theorem 3 If Eq. (45) is imposed for the uniqueness of v(x), then the terminal value y(1) in Eq. (32) is given by

y(1) = y(0) + y′(0) − A0; (46)

hence,
v(x) = y(x) − y(0) + x[A0 − y′(0)]. (47)

Proof. Differentiating Eq. (32) with respect to x and inserting x = 0, yields

v′(0) = y′(0) + y(0) − y(1), (48)

which immediately leads to Eq. (46) by using v′(0) = A0 in Eq. (45). Inserting Eq. (46) for y(1) into Eq. (32), we can
derive Eq. (47). 2

Therefore, we come to a definite second-order initial value problem from Eqs. (36) and (46) for the new variable y(x):

y′′(x) = F1(x, λ)[y′(x) + A0 − y′(0)] + F2(x, λ)[y(x) − y(0) + A0x − xy′(0)], (49)

which is a nonhomogeneous ODE, such that the given initial values can be taken as y(0) = 0 and y′(0) = 0 without leading
to y(x) = 0. Hence, Eq. (49) reduces to

y′′(x) = F1(x, λ)[y′(x) + 1] + F2(x, λ)[y(x) + x], (50)

where we have taken A0 = 1. Notice the difference between Eqs. (36) and (50). Eq. (36) exists an unknown constant y(1),
which is disappeared in Eq. (50).

Up to here we have presented a new formulation of the SLP. When the original SLP in Eqs. (11) and (12) exist two
unknowns: an unknown initial value u(0) or u′(0) and the eigenvalue λ, the present formulation in Eq. (50) only has one
unknown λ to be determined below.

4.2 Half-Interval Method

With the given initial values y(0) = y′(0) = 0 and for any λ, we can integrate Eq. (50) from x = 0 to x = 1 to obtain y(1);
hence, inserting x = 1 into Eq. (47) and taking y(0) = y′(0) = 0 and A0 = 1, yields

v(1; λ) = y(1) + 1. (51)

Here, y(1) is obtained by integrating Eq. (50) with the initial conditions y(0) = y′(0) = 0, which is no longer the one in
Eq. (46).

The curve of v(1; λ) vs. λ is an eigenvalue curve. We can adjust the value of λ until v(1; λ) satisfies |v(1; λ)| < ε2, where ε2
is a given tolerance of the error to mismatch the right-end Dirichlet boundary condition in Eq. (14):

v(1; λ) = y(1) + 1 = 0, (52)

which is a numerically characteristic equation to determine λ. We can apply the half-interval method to solve Eq. (52);
emanating from y(0) = y′(0) = 0, we repeatedly integrate Eq. (50) with N steps from x = 0 to x = 1 to obtain y(1) and then
v(1; λ) = y(1) + 1 is available for each λ. In the original SLP of Eqs. (11) and (12) the target equation a2u(1) + b2u′(1) = 0
upon comparing to Eq. (52) is more complicated to determine the eigenvalue. In the present formulation of Eq. (50), the
target equation y(1) + 1 = 0 is simple to determine the eigenvalue.

Like Eq. (42) for Example 1, Eq. (52) can be used to determine the eigenvalue λ. However, when Eq. (42) with its
explicit form can be effectively solved by the Newton iteration method, Eq. (52) has to be solved by other methods,
since it is an implicit form nonlinear equation of λ. The half-interval method (HIM) is described as follows. If λd is a
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desired eigenvalue, we can detect the eigenvalue curve and decide two initial values λ0 and λ with λ0 < λd < λ, such that
v(1; λ0)v(1; λ) < 0. Then, we repeat the following processes until convergence:

v0 = v(1; λ0), vλ = v(1; λ)
L = 0
1 λ1 = (λ0 + λ)/2
L = L + 1
If L > Nu Then
Return
Endif
v1 = v(1; λ1)
If v0v1 ≤ 0 Then
λ = λ1

vλ = v(1; λ)
Else
λ0 = λ1

v0 = v(1; λ0)
Endif
If |v0| < ε2 And |vλ| < ε2 Then
λ = (λ0 + λ)/2
Return
Else
Go To 1
Endif

Nu is the upper bound of the number of iterations, which is set to be Nu = 100. Besides the first two integrations, twice
integrations of Eq. (50) in each iteration are required in the HIM.

4.3 A Derivative-Free Iterative Scheme

As to be shown below by numerical examples, the HIM is convergent slowly. Liu, Hong & Lee (2021) have proposed an
iterative scheme:

xn+1 = xn −
f (xn)

α + β f (xn)
, (53)

where
α = f ′(x∗), β =

f ′′(x∗)
2 f ′(x∗)

, (54)

in which x∗ is a simple root of the nonlinear equation f (x) = 0. The iterative scheme (53) has third-order convergence,
which is shortened as LHL.

Like the half-interval method the first step used in the LHL is choosing two initial guesses x0 and x2 such that f (x0) f (x2) <
0 to render x∗ ∈ (x0, x2). Then, we take x1 = (x0 + x2)/2. As the approximations of α and β in Eq. (54), we can use the
technique of finite differences:

α =
f (x2) − f (x0)

x2 − x0
, β =

1
2α

f (x2) − 2 f (x1) + f (x0)
(x1 − x0)2 . (55)

In summary, the procedures of the LHL are given as follows: (i) Give the initial guesses of x0 and x2 to render f (x0) f (x2) <
0. (ii) Compute α and β by Eq. (55). (iii) For n=0,1,. . . , doing

xn+1 = xn −
f (xn)

α + β f (xn)
, until | f (xn)| < ε3.

We will apply the LHL to solve Eq. (52), which is a derivative-free iterative scheme. We fix the convergence criterion ε1
for the FTIM, ε2 for the HIM and ε3 for the LHL.
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4.4 Examples 1 and 2

For example 1, we fix ε2 = ε3 = 10−15 and N = 5000 and iteratively determine λ by applying the half-interval method
(HIM) and LHL to Eq. (52), and the results are listed in Table 3 to show the computed λ, the exact λ, EE, NIa, NIb, ERBC
and ME. Since the convergence criterion and N used in the HIM and LHL are the same, they obtained the same results,
but the numbers of iterations for HIM denoted as NIa are much larger than that for LHL denoted as NIb. When the CPU
time spent in the LHL is about 4.28 s, the HIM needs 43.38 s. The LHL is much saving CPU time than the HIM.

Table 3. For Eqs. (40) and (41) solved by the the HIM and LHL to Eq. (52), listing the computed eigenvalues and other
parameters

Computed λ Exact λ EE NIa NIb ERBC ME
6.65898104424 6.65898104424 5.68 × 10−14 43 6 1.08 × 10−13 1.91 × 10−14

36.4377786333 36.4377786333 1.71 × 10−12 42 5 2.04 × 10−12 2.03 × 10−13

85.8090549628 85.8090549627 1.82 × 10−11 37 4 9.67 × 10−12 9.15 × 10−13

For example 2, we fix ε2 = ε3 = 10−15 and N = 5000, and the results are listed in Table 4 to show the computed λ, the
exact λ, EE, NIa, NIb, and ERBC.

Table 4. For Eqs. (43) and (44) solved by the HIM and LHL to Eq. (52), listing the computed eigenvalues and other
parameters

Computed λ Exact λ EE NIa NIb ERBC
9.86960440109 9.86960440109 5.68 × 10−14 44 8 1.11 × 10−16

39.4784176044 39.4784176044 1.71 × 10−12 43 6 3.19 × 10−17

88.8264396098 88.8264396098 1.91 × 10−11 40 6 3 × 10−17

Upon comparing Tables 3 and 4 to Tables 1 and 2, the improvement of the accuracy in every aspect is apparent with about
three orders. For the purpose to achieve the high precision in Tables 3 and 4, N is increased to N = 5000. The NIs in the
half-interval method (HIM) is increased and the CPU time for integrating Eq. (50) with 2(NI+1) times is increased, but
in the FTIM it needs NI times integrations of the ODE with a less CPU time. Although the CPU time is increased for the
HIM, but this is deserved because of the increase of accuracy with three orders than that for the FTIM.

4.5 Example 3

We consider a singular SLP (El-Gamel & El-Hady, 2013; Bailey, Everitt & Zettl, 1991):

u′′(x) + λu(x) +
1
x

u(x) = 0, x ∈ (0, 1), (56)

u(0) = 0, u(1) = 0, (57)

which is already in the form of Theorem 1, and thus v(x) is replaced by u(x) in Sections 4.1 and 4.2.

We fix ε2 = ε3 = 10−15, ∆x = 1/5000 and N = 5000, and the results are listed in Table 5 to show the computed λ, the
exact λ, EE, NIa, and NIb. Notice that ERBC is zero. The accuracy is competitive to that in (El-Gamel & El-Hady, 2013),
but is more accurate than that in (Bailey, Everitt & Zettl, 1991) about four orders, where the code SLEIGN2 was used.

Table 5. For Eqs. (56) and (57) solved by the HIM and LHL to Eq. (52), listing the computed eigenvalues and other
parameters

Computed λ Exact λ EE NIa NIb

7.373985015175 7.37398501517 5.14 × 10−12 39 7
36.33601959523 36.33601959523 3.48 × 10−12 38 5
85.29258209416 85.29258209413 2.57 × 10−11 35 5
154.0986237399 154.0986237398 1.1 × 10−10 36 5

4.6 Example 4
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To further test the accuracy, we consider (El-Gamel & El-Hady, 2013)

u′′(x) = tanh xu′(x) − λ cosh2 xu(x), x ∈ (0, 1), (58)
u(0) = 0, u(1) = 0. (59)

We fix ε2 = ε3 = 10−15 and ∆x = 1/N = 1/8000, and the results are tabulated in Table 6 to show the computed λ, the
exact λ, EE, NIa, and NIb. The accuracy is slightly better than (El-Gamel & El-Hady, 2013) in the first three eigenvalues.

Table 6. For Eqs. (58) and (59) solved by the HIM and LHL to Eq. (52), listing the computed eigenvalues and other
parameters

Computed λ Exact λ EE NIa NIb

7.146202155733 7.146202155733 9.77 × 10−15 41 7
28.58480862293 28.58480862293 1.88 × 10−13 40 8
64.31581940160 64.31581940160 2.36 × 10−12 38 6
114.3392344917 114.3392344917 1.40 × 10−11 35 5
178.6550538934 178.6550538933 5.37 × 10−11 37 6

5. Generalized Sturm-Liouville Problems

Let us consider Eq. (11) with the λ-dependent mixed boundary conditions:

a1(λ)u(0) + b1(λ)u′(0) = 0, a2(λ)u(1) + b2(λ)u′(1) = 0, (60)

which is a generalized Sturm-Liouville problem.

Solving the generalized SLP is more difficult than that to solve the SLP. Some numerical methods were developed to
tackle the eigen-parameter dependent boundary conditions problems (Liu, 2010, 2012; Aliyev & Kerimov, 2008; Binding
& Browne, 1997; Chanane, 2005, 2007, 2008; Reutskiy, 2008, 2010; Annaby & Tharwat, 2006; El-Gamel, 2014).

5.1 A Main Result

Theorem 4 The generalized Sturm-Liouville problem (11) and (60) with a2(λ)b2(λ) , 0 can be transformed to a new one
with the Dirichlet boundary condition on the right-end:

w′′(x) = F1(x, λ)w′(x) + F2(x, λ)w(x), (61)
a3(λ)w(0) + b3(λ)w′(0) = 0, w(1) = 0, (62)

where

w(x) = a2(λ)u(x) + b2(λ)u′(x),
a3(λ) = a1(λ)a2(λ) + b1(λ)b2(λ)q(0, λ),
b3(λ) = a2(λ)b1(λ) − a1(λ)b2(λ), (63)
D(x, λ) = a2

2(λ) + q(x, λ)b2
2(λ),

F1(x, λ) =
q′(x, λ)b2

2(λ)
D(x, λ)

,

F2(x, λ) = −q(x, λ) −
q′(x, λ)a2(λ)b2(λ)

D(x, λ)
, (64)

in which the primes in q′(x, λ) denotes the differential with respect to x.

Proof. It is easy to check that
w(x) = a2(λ)u(x) + b2(λ)u′(x) (65)

satisfies the second condition in Eq. (62), when u(x) satisfies Eq. (60).

Differentiating Eq. (65) with respect to x and inserting Eq. (11) for u′′(x), we have

w′(x) = a2(λ)u′(x) + b2(λ)u′′(x) = a2(λ)u′(x) − q(x, λ)b2(λ)u(x). (66)
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From Eqs. (65) and (66), we can express u(x) and u′(x) in terms of w(x) and w′(x) as follows:

u(x) =
1

D(x, λ)
[a2(λ)w(x) − b2(λ)w′(x)], (67)

u′(x) =
1

D(x, λ)
[q(x, λ)b2(λ)w(x) + a2(λ)w′(x)], (68)

where D(x, λ) is defined in Eq. (64).

Inserting Eqs. (67) and (68) with x = 0 into Eq. (60), yields

a1(λ)
D(0, λ)

[a2(λ)w(0) − b2(λ)w′(0)] +
b1(λ)

D(0, λ)
[q(0, λ)b2(λ)w(0) + a2(λ)w′(0)] = 0,

[a1(λ)a2(λ) + q(0, λ)b1(λ)b2(λ)]w(0) + [a2(λ)b1(λ) − a1(λ)b2(λ)]w′(0) = 0.

Thus, we prove the first one in Eq. (62) with a3(λ) and b3(λ) defined in Eq. (63).

Differentiating Eq. (66) with respect to x, and using Eq. (11) for u′′(x), Eq. (67) for u(x) and Eq. (68) for u′(x), we have

w′′(x) = [a2(λ)q(x, λ) + q′(x, λ)b2(λ)]
b2(λ)w′(x) − a2(λ)w(x)

D(x, λ)

−
q(x, λ)b2(λ)

D(x, λ)
[q(x, λ)b2(λ)w(x) + a2(λ)w′(x)]

=
q′(x, λ)b2

2(λ)
D(x, λ)

w′(x) −
1

D(x, λ)
[q(x, λ)a2

2(λ) + q′(x, λ)a2(λ)b2(λ) + q2(x, λ)b2
2(λ)]w(x)

=
q′(x, λ)b2

2(λ)
D(x, λ)

w′(x) − q(x, λ)w(x) −
q′(x, λ)a2(λ)b2(λ)

D(x, λ)
w(x). (69)

We prove Eq. (61) with F1(x, λ) and F2(x, λ) given in Eq. (64). 2

5.2 Boundary Shape Function Method

Eqs. (61) and (62) constitute a highly nonlinear generalized SLP for λ. To solve it, we can derive the following two linear
shape functions in terms of λ:

s1(x, λ) =
1 − x

a3(λ) − b3(λ)
, s2(x, λ) =

a3(λ)x − b3(λ)
a3(λ) − b3(λ)

. (70)

Let
G(x, λ) := s1(x, λ)[a3(λ)y(0) + b3(λ)y′(0)] + s2(x, λ)y(1). (71)

Theorem 5 For y(x) ∈ C2[0, 1], if the boundary shape function w(x) is given by

w(x) = y(x) −G(x, λ) = y(x) − s1(x, λ)[a3(λ)y(0) + b3(λ)y′(0)] − s2(x, λ)y(1), (72)

the boundary conditions in Eq. (62) hold for w(x).

Proof. From Eq. (72), it is obvious that

w(1) = y(1) − s1(1, λ)[a3(λ)y(0) + b3(λ)y′(0)] − s2(1, λ)y(1) = y(1) − y(1) = 0,

by using Eq. (70).

Inserting x = 0 into Eq. (72), differentiatingf Eq. (72) and inserting x = 0, we have

w(0) = y(0) − s1(0, λ)[a3(λ)y(0) + b3(λ)y′(0)] − s2(0, λ)y(1),
w′(0) = y′(0) − s′1(0, λ)[a3(λ)y(0) + b3(λ)y′(0)] − s′2(0, λ)y(1).

Obviously, by using Eq. (70) the following combination holds:

a3(λ)w(0) + b3(λ)w′(0) = a3(λ)y(0) + b3(λ)y′(0)
−[a3(λ)s1(0, λ) + b3(λ)s′1(0, λ)][a3(λ)y(0) + b3(λ)y′(0)]
−[a3(λ)s2(0, λ) + b3(λ)s′2(0, λ)]y(1)
= a3(λ)y(0) + b3(λ)y′(0) − [a3(λ)y(0) + b3(λ)y′(0)] = 0.

10
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We complete the proof. 2

It follows from Eqs. (61), (64) and (72) that

y′′(x) = G′′(x, λ) + F1(x, λ)[y′(x) −G′(x, λ)] + F2(x, λ)[y(x) −G(x, λ)]

= G′′(x, λ) +
q′(x, λ)b2

2(λ)
D(x, λ)

[y′(x) −G′(x, λ)]

−

[
q(x, λ) +

q′(x, λ)a2(λ)b2(λ)
D(x, λ)

]
[y(x) −G(x, λ)]. (73)

If we can solve y with the initial values y(0) and y′(0) being given, Theorem 5 guarantees that w(x) satisfies the boundary
conditions in Eq. (62). However, y(1) in G(x, λ) of Eq. (71) is unknown, whose exact value can be determined below.

5.3 A Definite Initial Value Problem

In view of Eqs. (61) and (62), if w(x) is a transformed eigenfunction, then γw(x), γ , 0 is also a transformed eigenfunction.
For the uniqueness of w(x) and then u(x) by Eq. (67), we can consider a normalization condition as follows:

w′(0) = A0, (74)

where A0 is a given nonzero constant.

Theorem 6 If Eq. (74) is imposed for the uniqueness of w(x), then the right-end value y(1) in Eq. (72) is given by

y(1) = y(0) + y′(0) − A0 +
b3(λ)A0

a3(λ)
. (75)

Proof. Differentiating Eq. (72) with respect to x and inserting x = 0, yields

w′(0) = y′(0) +
1

a3(λ) − b3(λ)
[a3(λ)y(0) + b3(λ)y′(0)] −

a3(λ)
a3(λ) − b3(λ)

y(1), (76)

which immediately leads to Eq. (75) by using w′(0) = A0 in Eq. (74). 2

Therefore, we come to a definite second-order ODE from Eqs. (73), (71) and (75) for the new variable y(x):

y′′(x) = F1(x, λ)[y′(x) −G′(x, λ)] + F2(x, λ)[y(x) −G(x, λ)], (77)

where

G(x, λ) := s1(x, λ)[a3(λ)y(0) + b3(λ)y′(0)] + s2(x, λ)
[
y(0) + y′(0) − A0 +

b3(λ)A0

a3(λ)

]
, (78)

and G′′(x, λ) = 0 was taken into account. Upon giving the initial values y(0) and y′(0) and fixing A0 = 1, Eq. (77) is a
definite initial value problem with only unknown eigenvalue λ involved.

We can integrate Eq. (77) to obtain y(1); hence, inserting x = 1 into Eq. (72), yields

w(1; λ) = −s1(1, λ)[a3(λ)y(0) + b3(λ)y′(0)] + [1 − s2(1, λ)]y(1), (79)

where y(1) is obtained from the integration of Eq. (77) with the given initial conditions y(0) and y′(0), which is no longer
the one in Eq. (75).

To match the right-end Dirichlet boundary condition in Eq. (62), we can derive

w(1; λ) = [1 − s2(1, λ)]y(1) − s1(1, λ)[a3(λ)y(0) + b3(λ)y′(0)] = 0, (80)

which is a numerically characteristic equation to determine λ. We can adjust the value of λ until w(1; λ) satisfies |w(1; λ)| <
ε2, by applying the HIM or LHL to solve Eq. (80) to determine the eigenvalue λ.

In the original generalized SLP in Eqs. (11) and (60) the initial value u(0) or u′(0) is missing and the target equation
a2(λ)u(1) + b2(λ)u′(1) = 0 is complicated to determine the eigenvalue. The present formulation in Eq. (77) overcomes
these difficulties with the initial values y(0) = 0 and y′(0) = 0 given and the target equation w(1; λ) = 0 in Eq. (80) is
simplified to determine the eigenvalue more effectively. The two unknown values of a missing u(0) or u′(0) and λ in
Eqs. (11) and (60) are reduced to one with λ being the only unknown in the current formulation. The solution of Eq. (80)
can be obtained via the HIM or the LHL.
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5.4 Example 5

From (Binding & Browne, 1997; Chanane, 2005), we consider

u′′(x) + λu(x) = 0, 0 < x < 1, (81)
u(0) + (λ − 4π2)u′(0) = 0, u(1) − λu′(1) = 0. (82)

In (Chanane, 2005; Liu, 2012) the characteristic equation is derived as

f (λ) = (1 + 4π2λ2 − λ3) sin
√
λ −
√
λ(2λ − 4π2) cos

√
λ = 0, (83)

which can be used to determine λ of Eqs. (81) and (82).

We fix ε2 = ε3 = 10−15 and N = 5000, and iteratively determine λ by applying the HIM to and LHL Eq. (80), and the
results are listed in Table 7 to show the computed λ, the exact λ, EE, N, NIa, NIb, and ERBC. For the first eigenvalue,
u(0) = 0.010557 and u′(0) = 3.54887 × 10−4 are obtained. For the second eigenvalue, u(0) = 1.2692117 × 10−4 and
u′(0) = −2.5752548 × 10−6 are obtained.

Table 7. For example 5 solved by the HIM and LHL to Eq. (80), listing the computed eigenvalues and other parameters

Computed λ Exact λ EE NIa NIb ERBC
9.73088657821 9.73088657821 5.68 × 10−14 44 7 2.95 × 10−15

88.7633162526 88.7633162526 1.86 × 10−11 41 5 1.5 × 10−16

5.5 Example 6

We consider (Chanane, 2005; Reutskiy, 2008, 2010):

u′′(x) + (λ − ex)u(x) = 0, 0 < x < 1, (84)
u(0) = 0, −

√
λ sin

√
λu(1) + cos

√
λu′(1) = 0. (85)

We fix ε2 = ε3 = 10−15 and N = 5000, and iteratively determine λ by applying the HIM and LHL to Eq. (80), and the
results are listed in Table 8 to show the computed λ, λ obtained from (Chanane, 2005), N, NIa, NIb, and ERBC.

Table 8. For Eqs. (84) and (85) solved by the HIM and LHL to Eq. (80), listing the computed eigenvalues and other
parameters

Computed λ λ in (Chanane, 2005) NIa NIb ERBC
0.929062028579 0.929062028570 49 32 2.44 × 10−15

6.74788117822 6.747881178 45 10 1.22 × 10−15

16.1245477259 16.12454773 46 7 7.22 × 10−16

31.2202765051 31.22027651 38 7 2.42 × 10−15

50.7339278392 50.73392784 43 7 2.43 × 10−15

5.6 Example 7

Consider (Chanane, 2005)

u′′(x) + λu(x) = 0, 0 < x < 1, (86)
u(0) − 2u′(0) = 0, (1 +

√
λ)u(1) + (1 − λ)u′(1) = 0, (87)

where the exact eigenvalues can be obtained from (Chanane, 2005) by

f (λ) = 2 cos
√
λ +

sin
√
λ

√
λ

+ (1 −
√
λ)(cos

√
λ − 2

√
λ sin

√
λ) = 0. (88)

In order to raise the accuracy, we fix ε2 = ε3 = 10−15 and ∆x = 1/5000, and iteratively determine λ by applying the HIM
and LHL to Eq. (80), and the results are listed in Table 9 to show the computed λ, the exact λ, EE, NIa, NIb, and ERBC.

Table 9. For Eqs. (86) and (87) solved by HIM and LHL, listing the computed eigenvalues and other parameters

12
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Computed λ Exact λ EE NIa NIb ERBC
9.938743414 9.938743414 2.84 × 10−14 43 11 2.43 × 10−15

40.09896973 40.09896973 1.59 × 10−12 40 9 1.5 × 10−19

89.58763453 89.58763453 1.95 × 10−11 42 8 2.13 × 10−15

6. Periodic Sturm-Liouville Problem

Here, we start from the periodic Sturm-Liouville problem (Andrew, 1989):

y′′(x) = q(x)y(x) − λy(x), 0 < x < `, (89)

and consider three types periodic boundary conditions:

case (a) : y(0) = y(`), y′(0) = y′(`), (90)
case (b) : y(0) = y(`), y′(0) = y′(`) = B0, (91)
case (c) : y(0) = y(`) = A0, y′(0) = y′(`) = B0. (92)

For case (a), A0 and B0 are not given, such that three unknown values λ, y(0) and y′(0) are to be determined. For case (b),
A0 is not given and B0 is given, two unknown values λ and y(0) to be determined. For case (c), A0 and B0 are given, one
unknown value λ to be determined. Obviously, the case (a) is more difficult than the cases (b) and (c).

Multiplying Eq. (89) by y(x) and using y′′(x)y(x) = [y′(x)y(x)]′ − y′(x)2, renders

λy2(x) = q(x)y2(x) + y′(x)2 − [y(x)y′(x)]′. (93)

Integrating Eq. (93) from x = 0 to x = ` and using the periodic conditions in Eq. (90), (91) or (92), so that y(`)y′(`) −
y(0)y′(0) = 0, and the eigenvalue is determined by

λ =

∫ `

0 [q(x)y2(x) + y′(x)2]dx∫ `

0 y2(x)dx
. (94)

To guarantee that the eigenfunction y(x) of Eq. (89) can automatically satisfy Eq. (90), we introduce the following shape
functions:

s1(x) = 1 −
x
`
, s1(0) − s1(`) = 1, s′1(0) − s′1(`) = 0, (95)

s2(x) =
x

2`
−

x2

2`2 , s2(0) − s2(`) = 0, s′2(0) − s′2(`) = 1. (96)

Theorem 7 For any function w(x) ∈ C1[0, `], the boundary shape function

y(x) = w(x) − s1(x)[w(0) − w(`)] − s2(x)[w′(0) − w′(`)] (97)

fulfills Eq. (90) for case (a) of the periodic Sturm-Liouville problem.

Proof. We first prove y(0) = y(`). It follows from Eq. (97) that

y(0) = w(0) − s1(0)[w(0) − w(`)] − s2(0)[w′(0) − w′(`)],
y(`) = w(`) − s1(`)[w(0) − w(`)] − s2(`)[w′(0) − w′(`)].

Subtracting the first equation by the second equation, leads to

y(0) − y(`) = w(0) − w(`) − [s1(0) − s1(`)][w(0) − w(`)] − [s2(0) − s2(`)][w′(0) − w′(`)],

using Eqs. (95) and (96), which becomes

y(0) − y(`) = w(0) − w(`) − [w(0) − w(`)] = 0.

Thus, we prove the first one in Eq. (90). Similarly, taking the differential of Eq. (97) with respect to x and inserting x = 0
and x = `, we have

y′(0) = w′(0) − s′1(0)[w(0) − w(`)] − s′2(0)[w′(0) − w′(`)],
y′(`) = w′(`) − s′1(`)[w(0) − w(`)] − s′2(`)[w′(0) − w′(`)].
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Subtracting the first equation by the second equation, generates

y′(0) − y′(`) = w′(0) − w′(`) − [s′1(0) − s′1(`)][w(0) − w(`)] − [s′2(0) − s′2(`)][w′(0) − w′(`)],

which by Eqs. (95) and (96) becomes

y′(0) − y′(`) = w′(0) − w′(`) − [w′(0) − w′(`)] = 0.

Thus, the second one in Eq. (90) is proved. 2

Eqs. (89) and (91) in terms of y1(x) = y(x) and y2(x) = y′(x) are written as

y′1(x) = y2(x), y′2(x) = q(x)y1(x) − λy1(x), (98)
y1(0) = y1(`), y2(0) = y2(`) = B0. (99)

Theorem 8 For any functions z1(x), z2(x) ∈ C1[0, `], we set the boundary shape functions to be

y1(x) = z1(x) −
(
s0 −

x
`

)
[z1(0) − z1(`)], (100)

y2(x) = z2(x) −
(
s0 −

x
`

)
[z2(0) − z2(`)], (101)

where s0 , 0. If

z2(`) =
B0 + (s0 − 1)z2(0)

s0
, (102)

then y1(x) and y2(x) satisfy Eq. (99) for case (b) of the periodic Sturm-Liouville problem.

Proof. Inserting x = 0 and x = ` into Eqs. (100) and (101), leads to

y1(0) = z1(0) − s0[z1(0) − z1(`)], y2(0) = z2(0) − s0[z2(0) − z2(`)],
y1(`) = z1(`) − (s0 − 1)[z1(0) − z1(`)], y2(`) = z2(`) − (s0 − 1)[z2(0) − z2(`)].

Subtracting equations at the first row by those at the second row, yields

y1(0) − y1(`) = z1(0) − z1(`) − (s0 − s0 + 1)[z1(0) − z1(`)]
= z1(0) − z1(`) − [z1(0) − z1(`)] = 0,
y2(0) − y2(`) = z2(0) − z2(`) − (s0 − s0 + 1)[z2(0) − z2(`)]
= z2(0) − z2(`) − [z2(0) − z2(`)] = 0.

Inserting x = 0 into Eq. (101) and using Eq. (102), yields

y2(0) = z2(0) − s0[z2(0) − z2(`)] = z2(0)(1 − s0) + s0z2(`)

= z2(0)(1 − s0) + s0
B0 + (s0 − 1)z2(0)

s0
= B0.

Thus, we complete the proof that y1(x) and y2(x) in Eqs. (100) and (101) satisfy Eq. (99), if Eq. (102) holds. 2

In terms of y1 = y and y2 = y′, Eq. (92) is recast to

y1(0) = y1(`) = A0, y2(0) = y2(`) = B0. (103)

Theorem 9 In Eqs. (100) and (101), if z1(`) and z2(`) are given by

z1(`) =
A0 + (s0 − 1)z1(0)

s0
, (104)

z2(`) =
B0 + (s0 − 1)z2(0)

s0
, (105)

for s0 , 0, then y1(x) and y2(x) satisfy Eq. (103) for case (c) of the periodic Sturm-Liouville problem.
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Proof. The proofs of y1(0) = y1(`) and y2(0) = y2(`) are the same to that in Theorem 7. Inserting x = 0 into Eq. (100) and
using Eq. (104), leads to

y1(0) = z1(0) − s0[z1(0) − z1(`)] = z1(0)(1 − s0) + s0z1(`)

= z1(0)(1 − s0) + s0
A0 + (s0 − 1)z1(0)

s0
= A0.

Similarly, inserting x = 0 into Eq. (101) and using Eq. (105), leads to

y2(0) = z2(0) − s0[z2(0) − z2(`)] = z2(0)(1 − s0) + s0z2(`)

= z2(0)(1 − s0) + s0
B0 + (s0 − 1)z2(0)

s0
= B0.

Thus, we complete the proof that y1(x) and y2(x) in Eqs. (100) and (101) satisfy Eq. (103), if Eqs. (104) and (105) hold. 2

7. Iterative Algorithms

Based on the boundary shape functions in Theorems 7-9, we can develop iterative algorithms to determine the eigenvalue
and eigenfunction of Eqs. (89)-(92), namely the boundary shape function methods.

7.1 First Iterative Algorithm for Case (a)

By Theorem 7, y(x) automatically satisfies the periodic boundary conditions in Eq. (90) for case (a), if we can solve w(x),
which suggests the following transformation of variables from y(x) to w(x):

w(x) = y(x) + G(x), (106)

where
G(x) = s1(x)[w(0) − w(`)] + s2(x)[w′(0) − w′(`)]. (107)

Let

w3(x) :=
∫ x

0
[q(ξ)y2(ξ) + y′(ξ)2]dξ

=

∫ x

0
{q(ξ)[w(ξ) −G(ξ)]2 + [w′(ξ) −G′(ξ)]2}dξ, (108)

w4(x) :=
∫ x

0
y2(ξ)dξ =

∫ x

0
[w(ξ) −G(ξ)]2dξ, (109)

where Eq. (106) was used. Then, the eigenvalue λ in Eq. (94) can be computed by

λ =
w3(`)
w4(`)

. (110)

In terms of w1(x) = w(x), w2(x) = w′(x) and from Eqs. (89), (106), (108) and (109), we have

w′1(x) = w2(x), w′2(x) = G′′(x) + [q(x) − λ][w1(x) −G(x)],
w′3(x) = q(x)[w1(x) −G(x)]2 + [w2(x) −G′(x)]2, w3(0) = 0,
w′4(x) = [w1(x) −G(x)]2, w4(0) = 0, (111)

which are initial value problems for wk, k = 1, . . . , 4 by giving the initial values w1(0) and w2(0). The initial values
w3(0) = 0 and w4(0) = 0 are the direct results of Eqs. (108) and (109) after inserting x = 0.

The above w(`) denoted by c and w′(`) by d in the function G(x) of Eq. (107) are unknown constants. According to
Theorem 7, the first iterative algorithm for Eqs. (89) and (90) for case (a) is summarized as follows. (i) Give `, w1(0),
w2(0), the initial guesses of λ(0), c0, d0, the convergence criterion ε1, and N in ∆x = `/N. (ii) For k = 0, 1, 2, . . ., integrate
Eq. (111) with N steps from x = 0 to x = `, and take

ck+1 = w1(`), dk+1 = w2(`), λ(k) =
w3(`)
w4(`)

,

until ck+1, dk+1 and λ(k + 1) abide√
(ck+1 − ck)2 + (dk+1 − dk)2 + [λ(k + 1) − λ(k)]2 < ε1.
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To accelerate the convergence, we can relax the convergence criterion to |λ(k + 1)−λ(k)| < ε1 and using the initial guesses
c0 = u0 and d0 = 2u0 + 2`v0 + (1 − 2`)w′(0) − 2w(0) which are derived from Eqs. (106), (107), (95) and (96), where u0
and v0 are initial guesses of y(0) and y′(0). When λ is available, we can determine y(x) and y′(x) by integrating Eq. (89)
using the initial conditions y(0) = w(0) −G(0) and y′(0) = w′(0) −G′(0).

7.2 Second Iterative Algorithm for Case (b)

Based on Theorem 8, the second iterative algorithm for Eqs. (89) and (91) of case (b) is coined as follows. (i) Give `, B0,
s0, z1(0), z2(0), the initial guesses of λ(0) and c0, ε2, N, and compute z2(`) by Eq. (102). (ii) For k = 0, 1, 2, . . ., integrate

z′1(x) = −
1
`

[z1(0) − z1(`)] + z2(x) −
(
s0 −

x
`

)
[z2(0) − z2(`)],

z′2(x) = −
1
`

[z2(0) − z2(`)] + [q(x) − λ]
[
z1(x) −

(
s0 −

x
`

)
[z1(0) − z1(`)]

]
,

z′3(x) = q(x)
[
z1(x) −

(
s0 −

x
`

)
[z1(0) − z1(`)]

]2

+

[
z2(x) −

(
s0 −

x
`

)
[z2(0) − z2(`)]

]2
, z3(0) = 0,

z′4(x) =

[
z1(x) −

(
s0 −

x
`

)
[z1(0) − z1(`)]

]2
, z4(0) = 0, (112)

and take

ck+1 = z1(`), λ(k) =
z3(`)
z4(`)

.

If ck+1 and λ(k + 1) converge with √
(ck+1 − ck)2 + [λ(k + 1) − λ(k)]2 < ε2,

then stop; otherwise, go to step (ii). We can determine y(x) and y′(x) by integrating Eq. (89) using y(0) = (1 − s0)z1(0) +

s0z1(`) and y′(0) = (1 − s0)z2(0) + s0z2(`) as the initial conditions.

7.3 Third Iterative Algorithm for Case (c)

Based on Theorem 9, the third iterative algorithm for Eqs. (89) and (92) of case (c) is depicted as follows. (i) Give `,
A0, B0, s0, w1(0), w2(0), the initial guess of λ(0), ε3, N and compute z1(`) and z2(`) from Eqs. (104) and (105). (ii) For
k = 0, 1, 2, . . ., integrate Eq. (112) and take λ(k) = z3(`)/z4(`). If λ(k + 1) converges to satisfy |λ(k + 1) − λ(k)| < ε3, then
stop; otherwise, go to step (ii).

7.4 Numerical Results

We first consider Mathieu’s equation with q(x) = 2 cos 2x and ` = 2π (Liu, 2020). The first eigenvalues obtained by the
three iterative algorithms are close to that tabulated in (Abramowitz, 1972). In the first iterative algorithm, with w(0) = 1,
w′(0) = 0, u0 = 1, v0 = 0, ε1 = 10−8, and N = 500, we iteratively determine λ with different λ(0), whose results as
listed in Table 10 are n, λn, NI, y(0), y′(0), the absolute error of first boundary condition (EFBC) for y(0) = y(`), and the
absolute error of second boundary condition (ESBC) for y′(0) = y′(`).

Table 10. For q = 2 cos 2x and ` = 2π, the eigenvalues computed by the first iterative algorithm

n λn NI y(0) y′(0) EFBC ESBC
1 1.859108093 15 0.99957 6.91 × 10−5 2.05 × 10−4 7.10 × 10−8

2 4.371301085 26 1.00368 −5.85 × 10−4 2.60 × 10−4 1.82 × 10−7

3 9.078369555 6 1.06139 −9.78 × 10−3 1.21 × 10−4 1.14 × 10−6

In the second iterative algorithm, we fix B0 = 0, w(0) = 1, w′(0) = 0, s0 = 0.5, ε2 = 10−8, N = 500, whose results are
listed in Table 11 to show n, λn, y(0), NI, EFBC and ESBC.

Table 11. For q = 2 cos 2x and ` = 2π, the eigenvalues computed by the second iterative algorithm

n λn NI y(0) EFBC ESBC
1 1.859108082 7 0.16471 2.39 × 10−7 8.17 × 10−8

2 4.371301025 4 0.51282 5.61 × 10−7 1.38 × 10−6

3 9.078369170 6 0.36703 1.40 × 10−7 9.67 × 10−6
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In the third iterative algorithm, we fix A0 = 0.5, B0 = 0, w(0) = w′(0) = 0, s0 = 0.5, ε3 = 10−10, N = 500, whose results
are listed in Table 12 to show n, λn, NI, EFBC and ESBC.

Table 12. For q = 2 cos 2x and ` = 2π, the eigenvalues computed by the third iterative algorithm

n λn NI EFBC ESBC
1 1.859108081 8 1.5 × 10−8 1.0 × 10−8

2 4.371301019 5 1.51 × 10−9 3.23 × 10−9

3 9.078369170 3 5.56 × 10−9 4.98 × 10−9

Next, we consider a non-symmetric potential q(x) = x2(π − x) and ` = π, which has been calculated in (Andrew, 1989)
using the correction of finite difference method. We apply the iterative algorithms with the same parameters as those in
the above to determine the eigenvalues, which are tabulated in Table 13 with the NIs for the third iterative algorithm.

Table 13. For q = x2(π − x) and ` = π, the eigenvalues computed by the three iterative algorithms

n 1 2 3 4 5 6
λn in (Andrew, 1989) × 6.5005 18.5848 38.5816 66.5821 102.5825
λn (1st) 3.447673269 6.500490560 18.58499500 38.58176373 66.58211038 102.5825800
λn (2nd) 3.448524148 6.500490559 18.58499502 38.58176416 66.58211373 102.5825801
λn (3rd) 3.448524148 6.550874477 18.58499502 38.58176416 66.58211373 102.5825801
NI 5 6 4 4 4 4

As shown in Tables 10-13, the high efficiency and accuracy of the proposed iterative algorithms can be appreciated.
In Table 10, the NIs are larger than that in Tables 11-13, because case (a) is a more difficult periodic Sturm-Liouville
problem than that of cases (b) and (c). Although we have relaxed the convergence criterion in the first iterative algorithm,
the accuracy for the preservation of periodic boundary conditions is acceptable in the order 10−4. The success of the
proposed iterative algorithms is attributed to the good properties of the boundary shape functions in Theorems 7-9.

8. Conclusions

A new result is transformed the Sturm-Liouville problem with mixed boundary conditions into a generalized Sturm-
Liouville eigenvalue problem with the Dirichlet boundary conditions happened on two sides, which greatly enhanced the
convergence speed of the iterative algorithm to determine the eigenvalues. Combining to the fictitious time integration
method (FTIM), an iterative algorithm was presented by transforming the problem to an initial value problem for the
new variable. The eigenvalue and a terminal value of the new variable are determined iteratively by using the FTIM,
from which the iterative sequence of eigenvalues are monotonically converged to its limit point to approximate the true
eigenvalue when the relative residual reduced to zero. We proposed a normalization condition for the transformed variable
and derived the terminal value of the new variable explicitly, such that we can obtain a definite initial value problem for the
new variable. In order to precisely meet the right-end Dirichlet boundary condition, a numerically characteristic equation
was provided which was solved by the half-interval method (HIM) and a derivative-free iterative method LHL to obtain the
eigenvalues with high precision. For the generalized Sturm-Liouville problem it needs to solve two unknowns: a missing
initial value and the eigenvalue. The new formulation presented in the paper overcame this difficulty by transforming the
generalized Sturm-Liouville problem to a definite initial value problem with the initial values given, and the Dirichlet
boundary condition on the right-end acting as a target equation. Then, the uniqueness condition of the eigenfunction is an
extra requirement to ascertain y(1) in Eq. (75), such that only the eigenvalues are unknown to be determined. The sequence
of iterative eigenvalues generated from the numerically characteristic equation converged very fast to the true eigenvalues
by using the HIM and LHL. For the periodic Sturm-Liouville problems, we considered three types periodic boundary
conditions and utilized the boundary shape functions methods to transform them into initial value problems involved
unknown terminal values of the new variables. Three iterative algorithms were developed to compute the eigenvalues,
whose high efficiency and accuracy can be appreciated.

In the whole paper the boundary shape function methods and the initial value problem methods are developed to simplify
the three types Sturm-Liouville problems, involving only unknown eigenvalues to be determined. The Dirichlet type target
equations are solved by the HIM and LHL. Both methods are effectively to determine the eigenvalues; however, we found
that the LHL is convergent faster than the HIM. Many numerical examples assured the high-performance of the proposed
iterative algorithms through a few iterations and with high accuracy of the obtained eigenvalues and eigenfunctions to
preserve the mixed boundary conditions or periodic boundary conditions.
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Overall, the relative errors of the eigenvalues obtained by the HIM and LHL are located between 10−13 and 10−15 as shown
in Tables 3-9, which are more accurate than that presented in the literature. Owing to the high-accuracy of the proposed
methods, they might be applied to solve more difficult nonlinear Sturm-Liouville problems and inverse Sturm-Liouville
problems in the future.
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