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Abstract 

The problem this study deals with is the dynamics of growth of animals. In the study, some features of the growth of pigs 

were modelled. The research concerns the growth dynamics during a period of growth close to a bifurcation point. In the 

point, two bifurcations of the growth trajectory take place. The period of growth entails the weight in which an animal's 

growth stops when individual maximum weight is reached. In the study, methods of applied mathematics were used. The 

growth of animals was modelled by a hybrid and continuum methods as a dynamic system. In the hybrid model, time was 

considered as a discrete variable. In the study the factors, which control trajectories and the dynamics of growth were 

revealed. There are three results in this study. The first result suggests that in animals, the current weight M can be 

described by derivative of the average consumed feed. The second result gives the equation of the weight balance in an 

integral form. Third result implies that in ontogeny, growth of pigs has to be modelled as a dynamic system. The system 

has two bifurcations; one of the trajectory of the weight gain, and other of the trajectory of the growth invariant K. As a 

result, new growth trajectories emerge. In some instances, the findings can be translated to man in others they apply to 

animals.  

Keywords: animal growth, ontogenetic trajectory, hybrid model, dynamic system, trajectory bifurcation, phase transition   

1. Introduction 

The problem this study deals with is the dynamics of growth of animals. The aim of the study was to build a model of 

growth of pigs and analyse some of its features. Our knowledge about determination of weight and size in animal species 

is insufficient (Conlon and Raff, 1999). We know little about how the species-specific size and form are created in 

ontogeny. The size and weight in animals have been determined by an interaction of genetic and environmental factors 

(Texada et al, 2020). The size of an individual animal affects its fitness in life history. In animals, ability to reproduce, 

survive and many other biological qualities are a function of growth and size (Boulan et al, 2015). The dynamics of 

growth of animals, the main factors that influence the growth remain hidden. In animals' development every so often the 

'trait' that one is interested in is the growth process itself (Rice, 2008). In medicine and biology, we know how infants grow. 

It is we can say how they should normally grow on time and weight scales (Lui and Baron, 2011). However, it is not the 

answer; we need to know the dynamics of the growth in ontogeny. The descriptive knowledge of the process is insufficient. 

What is needed is an analytical model of growth. To comprehend a phenotype, the most direct way would be to use a 

mechanistic model for development of the trait (Rice, 2008). In this study methods of applied mathematics were used. 

In animals' development, nutrition is a relevant factor; it contributes to the rate of growth and to the regulation of 

morphogenesis (Shingleton et al, 2008). Weight gain and feed conversion to animal weight were considered the main 

aspect in this study. Although there has been extensive research into the growth of animals, we know little about the 

quantitative details of the ontogenesis. In this study, we have built an analytical model of growth of pigs. The model is 

species-specific; it explains a few aspects of the dynamics of the growth of domestic pigs. 

There are three main results in this study. The first result concerns the formalization of the current weight M. The second 

result presents the weight balance equation in an integral form. Third one shows that in the course of growth the two 

trajectories, of pig's weight M, and of the invariant of growth K, bifurcate simultaneously and in the same point. As a 

result, new growth trajectories emerge. In the course of the growth, the bifurcations were preceded by a first-order phase 

transition. It was shown that in ontogeny, this sequence of events models the systemic regulation of growth in animals.  

1.1 Models of Growth of Animals 

Attempts to build mathematical models of growth of animals have been continue for more than one hundred years. These 

attempts have been dominated by the use of so-called growth functions. The functions were obtained by solving equations 

in which a certain speculative proportionality between the growth rate, and animals' weight was specified without 
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reference to the biological species studied. The resulting models of growth were termed the general or universal growth 

functions (Boukal et al, 2014). The authors claimed that the growth functions were universal, this is to say applicable to all 

biological species. Despite the criticism of this claim (Agutter and Wheatley, 2004) the growth functions continue to be in 

use. In research, such functions have been used for interpolation purposes, in other words for the curve fitting to data; they 

have limited application and unclear methodology for identifying and reading parameters (Chirwa et al, 2014). Critically 

minded authors expressed the opinion that this approach deals with a retrospective curve fitting with little, if any 

biological insight. The possibility that no one of the growth functions is applicable to the modelling of growth of animals 

has to be more carefully considered (Agutter and Wheatley, 2004). In the life sciences, meaningful, analytical models of 

growth of animals or humans remain a problem. The initial problem is to formulate a concept of growth and implement it 

in a model. Conditionally, such a concept can be seen consisting of two parts. The both parts only conditionally distinct; in 

work they are mixed and merged. One part of the concept is mathematical. The task is to find a suitable mathematical 

method with the aim to model a biological concept. In a tight connection with this task stays the biological part of the 

concept. There are two problems to solve. The first problem is to formulate a physiologically correct relation between the 

traits. Second problem to solve is how to find a basic functional relation between the studied traits. In the life sciences, it 

is the norm of research to find a relation between the studied traits by analysing experimental data. In this study, an 

analytical, species-specific model of growth of pigs was built. The model was built based on the data obtained in the 

experiments.  

1.2 A Hybrid Model 

In the life sciences, there are two frequently used types of dynamic systems continuum, and discrete. In simple words, a 

discrete dynamic system is a difference equation, and a continuum dynamic system is a differential equation; both types 

are deterministic (Stewart, 2011). The hybrid systems entail both continuum and discrete variables and exhibit a mixture 

of continuum and discrete time dynamic; they are often used to capture the behaviour of systems that contain some sort of 

discontinuous events (Di Bernardo and Hogan, 2010). 

2. Methods 

In the study, methods of applied mathematics were used. A model of animal growth was built by extension of the model 

earlier introduced by Stass (2021). The model describes some aspects of the growth of pigs. To meet the purpose of the 

study both continuum and a non-local hybrid technique were used. The hybrid technique considers time as a discrete 

variable. The minimum discrete time ∆t = 1 day corresponds to one cycle of the circadian rhythm, which oscillate with 

periods close to 24 hours (Goldbeter, 2018). During this time, the physiological functions of growth and development go 

through one cycle.  

2.1 The Model's Variables  

Let M denote an animal current weight, measured in kilograms.  

M = {M R+ | 30 ≤ M ≤ 600}, an animal individual maximum weight Mx = 600 kg.  

m denotes an animal initial considered weight, measured in kilograms, m ≤ M, mo = 30 kg. 

Let t denote the chronological discrete current time, measured in days from an animal's birth.  

t = {t N | 0 ≤ t < ∞}, ∆t = 1, 2, 3, ..., n. n N. to denotes time corresponds to mo, to = 90 days.  

Let K denote the invariant of growth, nondimensional. K= {K R+| ≤ K < 11}, Ko =1.  

Let Z denote the current feed conversion coefficient, nondimensional.   

Z= {Z R+| Zo ≤ Z ≤ ∞}, (Z = ∞)  (M = Mx)⋁(M = Mxx), where Mxx denotes species maximum weight. 

Let F denote consumed food or feed, measured in kilograms. F = {F R+ |0 <F < ∞}.  

3. Results 

The output of the model was comparable with the experimental data; it was used to analyse nonlinear effects. In the study, 

new results as well as the analyses of the model provide an advanced insight into the growth process. 

3.1 A Relation between Main Variables 

In this study, the following concept of the model was applied. In humans and animals, the growth or weight gain has been 

considered as a transformation of feed consumed F to an organism weight M. The transformation of feed was modelled by 

the feed conversion coefficient Z. Food or feed consumed F has been transformed by an organism to body weight M with 

efficiency Z. The growth invariant K is a parameter, which makes the model of the growth a species-specific. In this 

section we analyse a relation between variables Z, M, and F. We begin by writing down a well-known formula. Let 𝑍̅ 

denote the average feed conversion coefficient.                                                       
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                                                           𝑀 ∙ 𝑍̅ =  ∫𝑀 𝑑𝑍̅  + ∫ 𝑍̅  𝑑𝑀 .                                                                            (1) 

Let 𝐹̅ denote the average consumed food. In (1) let us give the following consideration. 

                                                                               𝐹̅ = ∫𝑀𝑑𝑍̅   .                                                                                   (2) 

Or, what is the same                                               

                                                                       𝐹̅ = 𝑀 ∙ 𝑍̅ − ∫ 𝑍̅ 𝑑𝑀  .                                                                                (3) 

By differentiation equation (2) in respect to 𝑍,̅ or (3) in respect to M one can arrive at the same result, given below.  

                                                                              𝑀 =
𝑑𝐹̅

𝑑𝑍̅
  .                                                                                               (4) 

Mathematically, equation (4) is not a unique solution; it is a feasible, the model-related solution. Biologically this is a 

meaningful result, which is consistent with the concept of the model. Under the model conditions equation (4) specifies 

a current weight. 

In this section, we analyse a species-specific relation between variables M, F, Z, and K. I can remind the interested 

reader that in animals the growth invariant K, equation (9), is a species-specific parameter. Let us consider the following 

system. 

                                                                              {
𝐹 ∙ 𝑍 =  ∫𝐹 𝑑𝑍 +∫𝑍𝑑𝐹

𝑀 ∙ 𝑍 = ∫𝑀𝑑𝑍 +∫𝑍 𝑑𝑀
                                                                          (5) 

From the system (5) we get 

                                                                
1

𝑀
∙ ∫𝑀𝑑𝑍 =  

1

𝐹
∙ ∫𝐹 𝑑𝑍 , 𝑀 > 0 ,   𝐹 > 0.                                        (6) 

Let us consider a system, given below.                    

                                                              {
𝐹 ∙ 𝑀 = ∫𝐹 𝑑𝑀 + ∫𝑀𝑑𝐹

𝑍 ∙ 𝐾 = ∫𝐾 𝑑𝑍 + ∫𝑍 𝑑𝐾  
                                                                           (7) 

From (5), (6) and (7) one can get the following equation.  

                                                             ∫(𝐹 −𝑀)𝑑𝑍 =  
𝐹

𝑀
∙ ∫𝑀𝑑𝑍 − 

𝑀

𝐾
∙ ∫𝐾 𝑑𝑍  .                                              (8) 

Mathematically, equation (8) is not the unique solution it is a feasible solution. Biologically, this is a meaningful result, 

which is consistent with the concept of the model. Under the model conditions, equation (8) in biological sense is the 

weight balance. In equation (8), the term (F - M) denotes not utilised food, not absorbed food; it has to be considered as 

a variable. (F - M) = Y, where Y denotes not absorbed food. We can conclude that the weight balance is given by an 

integral equation. Equation (8) is applicable to both humans and animals; the growth invariant K makes (8) 

species-specific.                                                               

3.2 A Hybrid Non-Local Model of Animal Growth                                                                  

In domestic pigs, the species-specific form of growth invariant K is as follows.  

                                                                                 𝐾 =
𝑀𝑡

𝑚𝑜(2𝑡 − 𝑡𝑜)
    .                                                                           (9) 

A relation between M, Z, K, and t given by system (10). 

                                                                             

{
 

 
𝑀

𝑚𝑜
= 2𝐾 − 1 +

(𝑡 − 𝐾𝑡𝑜)

𝑡
            

(𝑡 − 𝐾𝑡𝑜)

𝑡
 =

(𝑍 − 2𝐾)(𝐾 − 1)

𝑍𝐾
     

                                                   (10) 
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From (9) and (10) one can obtain the two following dynamic systems. One system is (11) and (12). This system by 

definition is nonlinear. Another system is equations (13) and (14). The both systems follow from the same set of 

equations. However, in this study, we concentrate on the system (13) and (14), which is more convenient for analyses.  

1

𝑚𝑜
∙
∆𝑀

∆𝑡
=

1

𝑡
∙

𝑚𝑜[𝑍(2𝐾+1)−2𝐾]

𝑚𝑜[𝑍(2𝐾+1)−2𝐾]−𝑀𝑍
                               (11) 

                                   
∆𝐾

∆𝑡
=

1

𝑡
∙

𝑍𝐾2

𝑍(𝐾+1)−2𝐾
   , 𝑍𝑜 ≠ 1 , 𝑍 > 0.                            (12) 

System (13) and (14) is as follows.  

1

𝑚𝑜
∙
∆𝑀

∆𝑡
=

1

𝑡
∙
𝑍𝐾(2𝐾+1)−2𝐾2

𝑍(𝐾+1)−2𝐾
  , 𝑍𝑜 ≠ 1 , 𝑍 > 0                           (13)  

         
∆𝐾

∆𝑡
=

1

𝑡
∙

𝑍𝐾2

𝑍(𝐾+1)−2𝐾
   , 𝑍𝑜 ≠ 1 , 𝑍 > 0 .                            (14) 

From the dynamic system (13) and (14), by eliminating time t we get 

         
1

𝑚𝑜
∙
∆𝑀

∆𝐾
=

2𝐾+1

𝐾
−

2

𝑍
   , 𝑍 > 0 .                                 (15) 

It follows that weight gain in pigs, equation (15), is autonomous dynamic; it is not contingent on time explicitly. In this 

section, we concentrate on the growth dynamic close to a point in which an animal reaches its individual maximum 

weight. Under the model conditions, this weight is Mx = 600 kg. To define the point, we must find 𝐾𝑥 = 𝐾|𝑀=𝑀𝑥 , and 

𝑍𝑥 = 𝑍|𝑀=𝑀𝑥. It was proved in the experiment that the limit below holds. 

lim𝑀→𝑀𝑥

2𝐾−1

𝐾+1
= √3 , 𝑤ℎ𝑒𝑟𝑒 (𝐾 → 𝐾𝑥)|𝑀→𝑀𝑥   .                     (16) 

From the limit (16) one can find that numerically 𝐾𝑥 = 5 + 3√3 .  From (15) and (16), under condition 

(M=Mx)⋀(K=Kx) we have 𝑍|(𝑀=𝑀𝑥)⋀(𝐾=𝐾𝑥) = 𝑍𝑥 , Zx = 62, 5102. It follows that the point in which an animal reaches 

its individual maximum weight is (Mx, Kx, Zx). At this point, the following equations hold. 

   𝐾𝑥
2 − 𝐾𝑥 ∙

𝑀𝑥

2𝑚𝑜
− 2 = 0  ,                                 (17) 

                                                                                                 𝑍𝑥 =
2𝐾𝑥(𝐾𝑥−1)

3
  .                                     (18) 

By analysing equations (17) and (18) Kx and Mx were considered as variables. On the trajectory M →Mx →Mxx, figure 

1, there is an inflection point, MIP. Numerically, MIP = 2moKx = 611,769 kg. 

3.2.1 Bifurcation of the Weight Gain Trajectory 

Bifurcation of the weight gain trajectory takes place in the point (Mx, tx, Kx, Zx), figure 1. Initially stable trajectory (mo 

→ M → Mx) at the point (Mx, tx, Kx, Zx) loses its stability as Zx grows into infinity (Zx → ∞). As a result, two new 

trajectories emerge.                      
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Figure 1. Bifurcation of the growth trajectory 

 bifurcation point (Mx, tx). o inflexion point (MIP, tIP). During bifurcation, two new trajectories emerged. One trajectory is   

 𝑀𝑥|𝑡=𝑡𝑥 → 𝑀𝑥|𝑡=𝑡1, another trajectory is Mx → Mxx. On trajectory 𝑀𝑥|𝑡=𝑡𝑥 → 𝑀𝑥|𝑡=𝑡1animals do not grow, the weight 

Mx remains constant. On trajectory Mx → Mxx animals continue to grow.  

One trajectory is 𝑀𝑥|𝑡=𝑡𝑥 → 𝑀𝑥|𝑡=𝑡1. Other trajectory is Mx → Mxx, where time tx corresponds to Mx. t1 denotes 

obtainable life span, and Mxx denotes species maximum weight, figure 1. During a phase transition, the following 

passage occurs Zx → ∞ → Zxv, where Zxv denotes the feed conversion coefficient Z an instant after the transition. In this 

section we analyse a first-order phase transition Zx → ∞ → Zxv.  

                          𝑍𝑥𝑣 =
2𝐾𝑥

2

3
  , 𝑍𝑜 =

2

3
  .                                    (19) 

Let us consider equations (15), (17) and (18), we have      

              
∆𝑍𝑥

∆𝐾𝑥
=

2(𝐾𝑥+1)

3
−

4𝐾𝑥
2

9𝑍𝑥
  , 𝑍𝑜 =

2

3
  .                             (20) 

Passage to the limit (Zx → ∞) in (20) is as follows. 

𝑙𝑖𝑚𝑍𝑥→∞
∆𝑍𝑥

∆𝐾𝑥
=

2(𝐾𝑥+1)

3
 .                                    (21)  

From equation (21) we get 

                                 
∆𝑍𝑥𝑣

∆𝐾𝑥
=

2(𝐾𝑥+1)

3
  .                                       (22) 

One can conclude that equation (22) is exactly (19). In (21), transition from Zx to Zxv was due to passage Zx → ∞ → Zxv. 

In other words, during transition Kx remain constant while Z changes Zx → ∞ → Zxv. This change of Z, a phase transition, 

provides a first-order or discontinuous transition to a new trajectory that emerges during bifurcation. The initial point on 

the emerged trajectory is (Mx, Kx, Zxv). This result one can obtain in the following way. Let us consider (20) and (22) as a 

system, given below. 

{

∆𝑍𝑥

∆𝐾𝑥
=

2(𝐾𝑥+1)

3
−

4𝐾𝑥
2

9𝑧𝑥
∆𝑍𝑥𝑣

∆𝐾𝑥
=

2(𝐾𝑥+1)

3
          

                                     (23) 

From the system (23) it follows 

          
∆𝑍𝑥

∆𝑍𝑥𝑣
= 1 −

2𝐾𝑥
2

3𝑍𝑥(𝐾𝑥+1)
    .                                    (24) 

Passage to the limit (Zx → ∞) in (24) is given by     
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lim𝑍𝑥→∞
∆𝑍𝑥

∆𝑍𝑥𝑣
= 1 .                                     (25) 

From (25) one can conclude that in the instant of the phase transition, Zx is indistinguishable from Zxv. However, after 

the phase transition the following equation holds.                               

  𝑍𝑥𝑣 − 𝑍𝑥 =
2𝐾𝑥

3
  .                                     (26) 

 

 

 

 

 

 

 

 

 

M 

Z 

Mxx MIP Mx 

 

 mo 

 Zo 

Zx 

 ZIP 

 Zxv 

 Zxx 

 
Figure 2. The trajectory of the feed conversion coefficient is a discontinuous function 

 a first-order phase transition point. After the phase transition, the initial point on the trajectory is (Mx, Zxv).  

o inflection point (MIP, ZIP). In this inflection point, the rate of Z begins to increase. 

The dynamic of the feed conversion coefficient Z is displayed in figure 2. Figure 2 shows a first-order phase transition 

(Heffern et al., 2021); there the order parameter Z displays a discontinuous transition from Zx to Zxv, at the critical value 

of Mx. After this phase transition the dynamics of growth in domain M > Mx changes in essence. 

On trajectory Mx → Mxx, the feed conversion coefficient changes as follows Zx → ∞ → Zxv → ZIP → Zxx → ∞. In this 

inflection point ZIP, the rate of Z begins to increase. After passing through the inflection point ZIP the rate of Z reaches 

its local minimum. On this trajectory, in the point of the local minimum of Z the growth rate is expected to reach its 

local maximum. On this trajectory, the dynamic of growth is nonlinear and poorly understood. 

On trajectory 𝑀𝑥|𝑡=𝑡𝑥 → 𝑀𝑥|𝑡=𝑡1 the feed conversion coefficient changes as follows Zx → ∞ and remain infinity. The 

reason for that is Mx remains constant during time span tx → t1. On this trajectory animals do not grow 

3.2.2 Bifurcation of the Parameter K Trajectory 

In the point (Mx, Kx, Zx) bifurcation of the growth invariant K takes place. The cause for this bifurcation is the same as 

for the discussed one; the feed conversion coefficient at the point Z = Zx grows into infinity Zx → ∞. Both bifurcations 

show up simultaneously and in the same point. Both bifurcations cause dynamic of Z. In this dynamics, variable Z is the 

order parameter. On K trajectory, due to bifurcation, in the point (Mx, Kx, Zx) two new trajectories emerge. One 

trajectory is Kx → KIP →Kxx, this trajectory corresponds to Mx →MIP → Mxx. Another trajectory is Kx →K1 →K2, it 

corresponds to 𝑀𝑥|𝑡=𝑡𝑥 → 𝑀𝑥|𝑡=𝑡2. The dynamic of K is displayed in figure 3. During bifurcation in the point (Mx, Kx, 

Zx), figure 3, trajectory Kx → K1 → K2 emerged. Let us consider two more points on this trajectory K1, and K2. On this 

trajectory, in all K points M = Mx, and Z = ∞. Consider (15), given below. 

1

𝑚𝑜
∙
∆𝑀

∆𝐾
=
2𝐾 + 1

𝐾
−
2

𝑍
  ,   𝑍 > 0  . 

In equation (15), under condition M = Mx, we take limit (Z → ∞), given by  

lim𝑍→∞
∆𝑀

∆𝐾
= 𝑚𝑜 ∙

2𝐾1+1

𝐾1
 , 𝑤ℎ𝑒𝑟𝑒 (𝐾 → 𝐾1)|𝑍→∞ .                      (27) 

In a more convenient form limit (27) is given by  
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1

𝑚𝑜
∙
∆𝑀𝑥

∆𝐾1
=

2𝐾1+1

𝐾1
  .                                     (28) 

 

 

 

M 

MxxMIP Mx mo 

1 

10

0 

K2

22

22 

K1

11

11 

Kx 
  KIP 

  Kxx K 

 
Figure 3. Bifurcation of the trajectory of parameter K 

 bifurcation point (Mx, Kx). o inflection point (MIP, KIP). During bifurcation, the two trajectories emerge; one is          

Kx →K1→ K2, other Kx →KIP →Kxx. 

From (28) it follows 𝐾1 = 𝐾|(𝑀=𝑀𝑥)⋀(𝑍=∞). Numerically, K1 = 10,04975. Both Kx and K1 are located on the same 

trajectory. Below it is shown that in both points, Kx, and K1, M = Mx.  

𝑀𝑥

𝑚𝑜
= 2𝐾𝑥 −

4

𝐾𝑥
  .                                      (29) 

   
𝑀𝑥

𝑚𝑜
= 2𝐾1 −

1

𝐾1
  .                                      (30) 

From (18), (29) and (30) it follows  

     
∆𝐾1

∆𝐾𝑥
= 1 −

4𝐾1−𝐾𝑥

3𝐾1∙𝑍𝑥
  .                                     (31) 

In (31), the limit (Zx →∞) is given by 

lim𝑍𝑥→∞
∆𝐾1

∆𝐾𝑥
= 1  .                                    (32) 

The limit (32) means that in an instant of bifurcation, points Kx, and K1 are indistinguishable from one another. 

However, after bifurcation, trajectory Kx → K1 → K2 emerges. K2 is the last point on this trajectory. We can find K2 by 

applying the following procedure. Let us consider a relation between M, and K. 

                                                                                       𝑀𝐾 = ∫𝑀𝑑𝐾 +∫𝐾𝑑𝑀  .                                                                      (33) 

Before the next step, consider the limit (t→∞) of (9).  

lim𝑡→∞𝐾 =
𝑀

2𝑚𝑜
  .                                     (34) 

The limit (34) in the form 𝑑𝐾 =
𝑑𝑀

2𝑚𝑜
 , after substitution into (33), we have 𝐾2 = 𝐾|(𝑡=∞)⋀(𝑀=𝑀𝑥), given below.  

      𝐾2 =
𝑀𝑥

2𝑚𝑜
+

𝑚𝑜

2𝑀𝑥
  .                                       (35) 

Numerically, K2 = 10,0250. In the point K = K2 condition M = Mx holds, given by 

                  
𝑀𝑥

𝑚𝑜
= 𝐾2 +√𝐾2

2 − 1  .                                    (36) 
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Equations (29), (30), and (36) confirm that points Kx, K1, and K2 are located on the same emerged trajectory. K2 

corresponds to t2, figure 1. t2 denotes theoretically maximum life span in the pig 49, 31 years. This follows from the 

calculation under condition (M=Mx)⋀(K=K2). Maximum life span in the pig was modelled by the limit (t → ∞).  

4. Discussion 

The aim of this study was to build an analytical model of growth of animals. In the study, we have carried out analysis of 

the model. In this section, some of the results are discussed. In animals, nutrition is a vital factor in the development of 

body size. The nutritional information has been conveyed to the cellular and systemic levels to provide balanced growth 

(Boulan et al, 2015). If this logic is followed than food and food conversion are to consider as focal variables in the models 

of growth. Food or feed consumed has been transformed by an organism to human or animal weight. This concept was 

used in the model. One can conclude from the study that the three results have a novelty value. The first one implies that in 

animals, the current weight M is described by derivative of the average consumed feed. The second one says that in 

animals, the growth dynamics can be modelled by an integral equation of weight balance. Third result has proved that in 

pigs, the dynamic system of growth has two bifurcations. In the study, the bifurcations were preceded by a first-order 

phase transition. This sequence of events has a biological meaning. The study of how systems undergo transitions 

between states has been a highly important topic in physics and chemistry (Solé et al., 1996). In biology, phase transition 

is a less applied concept (Heffern et al., 2021). In this study we have used the concept of a first-order phase transition to 

analyse the dynamics of growth of animals. In this non-local hybrid model, the phase transition takes in the whole 

organism as an entity; with all its subsystems and scales. In a population of animals, the dynamic of growth trajectory with 

bifurcations in individual animals, creates three sets with growth phenotypes. The phenotypes differ in their longevity, 

growth rate, and growth cessation. It is plausible that this model, which links growth and longevity in animals, will be 

helpful in studying cancer. It is plausible that the weight balance equation (38) is applicable not only to the whole 

organism but also to its parts. The results are discussed below. 

4.1 Biological Reading of the Model 

At first, we discuss meaning of equation (4) that defines current weight M, given below. 

𝑀 =
𝑑𝐹̅

𝑑𝑍̅
   

The equation suggests that the current weight M is a result of the process, which is described by the average food 

conversion coefficient 𝑍̅ derivative of the average consumed food 𝐹̅. This is a nontrivial result. In animals and humans, 

this result has many implications. What one can infer first is that current weight M is not contingent on time; in 

mathematical sense the weight dynamics is an autonomous process. The same inference one can draw from (15) and (28). 

Looking at (4) one can wonder what a distribution of F, and Z should be to provide that the equation holds. It is a 

demanding task to find the distribution of variables F, and Z to explain the growth process. On the other hand, the 

interpretation is a standard one. Human or animal weight M is a function of the environmental factor F and the feed 

conversion coefficient Z, which contains genetic determinants. One can infer from the equation that since feed or food F is 

the environmental factor, the genetic determination of the growth is expressed through the food conversion coefficient Z. 

Indeed, since 𝑍̅ = 𝑓(𝐹,𝑀) and F is environmental factor, one can conclude that it is M, an organism that possesses the 

genetic information which is mediated by Z in the model. In other words, the result above is biologically acceptable. 

The equation (4) is not species-specific. It is applicable to both humans and animals. There are reasons to expect that the 

mechanisms of growth are nonlinear and with many interactions. As food is essential for growth regulation in animals 

(Lui and Baron, 2011) then Z is associated with systemic effects of metabolism. It is plausible to speculate that in animals, 

these systemic effects are a part of growth regulation systemic factors (Boulan et al, 2015). The mechanisms underlying 

feed conversion are complex. This does not mean that they are intractable. However, at present, the route from digestion 

to body weight remains unclear. 

The general equation of weight balance of animals or humans is given below.     

∫𝑌𝑑𝑍 =  
𝐹

𝑀
∙ ∫𝑀𝑑𝑍 − 

𝑀

𝐾
∙ ∫𝐾 𝑑𝑍   

In biological sense, the equation is the weight balance. It turned out that in humans and animals, the weight balance is an 

integral equation. The equation describes a process of converting consumed food F to human or animal weight M. The 

process was modelled by an autonomous system; such a system is not contingent on time explicitly. The equation says that 

the weight balance is much more complicated than it was formerly expected. This is a species-specific equation; if in this 

equation specify invariant of growth K then it can serve as a species-specific model. For example, K can be specified as a 

species-specific function of M and Z, of the form KQ = ƒ(M, Z). 
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Mathematically, equations (4) and (8) are not unique, they are feasible, the model-related equations. Biologically, under 

the model conditions the equations are meaningful and consistent with the concept of the model. By analysing (8), let us 

consider two theoretical options. For animals feed F is an environmental variable and may well be regarded as 

independent from Z. If in (8) F consider as a variable independent from Z, in other words consider the following 

relation 

                                                                                 ∫𝐹 𝑑𝑍 = 𝐹𝑍 ,                                                                                     (37) 

than (8) is wrong, it does not hold. Under the model conditions, assumption (37) is incorrect. This suggests that either (8) 

is incorrect and a relation between the analysed traits is much more complicated, or there is a functional relation 

between F, and Z. Such a relation one can conceive as a result of natural selection and adaptation to a certain feed. Since 

weight balance equation in the form (8) under assumption (37) is incorrect, we will consider it in the following form 

                                                                ∫𝑌 𝑑𝑍 =
𝐹

𝑀
∙ ∫𝑀 𝑑𝑍 −

𝑀

𝐾
∙ ∫𝐾 𝑑𝑍   ,                                                        (38) 

where Y denotes not absorbed feed or food, and Y is a function of F and Z. Below, we will show that (38) is biologically 

meaningful equation. In this section we will analyse (38). At first, we consider it in terms of integral average. One can 

rewrite (38) as follows    

                                                                                   𝑌̅ =
𝐹

𝑀
∙ 𝑀̅  −

𝑀

𝐾
∙ 𝐾   ,                                                                       (39) 

where 𝑌,̅ 𝑀,̅̅ ̅ and 𝐾 ̅̅̅ denote the integral average for the corresponding variables. In the next step, we will test (39) for 

a boar in weight Mx = 600 kg.  In (39) one can make the following substitution  

                                                                                       𝑍̅ =
𝐹

𝑀
  .                                                                                          (40) 

I can remind the interested reader numerical values of integral average variables 𝑀̅ and 𝐾 ̅̅̅ for a 600 kg heavy boar; 

they found elsewhere (Stass 2019). 𝐾 ̅̅̅ = 6,9822, Kx=10,1961,  𝑀̅̅̅ = 410,874 . From (39) and (40) it follows  

                                                                                        𝑌̅ = 𝑀̅(𝑍̅ − 1)  .                                                                              (41) 

Equation (41) is biased; numerically it is incorrect. Equation of the same form and comparable numerical output one 

can get from the algebraic equation F - M = Y. Second reason equation (41) is incorrect is its independence of K. It 

follows that although (41) can serve for numerical approximation it is biased. One can suggest that the above-mentioned 

move from (38) to (41) was hardly right. This result implies that under the model conditions equation (38) is feasible 

and meaningful. In other words, in this study a relation between variables holds in the form of the integral equation (38), 

and not in algebraic form. There is a reason to think that in animals the cumulative value of the studied variables is the 

integral sum. 

Short insight into application of equation (4) is as follows. We will use the following function for the average value  

                                                                                       𝑍̅ =
𝑀

∫
1
𝑍
𝑑𝑀

    , 𝑍 > 0 .                                                                 (42) 

From (42) it follows 

                                                                                      
𝑑𝑍̅

𝑑𝑀
=
𝑍̅(𝑍 − 𝑍̅)

𝑀𝑍
    .                                                                                 (43) 

From the system (44) considering (4) and (43), given below  

                                                                                     

{
 

 
𝑑𝐹̅

𝑑𝑍̅
= 𝑀             

𝑑𝑍̅

𝑑𝑀
=
𝑍̅(𝑍 − 𝑍̅)

𝑀𝑍

      ,                                                                          (44) 

we get 

                                                                                 
𝑑𝐹̅

𝑑𝑀
=
𝑍̅(𝑍 − 𝑍̅)

𝑍
  .                                                                                   (45) 
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I can remind the interested reader a result of the hybrid model. In the dynamics of M and K there is bifurcation point 

(Mx, Kx, Zx). In this bifurcation point, Z grows into infinity (Zx → ∞). Considering this event, let us find the limit (Z → 

∞) of (45), given by    

                                                                             lim
𝑍→∞

𝑑𝐹̅

𝑑𝑀
= 𝑍̅  .                                                                          (46)  

The limit (46) provides a link between the hybrid, and continuum model. 

In the study, there was a problem which the continuum model solved. The problem concerns a relation between F, and Z 

when Z grows into infinity (Z → ∞). Under this condition, both F and Z may well grow into infinity. A possible reason 

for that gives a phenomenological relation between F, and Z. When an animal reaches its maximum weight, it does not 

grow any more. In this point not any quantity of feed can increase its weight. In the point in which an animal has 

reached its individual maximum weight, abstraction (Z → ∞) is reasonable. This abstraction means that no growth is 

possible regardless of a quantity of feed F consumed. The question is should we in the point in which an animal's 

individual maximum weight is reached apply abstraction (F → ∞) as well? The following analyses shows that it is not 

the case; variable F grows up to a finite value. 𝐹|𝑍→∞ → 𝐶 , where C is a finite value. Let us consider (1), (3), and (40) 

it follows 

                                                                                       𝐹 − 𝐹̅ =  ∫ 𝑍̅ 𝑑𝑀 .                                                                             (47) 

Let us denote 𝐹 − 𝐹 ̅ = 𝑉 then, considering (47) we get 

                                                                                      
𝑑𝑉

𝑑𝑀
= 𝑍̅.                                                                                       (48) 

By comparing (48) with (46) one can arrive at the following relation 

                                                                     
𝑑𝑉

𝑑𝑀
|𝑧→∞ = lim

𝑍→∞

𝑑𝐹̅

𝑑𝑀
= 𝑍̅   .                                                                    (49) 

From equation (49) it follows that variable F grows up to a finite value. 𝐹|𝑍→∞ → 𝐶 , where C is a certain finite value. 

This is a meaningful outcome; it is biologically correct and supports the other results.  

4.2 Bifurcation of the Growth Trajectory  

In this study by analysing a non-local hybrid model, bifurcation of the growth trajectory in pigs was revealed. In the 

course of growth, the two trajectories, of weight gain M, figure 1, and growth invariant K, figure 3, have bifurcation. Both 

bifurcations take place in the same point (Mx, Kx, Zx) and simultaneously as Zx grows into infinity, Zx → ∞. In both cases 

it is the feed conversion coefficient Z, which causes bifurcations to show up, figure 2.  In this model variable Z is the 

order parameter. The dynamics of Z displays a first-order phase transition (Heffern et al., 2021). After this phase transition 

the dynamics of growth in domain M > Mx changes in essence. In the study, the bifurcations were preceded by a first-order 

phase transition. In the course of growth, the sequence of events at first the phase transition and then trajectory bifurcation 

has a biological meaning. This is a unique result for this kind of hybrid model. This result shows that in individual animals 

the growth trajectory is neither smooth nor continuous. On the trajectory Mx → Mxx, the feed conversion coefficient 

changes as follows Zx → ∞ → Zxv → ZIP → Zxx → ∞. In this inflection point ZIP, the rate of Z begins to increase. After 

passing the inflection point ZIP the rate of Z reaches its local minimum, figure 2. On this trajectory, in the point of the local 

minimum of Z, denoted Zxx\min, the growth rate of an animal is expected to reach its local maximum. Close to the 

bifurcation point, the values of Z are the following. (𝑍𝑥 = 62,5102), (𝑍𝑥𝑣 = 69,3076), (𝑍𝐼𝑃 = 65,0237), see figure 2. 

By analysing figure 2 one can note that the part of the curve Zx → Zxv → ZIP → Zxx\min to find in experiments is hardly 

possible. This part of the curve, figure 2, includes bifurcation of the growth trajectory; and, in experiments, Zx and Zxv, as 

well as ZIP and Zxx\min is indistinguishable from each other. At best, in experiments it is feasible to find the following curve 

Z → Zx → Zxx\min → Zxx thus leaving out the most essential part of the growth process. One can infer that in this study, 

methods complement each other. On the trajectory 𝑀𝑥|𝑡=𝑡𝑥 → 𝑀𝑥|𝑡=𝑡1 animals do not grow. Due to bifurcation, the 

growth of animals has stopped; on this trajectory pigs do not grow any longer. On this trajectory, Zx = ∞, and M = Mx. 

Through the dynamics of the feed conversion coefficient Z, the genetic information about the growth trajectory has been 

expressed. As a result, two bifurcations show up. The emerged trajectories are asymptotically stable; the animals, which 

can take on one of the emerged trajectories, can live a stable and predictable life stage. Bifurcations mentioned above are 

thought to be of the pitchfork form and of the supercritical type. It is a demanding task to describe the discussed 

bifurcations in the normal form. One can conclude that in this phase transition variable Z is the order parameter. Since we 

consider growth of individual animals, this phase transition takes in the whole organism as an entity; with all its 
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subsystems and scales. In the next stage bifurcation takes place. This sequence of events is to consider as a model of the 

systemic regulation of growth in individual animals. 

4.3 Growth and Longevity in the Pig 

In this study, three sets with asymptotic growth phenotypes were determined. In this section we will discuss life span of 

animals in each of the sets. This study supports the opinion that growth causes aging (Gems and Partridge, 2013). Under 

the model conditions, a simple case is with the phenotypes, which can reach their individual maximum weight Mx. When 

a pig reaches Mx it is 6,40 years of age. This follows from the calculation (M=Mx)⋀(K=Kx), and tx = 6,40 years. Then two 

setups follow. The animals which growth has stopped in weight Mx can live t1= 24,90 years, or potentially t2 = 49,31 years. 

The animals, which continue to grow beyond the bifurcation point, have the same life span t1, or t2. However, longevity of 

pigs that cannot reach weight Mx is unclear. We can only say that their life span is less than 24,90 years. One can note 

regularity; the phenotypes which take on a stable growth trajectory can have the definite life span, either t1, or t2. In 

animals, which are not conditioned to take on a stable growth trajectory life span is less than 24,90 years and uncertain.   

4.4 Continuum and Hybrid Methods 

In this study, continuum and hybrid modelling techniques were used together; both methods complementing each other. 

While analysing longevity, as well as some other cases, one can infer that the same result is impossible to obtain by 

applying both methods. In pigs, the maximum theoretical longevity t2 is possible to find by applying only a continuum 

technique, taking limit (t → ∞). By contrast, obtainable life span t1 in the pig is possible to find only by applying the 

hybrid method, equations (27) and (28). In this case, limit (Z→∞) was taken. In the model, each of the above results one 

can obtain only by one technique continuum, or hybrid. The reason for that is unclear. In one case the limit (t→∞) in other 

case the limit (Z→∞) was used. The procedure, passage to the limit was the same in both cases, differ only variables. One 

can conclude that in biology, the nature of a variable is a strong reason for choosing the modelling technique. It is the case 

in physical science. However, it is not at all obvious that the food conversion coefficient Z, which in this study is the order 

parameter, should be analysed by the hybrid method. One can conclude that in this field we have to go in essential 

biological particulars. One can infer that in this study, both methods complement each other. The aim for the further 

studies is to build on these models to acquire new knowledge in this field.    

5. Conclusions  

o In this non-local hybrid model, the main change in the system's dynamics was caused by a first-order phase 

transition. In animals' ontogeny the phase transition precedes bifurcation of the growth trajectory. 

o In the model, variable Z is the order parameter. The dynamics of Z displays a first-order phase transition. After 

this phase transition the dynamics of growth in domain M > Mx changes in essence. This phase transition takes 

in the whole organism as an entity; with all its subsystems and scales. In the next stage bifurcation take place. 

This process is to consider as a model of the systemic regulation of growth in individual animals.   

o In the course of ontogenetic growth, bifurcation of the trajectory of growth is a qualitative change. As a result 

of bifurcation, new trajectories of growth emerged. In a certain stage of growth, bifurcation makes available for 

an animal to switch from a current trajectory to emerged trajectory of growth. This change one can consider as 

a transition to the asymptotic growth phenotype. 

o In a population of animals, the growth dynamic with bifurcations in individual animals forms three sets with 

asymptotic phenotypes. The asymptotic growth phenotypes differ in their longevity, growth rate, and growth 

cessation. 

o In animals, the weight gain is a dynamic process. Under the model conditions the process can be described by 

the average food conversion coefficient 𝑍̅ derivative of the average consumed food 𝐹̅. 

𝑀 =
𝑑𝐹̅

𝑑𝑍̅
     

References 

Agutter, P. S., & Wheatley, D. N. (2004). Metabolic scaling: consensus or controversy? Theoretical Biology and 

Medical Modelling, 1, 13. https://doi.org/10.1186/1742-4682-1-13 

Boukal, D. S., Dieckmann, U., Enberg, K., Heino, M., & Jørgensen, C. (2014). Life-history implications of the 

allometric scaling of growth. Journal of Theoretical Biology, 359, 199–207. 

https://doi.org/10.1016/j.jtbi.2014.05.022 

Boulan, L., Milán, M., & Léopold, P. (2015). The Systemic Control of Growth. Cold Spring Harb Perspect Biol., 7, 

019117. https://doi.org/10.1101/cshperspect.a019117 

https://doi.org/10.1186/1742-4682-1-13
https://doi.org/10.1016/j.jtbi.2014.05.022
https://doi.org/10.1101/cshperspect.a019117


 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 3; 2022 

55 

Conlon, I., & Raff, M. (1999). Size Control in Animal Development. Cell, 96, 235–244. 

https://doi.org/10.1016/S0092-8674(00)80563-2 

Chirwa, E. D., Griffiths, P. L., Maleta, K., Norris, S. A., & Cameron, N. (2014). Multi-level modelling of longitudinal 

child growth data from the Birth-to-Twenty Cohort: a comparison of growth models. Ann Hum Biol., 41(2), 

168–179. https://doi.org/10.3109/03014460.2013.839742 

DI Bernardo, M., & Hogan, S. J. (2010). Discontinuity-induced bifurcations of piecewise smooth dynamical systems. 

Phil. Trans. R. Soc. A, 368, 4915–4935. https://doi.org/10.1098/rsta.2010.0198 

Gems, D., & Partridge, L. (2013). Genetics of Longevity in Model Organisms: Debates and Paradigm Shifts. Annu. Rev. 

Physiol, 75(6), 21–44. https://doi.org/10.1146/annurev-physiol-030212-183712 

Goldbeter, A. (2018). Dissipative structures in biological systems: bistability, oscillations, spatial patterns and waves. 

Phil. Trans. R. Soc. A, 376, 20170376. http://dx.doi.org/10.1098/rsta.2017.0376 

Heffern, E. F. W., Huelskamp, H., Bahar, S., & Inglis, R. F. (2021). Phase transitions in biology: from bird flocks to 

population dynamics. Proc. R. Soc. B, 288, 20211111. https://doi.org/10.1098/rspb.2021.1111 

Lui, J. C., & Baron, J. (2011). Mechanisms Limiting Body Growth in Mammals. Endocrine Reviews, 32(3), 422–440. 

https://doi.org/10.1210/er.2011-0001 

Rice, S. H. (2008). Theoretical Approaches to the Evolution of Development and Genetic Architecture. Ann. N.Y. Acad. 

Sci., 1133, 67–86. https://doi.org/10.1196/annals.1438.002 

Shingleton, A. W., Mirth, C. K., & Bates, P. W. (2008). Developmental model of static allometry in holometabolous 

insects. Proc. R. Soc. B, 275, 1875–1885. https://doi.org/10.1098/rspb.2008.0227 

Solé, R. V., Manrubia, S. C., Luque. B., Delgatod, J., & Bascompte, J. (1996). Phase transitions and complex systems. 

Complexity, 1, 13–26. https://doi.org/10.1002/cplx.6130010405 

Stass, V. L. (2021). Growth pattern of animals is a model for the growth of humans. Journal of Mathematics Research, 

13(1). https://doi.org/10.5539/jmr.v13n1p47 

Stass, V. L. (2019). A model of growth trajectory bifurcation in animals ontogeny. International Journal of Biology, 

12(1), 20-29. https://doi.org/10.5539/ijb.v12n1p20 

Stewart, I. (2011). Sources of uncertainty in deterministic dynamics: an informal overview. Phil. Trans. R. Soc. A, 369, 

4705–4729. https://doi.org/10.1098/rsta.2011.0113 

Texada, M. J., Koyama, T., & Rewitz, K. (2020). Regulation of Body Size and Growth Control. Genetics, 216, 269–313. 

https://doi.org/10.1534/genetics.120.303095 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.1016/S0092-8674(00)80563-2
https://doi.org/10.3109/03014460.2013.839742
https://doi.org/10.1098/rsta.2010.0198
https://doi.org/10.1210/er.2011-0001
https://doi.org/10.1196/annals.1438.002
https://doi.org/10.1098/rspb.2008.0227
https://doi.org/10.1002/cplx.6130010405
https://doi.org/10.1098/rsta.2011.0113

