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Abstract

The concept of symplectic structure emerged between 1808 to 1810 through the works of Lagrange and Poisson on the
trajectory of the planets of the solar system. In order to explain the variation of the orbital parameters, they introduced
the symplectic structure associated to the manifold describing the states of the system and a fundamental operation on
functions called Poisson’s bracket. But, the latter also comes from the Hamiltonian formalism which does not automat-
ically lead to a Poisson structure. Although contrary to the Riemannian case, not every manifold necessarily admits a
symplectic structure including even dimensional manifolds. The aim of this paper is to show the interaction between the
Kostant-Kirillov symplectic structure and quasi-Poisson structures coming from the Euler-Arnold systems. The Lie alge-
bra theoretical approach based on the Kostant-Kirillov coadjoint action will allow us to obtain a class of the quasi-Poisson
structures resulting from the characterization of the Hamiltonian system and to prove some results on the Kostant-Kirillov
symplectic structure in the quasi-Poisson context.

Keywords: Symplectic structure, quasi-Poisson structures, Jacobiator, Euler-Arnold equation, Killing form, Kostant-
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1. Introduction

Introduced by Alekseev and Yvette Kosmann-Schwarzbach (Alekseev & al., 2000), the the quasi-Poisson structures ap-
peared as a finite-dimensional alternative to infinite-dimensional constructions of Poisson structures on moduli spaces.
These constructions have been proposed particularly in (Goldman , 1986), (Jeffrey & al., 1992) and (Huebschmann,
1995). However, examples of quasi-Poisson structures appear in the study of the equations motion in mechanics (see
(Euler, 1765), (kowalewski, 1889) and (Appel’rot, 1894)). According to (Arnold, 1966), the Euler equations for a perfect
fluid is related to the geodesic equations of a Lie group with an invariant metric. This is referred as the generalised Euler
equations known as the Euler-Arnold equations. The Euler-Arnold systems thus govern the Hamiltonian dynamics on Lie
groups. The prototype being the equation of motion of a rotating solid formulated by Euler in 1765 (Euler, 1765). The
generalisation of this formalism to infinite dimension (groups of diffeomorphisms) was introduced in 1966 by Arnold. He
showed that the equation of motion of perfect fluids can be reformulated as a geodesic flow over the group of diffeomor-
phisms. The general theory of Lie groups requires some properties of differentiable manifold. In this paper, we will focus
on a rotation group in which the elements are orthogonal matrices with determinant 1. In the case of three-dimensional
space, the rotation group is known as the special orthogonal group often denoted SO(3). The latter is used to describe the
possible rotational symmetries of an object, as well as the possible orientations of an object in space and its representations
are important in physics, where they give rise to the elementary particles of integer spin ( i.e. an intrinsic form of angular
momentum carried by elementary particles). A Lie group is a group that is also a differentiable manifold. Named after
Norwegian mathematician Sophus Lie (1842-1899), who laid the foundations of the theory of continuous transformation
groups, Lie groups play an enormous role in modern geometry, on several different levels. It is natural to associate any
Lie group G to Lie algebra. There are two equivalent ways of introducing this Lie algebra. First is to introduce a space
of vector fields on G, the other is to provide the tangent space at the neutral element with a Lie bracket, derived from the
local expression of the internal operation of G. In the following, G denoted subgroup of SO(3) and the corresponding Lie
algebra is g = T1G consists of skew-symmeric 3 × 3 matrices where 1 is the neutral element of G and T1G is the tangent
space at 1. Example of basis of g is given by

ex =

0 0 0
0 0 −1
0 1 0

 , ey =

 0 0 1
0 0 0
−1 0 0

 , ez =

0 −1 0
1 0 0
0 0 0

 . (1)

56



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 3; 2022

We can explicitly describe the subgroup G. Namely, the exponential map exp permits to define the rotation around x-axis

by the angle θ. We call it gθ = exp(θex) :=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

. Similarly, ey, ez generate rotations around y, z axes.

Now, we introduce the commutator of two elements of g defined by

[−,−] : g × g −→ g, (X,Y) 7−→ [X,Y] = XY − YX. (2)

Note that g has a canonical structure of a Lie algebra with this commutator and we have

[ex, ey] = ez, [ex, ez] = −ey and [ey, ez] = ex.

Let I = {x, y, z} be an index set and let X =
∑
i∈I

jiei be an element of g. Let’s consider the following map :

C3 × g −→ g, (Λ, X) 7−→ ΛX =
∑
i∈I

Λi jiei, Λ = (Λi)i∈I . (3)

We call the Euler-Arnold system the differential equation :

Ẋ = [X,ΛX], X ∈ g (4)

where [−,−] is the commutator defined by (2). From the characterization of the Hamiltonian field of (4), there exists an
antisymmetric matrix JX and a differentiable function H (called Hamiltonian) such that

Ẋ = JX
∂H
∂X

.

According to (Weinstein, 1983), there exists a bivector field πJX associate to JX . However, πJX is not always a Poisson
bivector field. The Jacobi identity is obviously not satisfied. We will call it ”quasi-Poisson structures of the Euler-Arnold
systems”. The question arises is : can we construct a symplectic structure on G?

Note that a symplectic structure or symplectic form on G is defined to be a differential 2-form ω on G that is closed and
is non-degenerate. According to (Kirillov, 1976), the dual space g∗ of the corresponding Lie algebra g plays an important
role in the the Kirillov-Kostant bracket which is always degenerate at the origin in g∗. In this paper, we will establish
the symplectic structure coincide with orbits of the coadjoint action of g∗, by extending the results contained in (Lesfari,
2009). We show that the Kostant-Kirillov symplectic structure is given by

ω f (τ1, τ2) = 〈 f , j ∧ k〉,

with j, k ∈ C3 where τ1 = f ∧ j, τ2 = f ∧ k and ∧ is the usual vector product.
Some properties on the Kostant-Kirillov symplectic structure of G and quasi-Poisson structures of the Euler-Arnold sys-
tems are are described in section 2. the interaction between the Kostant-Kirillov symplectic structure and quasi-Poisson
structures coming from the Euler-Arnold systems is detailed in the section 3 of this article.

2. Some Properties on the Kostant-Kirillov Symplectic Structure of the Lie Group G and Quasi-Poisson Structures
of the Euler-Arnold Systems

In this section, we describe the Lie algebra theoretical approach based on the Kostant-Kirillov coadjoint action and we
present a useful result on the Kostant-Kirillov symplectic structure in the quasi-Poisson context.

Let’s consider gθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 be an element of G, X belongs to g and t be a real number. We have :

gθexp(tX)g−1
θ = exp(tgθXg−1

θ ).

Therefore, gθXg−1
θ in an element of g and considering the following automorphism

Ad(g) : g −→ g, X 7−→ Ad(g)X = gθXg−1
θ ,

we have
Ad(g)[X,Y] = [Ad(g)X, Ad(g)Y] (X,Y ∈ g).

Since (g, [−,−]) is a Lie algebra, we have the following proprietes :
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(i) [X,Y] = −[Y, X],

(ii) [[X,Y],Z] + [[Y,Z], X] + [[Z, X],Y] = 0 (Identity of Jacobi).

Considering the above basis (ex, ey, ez) of g, the bracket [−,−] can be written as

[ei, e j] =
∑
k∈I

jki jek

Properties (i) and (ii) implies that

Proposition 2.1.

jki j + jkji = 0,∑
l∈I

( jli j jmlk + jljk jmli + jlki jml j) = 0.

Let X ∈ g, We call Aut(g) the group of automorphisms of g and adX the endomorphism of g defined by

ad(X).Y = [X,Y].

The Jacobi identity shows that ad(X) is a derivation and the space Der(g) of derivations of g is a Lie algebra for the
commutator defined by (2). The application ad : g −→ Der(g) is a homomorphism of Lie algebras,

ad[X,Y] = [ad(X), ad(Y)].

The application ad : g −→ Der(g) ⊂ End(g) is a representation of the Lie algebra g called the adjoint representation.
For X,Y in g, let’s consider

〈·, ·〉 : (X,Y) 7−→ 〈X,Y〉 = Tr(ad(X)ad(Y)). (5)

It’s a symmetric bilinear form on g which is associative,

〈[X,Y],Z〉 = 〈X, [Y,Z]〉,

i.e. the ad(X) transformation is skew-symmetric with 〈·, ·〉.

Definition 2.1. The bilinear form 〈·, ·〉 associated to the adjoint representation ad is called the Killing form.

To illustrate, let us take a few examples.
- In the set M(n,R) of n × n matrices with elements in R, the Killing form is defined as

〈X,Y〉 = 2nTr(XY) − 2Tr(X)Tr(Y).

- In so(n), for n ≥ 2, 〈X,Y〉 = (n − 2)Tr(XY). We can deduce that

〈X,Y〉 = Tr(XY) f or all X,Y in g.

Let’s consider the Killing form of g. From the following identity

ad(Ad(g)X) = Ad(g)ad(X)Ad(g−1) (g ∈ G, X ∈ g),

it follows that
〈(Ad(g)X, Ad(g)Y〉 = 〈X,Y〉, (X,Y ∈ g),

i.e. Ad(g) belongs to the orthogonal group of the Killing form. As a result

| det(Ad(g))| = 1.

Let g∗ the dual space of the Lie algebra g. The coadjoint representation of a Lie group is the dual of the adjoint represen-
tation. The corresponding action of G on g∗ is called the coadjoint action. The orbits of that action are called coadjoint
orbits, which are especially important in the orbit method of representation theory or, more generally, geometric quantiza-
tion. An important class of symplectic stuctures consists of the coadjoints orbits by the coadjoint action (Kirillov, 1976).
In the Kirillov method of orbits, representations of G are constructed geometrically starting from the coadjoint orbits.
Specifically,
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Definition 2.2. The coadjoint representation Ad∗ of G is the dual representation of the adjoint representation Ad, and is
given by

Ad∗(g) := Ad(g−1)T

where g ∈ G and (g−1)T denotes the transpose of g−1. The representation space of Ad∗ is g∗, the dual of the Lie algebra g.

In terms of Ad, we consider the following description of Ad∗,

〈Ad∗(g) f , X〉 = 〈 f , Ad(g−1)X〉, with 〈 f , X〉 := f (X), f ∈ g∗, g ∈ G, X ∈ g.

In this paper, the description of the coadjoint representation simplifies to

f 7−→ Ad(g−1)X f

where X f is defined by
f (Y) = 〈X f ,Y〉, f or all Y ∈ g.

According to (Lu & al., 1990), the Killing form 〈, 〉 is non-degenerate and we can identify the dual space g∗ with g via the
map f 7−→ X f . Now, we will use the notation

g · f := Ad∗(g) f g ∈ G, f ∈ g∗.

Definition 2.3. Let f ∈ g∗. The coadjoint orbit O f of f is defined by

O f = {Ad(g)X f : g ∈ G}.

Lemma 2.1. (Kirillov,1976) Let g f be the Lie algebra of the stabilizing group G f = {g ∈ G : g · f = f }. The tangent
space of the coadjoint orbit at f is

T f (O f ) � g/g f .

Theorem 2.1. Let f ∈ g∗ and let O f be the coadjoint orbit at f . Consider the application

ω f : g × g −→ T f (O f ), (X,Y) 7−→ ω f (X,Y) := f ([X,Y]). (6)

Then ω f is a skew-symmetric bilinear form.

Proof. According to the Lemma 2.1, we can consider elements of T f (O f ) as elements on the form X + Z for some Z ∈ g f .
Giving that f ([X + Z,Y]) = f ([X,Y]) + f ([Z,Y]). We have : [Z,Y] = 0 for all Z ∈ g f and Y in g. We prove that ω f is
well-defined and it is obviously skew-symmetric and bilinear given that the Lie bracket is also.
The form ω f defined by (6) is called Kostant-Kirillov structure. Now, let’s show that the coadjoint orbits are symplectic
structures in G. Recall that, giving a symplectic structure (or symplectic form) on G is to define a closed non-degenerate
differential 2-form.

Theorem 2.2. Let f ∈ g∗. The Konstant-Kirillov form ω f is a symplectic structure on T f (O f ) .

Proof. According to the Theorem 2.1, ω f is a well-defined 2-form. The Lie algebra g has trivial center and thus ω f is
non-degenerate. It remains to be shown that ω f is closed. Let d(Ad∗) be the differential of Ad∗ defined by d(Ad∗) := ad∗.
This means that, the representation of g on g∗ corresponding to Ad∗. Let ξ ∈ T f (O f ) be the vector field. ξ is represented
by ad∗(X) f for X in g. Considering the value of f at X by 〈 f , X〉, we have

X f (Y) = 〈ad∗(X) f ,Y〉.

Since,
〈 f ,−adXY〉 = 〈ad∗(X) f ,Y〉

and
〈 f ,−adXY〉 = f ([X,Y]),

we have,
X f (Y) = f ([X,Y]).
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Before calculating the exterior derivative of ω f , we need to recall the expression for the exterior derivative of an n-form
ω which can be written explicitly as (Gengoux & al.,2013) :

dω(X0, . . . , Xn) =

n∑
i=0

(−1)iXiω
(
X0, . . . , Xi−1, Xi+1, . . . , Xn

)
+

∑
0≤i< j≤n

(−1)i+ jω
(
[Xi, X j], X0, . . . , Xi−1, Xi+1, . . . , X j−1, X j+1, . . . , Xn

)
.

for all X0, . . . , Xn ∈ g, n ∈ N. In particular, for X,Y,Z in ∈ g, we have the formula for the exterior derivative of a 2-form :

dω(X,Y,Z) = Xω(Y,Z) − Yω(X,Z) + Zω(X,Y) − ω([X,Y],Z) + ω([X,Z],Y) − ω([Y,Z], X). (7)

Applying the formula (7), we have :

dω f (X,Y,Z) = Xω f (Y,Z) − Yω f (X,Z) + Zω f (X,Y) − ω f ([X,Y],Z) + ω f ([X,Z],Y) − ω f ([Y,Z], X). (8)

From (8), we obtain

dω f (X,Y,Z) = X f ([Y,Z]) − Y f ([X,Z]) + Z f ([X,Y]) − f ([[X,Y],Z]) + f ([[X,Z],Y]) − f ([[Y,Z], X]). (9)

the equality in (9) is equivalent to :

dω f (X,Y,Z) = f ([[Y,Z], X]) − f ([[X,Z],Y]) + f ([[X,Y],Z]) − f ([[X,Y],Z]) + f ([[X,Z],Y]) − f ([[Y,Z], X]). (10)

Consequently, dω f (X,Y,Z) = 0. Thus, ω f is closed. This concludes that ω f is a symplectic structure on T f (O f ).

Note that, the symplectic Kostant-Kirillov structure ω f is written (Berndt, 2007) as

ω f ( f̃ )(ξX( f̃ ), ξX( f̃ )) = f̃ ([X,Y]), f or X,Y ∈ g, f̃ ∈ O f where (ξXg)( f̃ ) :=
d
dt

(g(Ad∗(exp(tX)) f̃ )). (11)

Another natural way to define a symplectic structure is to consider the cotangent bundle T ∗(O f ). Let’s consider the
following map

$ : T ∗f (O f ) −→ T f (O f ), ωεf 7−→ ε where ωεf (η) = ω f (η, ε), f or all η in T f (O f ). (12)

Lemma 2.2. The map $ defined by (12) is an isomorphism generated by the symplectic structure ω f .

Proof. Let $−1 : T f (O f ) −→ T ∗f (O f ) be the inverse map of $. For all η ∈ T f (O f ), we have $−1(ε)(η) = ω f (η, ε). Since,
ω f is bilinear, we have

$−1(ε + ε′)(η) = $−1(ε + ε′)(η) +$−1(ε + ε′)(η), f or all η ∈ T f (O f ).

Since, ω f is a symplectic form, it follows that ω f is non-degenerate. The non-degeneracy condition means that
ω f (η, ε) = 0,∀η ∈ T f (O f ) implies that η = 0. It follows that Ker($−1) = {0}. Hence $−1 is injective. Furthermore $−1 is
an isomorphism because dimT f (O f ) = dimT ∗f (O f ). It suffices to conclude that, $ is an isomorphism.

According to (Lesfari, 2009), any symplectic structure induces a Hamiltonian vector field associated to a differentiable
function H (called Hamiltonian) expressed in terms of a differential system. Let’s consider the local coordinate system
(x, y, z), the differential system can be expressed as follows :

Ẋ =
∂H
∂x

$(dx) +
∂H
∂y

$(dx) +
∂H
∂z
$(dx). (13)

We have :

$−1 =


ω f ( ∂

∂x ,
∂
∂x ) ω f ( ∂

∂x ,
∂
∂y ) ω f ( ∂

∂x ,
∂
∂z )

ω f ( ∂
∂y ,

∂
∂x ) ω f ( ∂

∂y ,
∂
∂y ) ω f ( ∂

∂y ,
∂
∂z )

ω f ( ∂∂z ,
∂
∂x ) ω f ( ∂∂z ,

∂
∂y ) ω f ( ∂∂z ,

∂
∂z )

 .
Let ai j (i, j = 1, 2, 3) be the components of the matrix $ such that we have $(dx) = a11

∂
∂x + a21

∂
∂y + a31

∂
∂z ,

$(dy) = a12
∂
∂x + a22

∂
∂y + a32

∂
∂z and $(dz) = a13

∂
∂x + a23

∂
∂y + a33

∂
∂z .

Since $ is skew-symmetric, we have :

Ẋ = (−a12
∂

∂y
+ a13

∂

∂z
)
∂H
∂x

+ (a12
∂

∂x
+ a23

∂

∂y
)
∂H
∂y

+ (−a13
∂

∂x
− a23

∂

∂y
)
∂H
∂z
,
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It follows that

Ẋ = (
∂

∂x
,
∂

∂y
,
∂

∂z
)JX

∂H
∂X

where JX =

 0 −a12 a13
a12 0 a23
−a13 −a23 0

 , (14)

which can be written in more compact form Ẋ = JX
∂H
∂X . This is a complete characterization of hamiltonian vector field.

The associated matrix JX belongs to g and determine a symplectic structure. Note that JX ∈ g is not necessarily a Poisson
bivector. The vector field corresponding to JX expressed in a coordinate system (x, y, z) is defined by

πJX =
∑
i< j

πi j∂i ∧ ∂ j

where
πi j := {xi, x j} = πJX (dxi, dx j), ∂1 =

∂

∂x
, ∂2 =

∂

∂y
and ∂3 =

∂

∂z
f or all i, j = 1, 2, 3.

The bracket of two functions F and G being given by (Weinstein,1983)

{F,G} = πJX (dF, dG)

Either, locally {F,G} =
∑
i< j
πi j(∂iF∂ jG − ∂iG∂ jF). In this paper, π12 = −2a12, π13 = 2a13 and π23 = 2a23 i.e.

πJX = −2a12∂1 ∧ ∂2 + 2a13∂1 ∧ ∂3 + 2a23∂2 ∧ ∂3. (15)

In the following, the notation J(πJX ) will refer to the Jacobiator associated to πJX and will correspond to the value of

{{F,G},H} + {{F,G},H} + {{F,G},H}, f or all F,G,H in C[x, y, z].

Definition 2.4. The Jacobiator of πJX is defined by

J(πJX ) = 4a12∂1(a13) − 4a13∂1(a12) + 4a12∂2(a23) − 4a23∂2(a12) + 4a23∂3(a13) − 4a13∂3(a23). (16)

Let’s consider the partial differential equation

w∂1v − v∂1w + w∂2u − u∂2w + u∂3v − v∂3u = 0 (17)

where u, v,w are the unknown functions.
There exists at least one solution. Indeed, (x, y, z) satisfies the equation (17).
πJX is called Poisson bivector field if and only if (a23, a13, a12) is a solution of the partial differential equation (17).
Otherwise, it will be called Poisson quasi-bivector field. As a result, πJX is a Poisson quasi-bivector field for

a23 ∈ C[y, z], a13 ∈ C[x, z] and a12 ∈ C[x, y].

Let n ≥ 1 be an integer and let π0 = −yn∂1 ∧ ∂2 + 1
n x∂1 ∧ ∂3 −

1
n y∂2 ∧ ∂3. We have

J(π0) = yn.

Unless otherwise stated, yn is not identically equal to zero. From this, π0 is a Poisson quasi-bivector field. Let (A0, ., {., .}0)
be the quasi-Poisson algebra defined byA0 = C[x, y, z] with quasi-Poisson structure {., .}0 associated to π0 defined by

π0 = −yn ∂

∂x
∧
∂

∂y
+

1
n

x
∂

∂x
∧
∂

∂z
−

1
n

y
∂

∂y
∧
∂

∂z
. (18)

It follows

JX =

 0 − 1
2 yn 1

2n x
1
2 yn 0 − 1

2n y
− 1

2n x 1
2n y 0

 (19)

It is the matrix associated to π0 onA0 = C[x, y, z].

The following section is devoted to the explicit calculation of a Kostant-Kirillov structure induced by π0 in Jn
0.

61



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 3; 2022

3. An Explicit Calculation of a Kostant-Kirillov Symplectic Structure on the Quasi-Poisson Tensor π0

In this section, we calculate explicitly the coadjoint orbits of the Lie group G and their Kostant-Kirillow symplectic
structures coadjoint orbits of the Lie group G. Let gθ be the element of G defined above. Like any Lie group, there are
two known operations on G called the left translation

Lgθ : G −→ G, gθ′ 7−→ gθgθ′ ,

and the right translation
Rgθ : G −→ G, gθ′ 7−→ gθ′gθ.

These applications are diffeomorphisms of G and we have

Rgθ ◦ Lgθ = Lgθ ◦ Rgθ .

We can define the automorphism of G as

Rg−1
θ

Lgθ : G −→ G, gθ′ 7−→ gθgθ′g−1
θ .

Let 1 be the unit of G. Since g = T1G is the Lie algebra of G, its adjoint representation Adgθ is the derivative of Rg−1
θ

Lgθ
in 1 defined by :

Adgθ : g −→ g, ξ 7−→
d
dt

Rg−1
θ

Lgθ (exp(tξ)) |t=0 .

By a simple computation, we show that Adgθ is an algebra homomorphism defined by

Adgθ [ξ, η] = [Adgθ (ξ), Adgθ (η)], f or all ξ, η ∈ g. (20)

Now consider the notation
ad ≡ Ad∗1 : g −→ End(g), ξ 7−→ adξ =

d
dt

Adgθ(t) |t=0,

with d
dt gθ(t) |t=0= ξ and gθ(0) = 1, where End(g) is the space of endomorphisms of g.

We have
adξ(η) = [ξ, η] f or all ξ ∈ g and η ∈ End(g).

Indeed,

ad ≡ Ad∗1 = Ad∗e(ξ)(η) =
d
dt

Adgθ(t)(η) |t=0=
d
dt

(
gθ(t)ηg−1

θ (t)
)
|t=0 .

Since d
dt

(
gθ(t)ηg−1

θ (t)
)
|t=0= ġθ(t)(η)g−1

θ (t) |t=0 −gθ(t)ηg−1
θ (t)ġθ(t)g−1

θ (t) |t=0:= ġθ(0)η − ηġθ(0), we have adξ(η) = ξη − ξη

which completes the proof.

Considering the application
Ad∗ : G −→ End(g∗), gθ 7−→ Ad∗(gθ) ≡ Ad∗gθ .

It is differentiable and its derivative in 1 can be expressed as

ad∗ : g −→ End(g∗), ξ 7−→ ad∗ξ .

Proposition 3.1. Let ξ, η ∈ g and f ∈ g∗. Consider

{·, ·} : g × g∗, (ξ, f ) 7−→ {ξ, f } = ad∗ξ ( f ), (21)

Then
〈{ξ, f }, η〉 = 〈{ f , [ξ, η]. (22)

Proof. Since {ξ, f } = ad∗ξ ( f ), 〈{ξ, f }, η〉 = 〈 d
dt (Ad∗)exp(tξ)( f ) |t=0, η〉 where exp(tξ) |t=0= 1 and d

dt exp(tξ) |t=0= ξ. Hence,

〈{ξ, f }, η〉 =
d
dt
〈Ad∗exp(tξ)( f ), η〉 |t=0 .

Since 〈Ad∗exp(tξ)( f ), η〉 = 〈 f , Adexp(tξ)(η)〉 and adξ(η) = d
dt 〈Adexp(tξ)(η), we have

〈{ξ, f }, η〉 = 〈 f , adξ(η)〉. (23)

From (23), we have (22) which completes the proof.

62



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 3; 2022

Definition 3.1. Let f ∈ g∗ and let O∗f = {Ad∗gθ ( f ) : gθ ∈ G} ⊂ g∗, the dual of coadjoint orbit on the Lie group G.
A vector tangent τ to the orbit O∗f of f is expressed as an element A ∈ g by

τ = {A, f }, A ∈ g. (24)

We have to use the following lemma :

Lemma 3.1. Let τ1 = {A1, f } and τ2 = {A2, f } be two vectors, tangent to the orbit O f of f where A1, A2 ∈ g. Then,

[τ1, τ2] � [A1, A2].

Since g∗ = g, we can obviously remark that the symplectic Kostant-Kirillov structure ω f defined on (6) is written as

ω f (τ1, τ2) = 〈 f , [A1, A2]〉, A1, A2 ∈ g, f ∈ g∗ := g. (25)

Recall that G is a subgroup of SO(3) and the corresponding Lie algebra is g = T1G consists of skew-symmetric 3 × 3
matrices where 1 is the neutral element of G and T1G is the tangent space at 1. Consider the basis (ex, ey, ey) defined

on (1) with ex =

0 0 0
0 0 −1
0 1 0

, ey =

 0 0 1
0 0 0
−1 0 0

 and ez =

0 −1 0
1 0 0
0 0 0

. From the Euler-Arnold system the differential

systems defined on (4), we have
Ẋ = (JX)X (26)

where
JX =

1
2n

yex +
1

2n
xey +

1
2

ynez (27)

is the matrix associated to the Poisson quasi-bivector field defined on (18).

Proposition 3.2. Let n ≥ 1 be an integer and let θ be a given constant parameter. The adjoint orbit of the group G is

O(JX) =

{ 1
2n

yex + (−
1
2

(sin θ)yn +
1
2n

(cos θ)x)ey + (
1
2

(cos θ)yn +
1

2n
(sin θ)x)ez

}

Proof. Consider the invertible matrix gθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ∈ G. Its inverse is g−1
θ = com(gθ)T =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

.
We have

gθJXg−1
θ =


0 −

(cos θ)
2 yn −

(sin θ)
2n x −

(sin θ)
2 yn +

(cos θ)
2n x

(cos θ)
2 yn +

(sin θ)
2n x 0 −

y
2n

(sin θ)
2 yn −

(cos θ)
2n x 1

2n y 0

 , (28)

which completes the proof of O(JX).

Corollary 3.1. For n , 2 and θ , π + 2kπ (k be an integer), the adjoint orbit of the group G induces a Poisson quasi-
bivector field

πO(JX ) =

(
−(cos θ)yn −

1
n

(sin θ)x
)
∂

∂x
∧
∂

∂y
+

(
−(sin θ)yn +

1
n

(cos θ)x
)
∂

∂x
∧
∂

∂z
−

1
n

y
∂

∂y
∧
∂

∂z

and the jacobiator of πO(JX ) is defined by :

J(πO(JX )) =
1
n

(n cos θ − cos θ + 1)yn −
1
n2 (sin θ)x. (29)

From the above, we have the following classification :

Proposition 3.3.

For n = 1, θ = 2kπ, k ∈ Z For n = 2, θ = π + 2kπ, k ∈ Z For n ≥ 3, θ = 2kπ, k ∈ Z
O(JX)

{
1
2 yex + 1

2 xey + 1
2 yez

} {
1
4 yex −

1
4 xey −

1
2 y2ez

} {
JX

}
J(O(JX)) y 0 J(π0)
πJ(O(JX )) −y ∂

∂x ∧
∂
∂y + x ∂

∂x ∧
∂
∂z − y ∂

∂y ∧
∂
∂z y2 ∂

∂x ∧
∂
∂y −

x
2
∂
∂x ∧

∂
∂z −

y
2
∂
∂y ∧

∂
∂z π0
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The following proposition gives the Kostant-Kirillov orbit induced by π0.

Proposition 3.4. Let n ≥ 1 be an integer. The coadjoint orbit O∗(JX) is isomorphic to

V =

{
(z1, z2, z3) ∈ C3 : z2

1 + z2
2 + n2z2n

2 = 4n2
∑
k∈I

j2k
}

(30)

where
∑
k∈I

jkek ∈ g and I = {x, y, z} be an index set.

Proof. Note that O∗(JX) can be written as

O∗(JX) =

{
A ∈ g : A = g−1

θ (JX)gθ
}

We have det(A) = det(JX) where A ∈ g. Hence, A and JX have the same spectrum. Indeed, for every scalar λ :

det(A − λI) = det
(
g−1
θ (JX − λI)gθ

)
.

Since det
(
g−1
θ (JX − λI)gθ

)
= det(g−1

θ .gθ).det(JX − λI), we have det(A − λI) = det(JX − λI). Therefore,

O∗(JX) =

{
A ∈ g : A = g−1

θ JXgθ, spectrum o f A = spectrum o f JX

}
. (31)

Let us determine the spectrum of JX defined on (27). Since

JX =
1
2n

yex +
1
2n

xey +
1
2

ynez,

det(JX − λI)} = −λ3 − (
1

4n2 y2 +
1

4n2 x2 +
1
4

y2n)λ

Since det(JX − λI)} = 0 is equivalent to λ = 0 and λ2 = −( 1
4n2 y2 + 1

4n2 x2 + 1
4 y2n), the spectrum of JX is

spectrum(JX) =

{
0, i

√
1

4n2 y2 +
1

4n2 x2 +
1
4

y2n,−i

√
1

4n2 y2 +
1

4n2 x2 +
1
4

y2n
}
.

Let’s consider
A =

∑
k∈I

jkek ∈ g

where I = {x, y, z} be an index set. Then

det(A − λI)) = −λ3 −
∑
k∈I

j2kλ.

The spectrum of A is

spectrum(A) =

{
0, i

√∑
k∈I

j2k ,−i

√∑
k∈I

j2k

}
.

From (31), it follows

O∗(JX) =

{∑
k∈I

jkek :
1

4n2 y2 +
1

4n2 x2 +
1
4

y2n =
∑
k∈I

j2k
}

(32)

where
∑
k∈I

jkek ∈ g and I = {x, y, z} be an index set.

Let’s consider
V =

{
(z1, z2, z3) ∈ C3 :

1
4n2 z2

1 +
1

4n2 z2
2 +

1
4

z2n
2 =

∑
k∈I

j2k
}
. (33)

Therefore, the orbit O∗(JX) is isomorphic toV defined on (33).

64



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 3; 2022

Remark 3.1. For n , 2 and θ , π + 2kπ (k be an integer) and let O∗(JX) the coadjoint orbit (Kostant-kirillov orbit).
We have

g−1
θ JXgθ =

1
2n

yex +

(1
2

(sin θ)yn +
1
2n

(cos θ)x
)
ey +

(1
2

(cos θ)yn −
1

2n
(sin θ)x

)
ez,

the Poisson quasi-bivector field associated is

πO∗(JX ) =

(
−(cos θ)yn +

1
n

(sin θ)x
)
∂

∂x
∧
∂

∂y
+

(
(sin θ)yn +

1
n

(cos θ)x
)
∂

∂x
∧
∂

∂z
−

1
n

y
∂

∂y
∧
∂

∂z

and the jacobiator of πO∗(JX ) is defined by :

J(πO∗(JX ) =
1
n

(n cos θ − cos θ + 1)yn +
1
n2 (sin θ)x. (34)

We obtain a similar result as before about a classification of the Kostant-Kirillov orbit :

For n = 1, θ = 2kπ, k ∈ Z For n = 2, θ = π + 2kπ, k ∈ Z For n ≥ 3, θ = 2kπ, k ∈ Z
O∗(JX)

{
1
2 yex + 1

2 xey + 1
2 yez

} {
1
4 yex −

1
4 xey −

1
2 y2ez

} {
JX

}
J(O∗(JX)) y 0 J(π0)
πJ(O∗(JX )) −y ∂

∂x ∧
∂
∂y + x ∂

∂x ∧
∂
∂z − y ∂

∂y ∧
∂
∂z y2 ∂

∂x ∧
∂
∂y −

x
2
∂
∂x ∧

∂
∂z −

y
2
∂
∂y ∧

∂
∂z π0

Note that, we have a Poisson structure through the action of gπ+2kπ with n = 2 and k an integer.

To determine the symplectic structure on O∗(JX), we will use the following result.

Theorem 3.1. Let f ∈ g∗. The Kostant-Kirillov symplectic structure is given by

ω f (τ1, τ2) = 〈 f , j ∧ k〉, (35)

with j, k ∈ C3 where τ1 = f ∧ j, τ2 = f ∧ k and ∧ is the usual vector product.

Proof. Let f ∈ g∗. Recall that the Kostant-Kirillov symplectic structure ω f defined in (6) can be written as (25) :

ω f (τ1, τ2) = 〈 f , [A1, A2]〉, A1, A2 ∈ g.

with τ1 = {A1, f } and τ2 = {A2, f } where 〈·, ·〉 is the Killing form, [·, ·] the commutator defined by (2) and {·, ·} defined by
(21). Let X =

∑
i∈I

jiei and Y =
∑
j∈I

k je j be two elements of g where I = {x, y, z} be an index set. We have :

[X,Y] =
∑

i,a,b∈I,(a,b)

∧a,b ei (36)

where
∧a,b = jakb − jbka (a , b). (37)

Let j = ( jx, jy, jz) and k = (kx, ky, kz) be two elements of C3. The Killing form can be written as :

〈X,Y〉 = j ∧ k, (38)

where ∧ is the usual vector product.
Let’s consider the isomorphism

j ∧ k 7−→ [X,Y] (39)

where j, k ∈ C3 and X,Y ∈ g. From (25), we also have :

ω f (τ1, τ2) = 〈 f , j ∧ k〉, τ1 = f ∧ j and τ2 = f ∧ k. (40)

Moreover, for
∑

k∈I={x,y,z}
jkek ∈ g and according to Proposition 3.4, we have the isomorphism between the coadjoint orbit

O∗(JX) and

V =

{
(z1, z2, z3) ∈ C3 : z2

1 + z2
2 + n2z2n

2 = 4n2
∑
k∈I

j2k
}
.

It follows that, the tangent vectors to O∗(JX) at a given point are also the tangent vectors toV at this point.
In the following, ( f1, f2, f3) be the local coordinate system and f = ( f1, f2, f3) be the given point. The main result is :
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Theorem 3.2. Let ( f1, f2, f3) be the local coordinate system, j = ( jx, jy, jz), k = (kx, ky, kz) and f = ( f1, f2, f3).
The symplectic structures induced by the Poisson quasi-structure π0 are defined by :

ω f (τ1, τ2)
( f1 f2 − f 2

1 ) jzkz + ( f2 − f1) jzτ22 − f2 jzτ22 − f1 jzτ21 + τ11τ22 − τ12τ21

f3

with j, k ∈ C3 where τ1 = f ∧ j, τ2 = f ∧ k and ∧ is the usual vector product.

Proof. Let ( f1, f2, f3) be the local coordinate system and f = ( f1, f2, f3). We have :

T f (V) =

{(
z1, z2,−

1
f3

(
f1z1 + f2(z2 + 2n2z2n−1

2 )
))
, f3 , 0

}
. (41)

Let τ1 = (τ11, τ12, τ13), τ2 = (τ21, τ22, τ23) ∈ T f (V). Consider j = ( jx, jy, jz), k = (kx, ky, kz). The equations f ∧ j = τ1 and
f ∧ k = τ2 are respectively equivalent to the systems

− f3 jy + f2 jz = τ11
f3 jx − f1 jz = τ12

− f2 jx + f1 jy = − 1
f3

(
f1τ11 + f2(τ12 + 2n2τ2n−1

12 )
) (42)

and 
− f3ky + f2kz = τ21
f3kx − f1kz = τ22

− f2kx + f1ky = − 1
f3

(
f1τ21 + f2(τ22 + 2n2τ2n−1

22 )
) (43)

By resolution of these systems, we now have :

j =

( 1
f3

(τ12 + f1 jz),−
1
f3

(τ11 − f2 jz), jz
)

with f2τ2n−1
12 = 0 ( f3 , 0) (44)

and
k =

( 1
f3

(τ22 + f1kz),−
1
f3

(τ21 − f2kz), kz

)
with f2τ2n−1

22 = 0 ( f3 , 0). (45)

Since ω f is intrinsic, we can choose as local coordinates f1, f2. From this, we will deduce the cases f2, f3 and f3, f1.
Consider the basis ( ∂

∂ f1
, ∂
∂ f2

) of T f (V). We have :

∂

∂ f1
=

(
1, 0,−

f1
f3

)
and

∂

∂ f2
=

(
0, 1,−(1 + 2n2)

f2
f3

)
.

We have :
jz = −

f1
f3

jx − (1 + 2n2)
f2
f3

jy (46)

kz = −
f1
f3

kx − (1 + 2n2)
f2
f3

ky. (47)

Since
j ∧ k = ( jykz − jzkx, jzkx − jxkz, jxky − jykx),

it follows that

j ∧ k =

(
−kzτ11 − jzτ22 + f2 jzkz − f1 jzkz

f3
,

jzτ22 − kzτ12

f3
,
τ11τ22 − τ12τ21 + f1kzτ11 + f2kzτ12 − f2 jzτ22 − f1 jzτ21

f 2
3

)
.

Therefore,

〈 f , j ∧ k〉 =
( f1 f2 − f 2

1 ) jzkz + ( f2 − f1) jzτ22 − f2 jzτ22 − f1 jzτ21 + τ11τ22 − τ12τ21

f3
. (48)

According to theorem 3.1, the Kostant-Kirillov symplectic structure is given by

ω f (τ1, τ2) = 〈 f , j ∧ k〉,

with j, k ∈ C3 where τ1 = f ∧ j, τ2 = f ∧ k and ∧ is the usual vector product. This concludes the proof of the main result.
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