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Abstract 

This article establishes a geometrical and mathematical bridge between the universal constant 𝜋 and the golden ratio 𝜑 

by interrelating the construction of the area of a circle using two approaches: one formed using the rotation of a regular 

unit pentagon and the other one from the rotation of its inverse ― the pentagram of side reference 𝜑. The mathematical 

end result is a linear expression of 𝜋 as a function of 𝜑. As an interesting side result, an expression for the area of a circle 

is derived based on the golden ratio 𝜑 and a geometrically motivated coefficient. A scripted program for the verification 

of the derived expressions is provided. 
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1. Introduction 

The constant π and the golden ratio φ ― arguably the two most known numbers in mathematics ― hold a special place 

in the collective knowledge of humanity. Since the invention of the wheel, the universes of circularity (i.e., rotation) and 

linearity (i.e., translation) have been intertwined ― implicitly and explicitly for the past millennia ― by the constant π 

(Robson 2001, Swetz 2014). One definition presented in the 18th century defines π as the ratio of a circle's circumference 

to its diameter (Jones 1706). Using cunning ingenuity, humans have devised over time the cleverest ways to determine π, 

with more recently involving extraordinary computational methods to determine its 62.8 trillion digit (Lu 2021, Thomas 

2021). While various complexities involving π have been unveiled ― making it a practical tool in everyday science ― 

its sister constant φ remains to a great extent a mystery. Its widespread practical application (to the same level as π) is 

yet to be achieved. The golden ratio 1: 𝜑 is a distinct mathematical property that is easily and recurrently observed in 

nature (Caryl-Sue 2012). It also appears (intentionally and unintentionally) on the architecture of great monuments ― 

both ancient like the Parthenon and the Great Pyramids (Livio 2002), and more modern constructions such as for 

example the glass pyramid at the Louvre (which has a width to height ratio close to 𝜑)[Bernstein 1985]. More recently 

in astrophysics, the Kepler space telescope has discovered a group of stars that has a ratio between pulsing frequencies 

close to the irrational number 0.61803398875 = 1 𝜑⁄ , which is the inverse of the golden number 

𝜑 = 1.61803398875 (Moskowitz, 2015). Another discovery in the field of quantum physics suggests that hidden 

quantum resonant symmetries exist in the ferromagnetic properties of solid-state matter carrying frequencies 

interrelated by the golden number (Coldea 2022). Pure mathematical studies have also been conducted on 𝜑 

geometrical origins (Rigby 1988). The golden ratio has been observed in various aspects of human anatomy, with 

particular emphasis in aesthetics (Singh 2019, Castro 2021). For example, in biology the shape of human red blood cells 

has been shown to be linked to the negative of the golden ratio (Zhang 2017). The relative size of bones in a human 

hand presents proportions in line with the golden ratio, while the human ear presents an approximate shape to the 

golden spiral (Persaud 2015). In the works of Leonardo da Vinci (Murtinho 2015), the iconic drawing of a human being 

inside a circle ― representing circularity being governed by 𝜋 ― and a square ― representing linearity holding 

various golden proportions 1: 𝜑 ― precludes the existence of a relation between these two constants, where the human 

in itself is implied philosophically as being the connection between them. Despite the substantial amount of research on 

both 𝜋 and 𝜑, no account has been found in where these two constants are expressed with respect to one another. 

There are several possible benefits that such linkage can bring. For example, it will be possible to express the properties 

of a circle ― perimeter or area ― as a function of the golden number (in this instance, the case for area will be later 

derived from first principles). Similarly, properties from phenomena in nature governed by the golden spiral (such as the 

sunflower) could be expressed as a function of π. The ability to express π as a function of the golden ratio φ, and vice 

versa, would potentially bridge circular patterns (e.g., shapes/orbits of planets/stars, atoms, etc) to those behaving in a 

spiral manner (e.g., shape of a galaxy, whirlpools, etc). This encompasses the possibility that the aforementioned star 
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pulsating frequency ratio governed by 𝜑 (as observed by the Kepler space telescope) could potentially be related to the 

circular π properties of the planet-star system, like the circumference/volume of the stars or the types of orbits of the 

planets surrounding them. 

2. Hypothesis 

The hypothesis of this article is that there is a geometrical construct, from which both the constant 𝜋 and the golden 

ratio 𝜑 can be determined or measured independently, that acts as a foundation allowing for the formulation of a 

mathematical expression by which constant 𝜋 becomes a function of the golden ratio 𝜑, and vice versa.  

3. Theory 

Establishing a common ground between the constant 𝜋 and the golden ratio 𝜑 implies the existence of a geometrical 

construct that, when formed, exhibits in its definition both quantities. The constant 𝜋 implies a circle [formed by the 

rotation of regular pentagons, as explained in a preceding work (Teia 2022)], while 𝜑 is found explicitly in a 

pentagram. Hence, a way to bring the two constants into one geometrical expression is by rotating both the pentagon 

and its associated pentagram such that they form the same circle. Consider five angularly equidistant (by angle 5𝛿) 

points A, B, C, D and E at an equal radial distance from the center (Figure 1). Connecting each point with its neighbor 

gives a pentagon of side unit (Figure 1a). Connecting each alternating point gives a pentagram of side equal to the 

golden ratio 𝜑 = (1 + √5) 2⁄ = 1.618033989 (Figure 1b). Figure 1a shows the rotating five pentagons forming the 

approximate area of a ring ― defined by an inner and outer circle ― whose interference forms a series of strips 

(highlighted in green). Figure 1b shows the same process but executed with a pentagram instead. Both circles ― in 

Figure 1a and 1b ― have the same area 𝐴⊙. If the pentagon between the points ABCDE has a reference length side 

unit 1(= 𝐴𝐸) , it implies the presence of π , or more precisely the value relative to a pentagon of 

𝜋108∘ = 𝜋90∘ tan(180 5⁄ ), which holds an internal angle of 108° (Teia 2022) ― then the pentagram formed between 

the same points A, B, C, D and E has a reference length 𝜑(= 𝐴𝐷). In both cases, the circles are scalable by multiplying 

the reference length with 𝐿. If in both Figures 1a and 1b the outer circle becomes the inner, a new ring is formed 

downscaled from the first. The process is repeated in a fractal manner inward until the entire area of both circles is filled. 

Adding the areas of the individual rings gives the area of the circle. Each approach yields a different equation to 

determine the same circle area. Equating the areas results in a connection that allows the formulation of 𝜋 directly as a 

function of 𝜑. When the pentagon is rotated with equal angular distance, the interference pattern formed results in a 

series of identical strips AB’H (as shown in Figure 1a and 1b). This approach of finding the area of a circle using rotating 

polygons follows closely from a previously publication (Teia 2022). 

 

Figure 1. Ring formed by five evenly spaced revolving: (a) pentagons and (b) pentagrams 

3.1 Circle Area as a Function of 𝜋 

The sum of all the strips AB’H (in Figure 1a) defines the outer ring of the circle, and gives an initial 

approximation to the ring’s area. A closer zoom into a single strip in Figure 2a is shown in Figure 2b. Here, the side of 

the regular pentagon 𝐴𝐸 = 𝐿 = 1 is subdivided into segments by the rotating pentagon copies, with the sum of the 
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different parts give the equality  

2(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4) + 𝑧5 = 1 ≡ 𝐿                                                                          (1) 

While scaling the circle area is possible by changing the value of L, for the purpose of determining π, i is convenience to 

set L as unit. Here the longest side of the triangles composing the strip is defined as variable 𝑧, with the sorter being 

variable 𝑥. A more general expression for Eq.(1) with infinite number of pentagons (𝑁 = ∞) will be presented later. 

Looking along the segment AE, it is noticeable that its partition is symmetric about its midpoint, explaining the presence 

of the multiplication factor two in Eq.(1).  

 

Figure 2. Interference strip created by five revolving pentagons: (a) overview and (b) key lengths and angles 

A program was scripted in the open-source software Octave (Eaton et al 2021) containing the mathematical process 

herein described. This can be found in Annex A, and can be copied and ran directly in the “Editor” tab. The angles 

and lengths necessary for quantifying the area of the triangles are identified by zooming into the interference strip AB’H 

(Figure 2b). The strip is formed by pairs of adjacent outward and inward facing triangles, where each pair is located 

along the strip by index 𝑛 (starting outside and moving inwards). The successive angles of the triangles facing 

outwards are given by  

𝛾
𝑜,𝑛

= 𝜃 + (𝑛)𝛿                                                                                      (2) 

where 𝜃 = 180° − 360° N⁄  is the polygon internal angle, and the subscript 𝑜 denotes an obtuse angle facing outward 

away from the center of the circle (starting with the most outer triangle AB’E at 𝑛 = 1). Similarly, the successive 

angles of the triangles facing inwards are given by  

𝛾
𝑖,𝑛

= 𝜃 + (𝑛 − 1)𝛿 = 𝛾
𝑜,𝑛−1

                                                                       (3) 

and the subscript 𝑖 denotes an obtuse angle facing inward towards the center of the circle (starting with the most outer 

triangle AEF at 𝑛 = 1). The sides 𝑥 and 𝑧 are in fact interconnected and interdependent via the law of cosines. When 

applied between two adjacent triangles at the same level ― like AB’E and AEF, both at 𝑛 = 1 ― establishes a 

connection between two successive values of 𝑧. The following relation is present for triangle AB’E  

𝑥1
2 − 2𝑥1𝑥1 cos 𝛾

𝑜,1
+ 𝑥1

2 = 𝑧1
2                                                                         (4) 

All trigonometric functions in this research operate directly on an argument specified in degrees. Applying to triangle 

AEF, the associated relation between lengths and angles becomes 

𝑥1
2 − 2𝑥1𝑥1 cos 𝛾

𝑖,1
+ 𝑥1

2 = 𝑧2
2                                                                      (5) 
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Since Eq.(4) and Eq.(5) have the common variable 𝑥1, they can be equated resulting in the simplified relation 

𝑧2 =
√1 − cos 𝛾

𝑖,1

√1 − cos 𝛾
𝑜,1

 𝑧1                                                                                  (6) 

Generalizing further to a relation between two subsequent lengths 𝑧𝑛 and 𝑧𝑛+1 [with simultaneous expansion using 

Eq.(2) and Eq.(3)], results in 

𝑧𝑛+1 =
√1 − cos 𝛾

𝑖,𝑛

√1 − cos 𝛾
𝑜,𝑛

𝑧𝑛 =
√1 − cos(𝜃 + (𝑛 − 1)𝛿 )

√1 − cos(𝜃 + (𝑛)𝛿 )
𝑧𝑛 = 𝑄

𝑛
𝑧𝑛                                             (7) 

A connection between two successive values of 𝑥 is achieved when the law of cosines is applied between two adjacent 

triangles at different levels ― like AEF at 𝑛 = 1 and GEF at 𝑛 = 2. Starting with triangle GEF, the relation becomes 

   𝑥2
2 − 2𝑥2𝑥2 cos 𝛾𝑜,2 + 𝑥2

2 = 𝑧2
2                                                                           (8) 

Both Eq.(8) and the former relation for triangle AEF [in Eq.(5)] have the common variable 𝑧2, that when combined 

give 

𝑥2 =
√1 − cos 𝛾

𝑖,1

√1 − cos 𝛾
𝑜,2

𝑥1                                                                                 (9) 

This is both generalized and further expanded [by replacing Eq.(2) and Eq.(3)], resulting in 

𝑥𝑛+1 =
√1 − cos 𝛾

𝑖,𝑛

√1 − cos 𝛾
𝑜,𝑛+1

𝑥𝑛 =
√1 − cos(𝜃 + (𝑛 − 1)𝛿 )

√1 − cos(𝜃 + (𝑛 + 1)𝛿 )
𝑥𝑛 = 𝐾𝑛𝑥𝑛                                  (10) 

We can now expand Eq.(1) by replacing both Eq.(7) and Eq.(10), resulting in 

2(1 + 𝐾1 + 𝐾1𝐾2 + 𝐾1𝐾2𝐾3)𝑥1 + (𝑄4𝑄3𝑄2𝑄1)𝑧1 = 1                                                (11) 

Further re-arranging, while replacing Eq.(4) in the form 𝑧1 = 𝑥1√2(1 − cos 𝛾
𝑜,1

) gives 

𝑥1(𝑃 = 5) =
1

2(1 + 𝐾1 + 𝐾1𝐾2 + 𝐾1𝐾2𝐾3) + (𝑄
4
𝑄

3
𝑄

2
𝑄

1
)√2(1 − cos 𝛾

𝑜,1
)

                                        (12) 

The resulting expression for 𝑧1 becomes 

𝑧1(𝑃 = 5) =

√2(1 − cos 𝛾
𝑜,1

)

2(1 + 𝐾1 + 𝐾1𝐾2 + 𝐾1𝐾2𝐾3) + (𝑄
4
𝑄

3
𝑄

2
𝑄

1
)√2(1 − cos 𝛾

𝑜,1
)

                                        (13) 

Both Eq.(12) and Eq.(13) are applicable to the particular case of five revolving unit pentagons, while the general case of 

𝑧1 for any number of rotating pentagons 𝑃 extrapolates to 

𝑧1(𝑃) =

√2(1 − cos 𝛾
𝑜,1

)

2[1 + ∑ ∏ (𝐾𝑛)𝑚
𝑛=1

𝑃−2
𝑚=1 ] + ∏ (𝑄

𝑛
)𝑃−1

𝑛=1 √2(1 − cos 𝛾
𝑜,1

)

                                                     (14) 
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While at the same time, the generalized function for 𝑥1 for any number of pentagons is 

𝑥1(𝑃) =
1

2[1 + ∑ ∏ (𝐾𝑛)𝑚
𝑛=1

𝑃−2
𝑚=1 ] + ∏ (𝑄

𝑛
)𝑃−1

𝑛=1 √2(1 − cos 𝛾
𝑜,1

)

                                                     (15) 

Equations (14) and (15) can be seen at work in the annexed Octave program, in the form of two for-loop cycles (lines 

20 to 34). Knowing firstly 𝑥1 [from Eq.(12)] and 𝑧1 [from Eq.(13)], it is possible ― using Eq.(7) and Eq.(10) ― to 

obtain values for the general expressions of 𝑥𝑛  and 𝑧𝑛  (programmed in Annex A as lines 35 to 40). Having 

expressions for the various sides of the triangles allows the computation of their areas. For example, the area 𝐴𝑜,1 of 

the triangle AB’E (in the strip AB’H) is given as 

𝐴𝑜,1 = ℎ ×
𝑧1

2
        with        h = √𝑥1

2 −
𝑧1

2

2
                                                     (16) 

Thus, resulting in the areas 𝐴𝑜,1 of triangle ABC and 𝐴𝑖,1 of triangle ACD (both at radial position 𝑛 = 1) as 

𝐴𝑜,1 =
𝑧1

2
√𝑥1

2 −
1

4
𝑧1

2          ;            𝐴𝑖,1 =
𝑧2

2
√𝑥1

2 −
1

4
𝑧2

2                                    (17) 

While it is more interesting to discuss the triangles in their inward and outward orientation, mathematically it is more 

convenient to lump them into one expression. Thus, the area in the strip is given by a double sum that accounts for the 

contributions of all the pairs (one inward and one outward) triangles, resulting in 

𝐴𝑠𝑡𝑟𝑖𝑝(𝑁 = 5) = ∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

                                                      (18)

𝑃−1

𝑖=1

 

A ring is formed as a result of the summation of 𝑁 × 𝑃 strips― henceforth identified as the most outward ring. For the 

case of five revolving pentagons, the area of the ring is expressed as the sum of their individual 5 × 𝑃 strip areas, 

resulting in 

𝐴𝑟𝑖𝑛𝑔(𝑁 = 5) = (5 × 𝑃) {∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

}                                                 (19) 

To understand how the area inside the outer ring is formed, consider Figure 3a that shows a more detailed example of a 

ring formed by the interference of sixteen pentagons at an angular equidistance to each other, defining an area webbed 

by their interference pattern. The rest of the area inside the inner circle can be filled with similar rings, leading to a 

complete tessellation of the area of the circle. As an illustration, consider the simple case of just two pentagons (colored 

in black within the outer ring), one upright and one inverted. Uniting the midpoints ― I and J ― along their sides forms 

a smaller pair of pentagons, whose sides have a length interlinked geometrically to the first by the triangle DIJ. The 

process is fractal, and when repeated leads to a convergence towards the center (as shown in Figure 3a). Subsequentially, 

this process of fractalization can be applied to each of the sixteen pentagons in the outer ring, leading to the tessellation 

of an infinite number of inward rings (shown in Figure 3b), and thus of the entire area of the circle. The length of the 

side of a pentagon is related to its immediate lower fractal expression by a factor of 2 × [1 2⁄ cos(36°)] = cos(36°) ― 

that is, the angle between the sides of two pentagons of adjacent levels is 𝜀 = (180° − 108°) 2⁄ = 36° ― that results in 

an area relation of cos2(36°). This means that multiplying this factor by the area of the outer ring gives the area of the 

next adjacent inward ring. Multiplying it again, gives the next inward ring, and so on and so forth. The end result is a 

sum of products, where each product term is a scaling factor transforming the area of the outer ring into an inward ring 

at a specific level (e.g., two fractal levels down, the product becomes cos4(36°)).  

cos2(36°) + cos4(36°) + cos8(36°) + ⋯ = ∑ cos2𝑘(36°)

∞

𝑘=1

                                              (20) 
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.  

Figure 3. Fractal approach using the infinite inward propagation of (a) 2 pentagons and (b) 16 pentagons 

For numerical simplicity (in working out a first example), let us resume the original case of five revolving pentagons 

only. The sum of all the area of all the rings is obtained by multiplying the outer ring area [given by Eq.(19)] by the 

series of scaling factors [given by Eq.(20)], resulting in 

𝐴⊙(𝑁 = 5) = (5 × 𝑃) {∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ cos2𝑘(36°)

∞

𝑘=1

                                    (21) 

The area of the circle is computed by substituting the values in Table 1 into Eq.(21) resulting in 2.181413566546808, 

which is just an initial estimate achieved using only five revolving pentagons (Figure 4). One way to ascertain the 

validity of Eq.(21) is by corroborating it against a numerically determined value using a Computer-Aided Design 

program ― of which open-source software Geogebra (Feng 2014) and FreeCAD (Havre 2021) are examples. When the 

number of pentagons reaches two million, the estimated area becomes 2.2732777998(45238), which matches the CAD 

value (2.273277799898968) up to ten decimal places. 

Table 1. Properties of the triangles composing the strip in the outer ring (pentagon approach) 

Angle 𝜸 Side 𝒛 Side 𝒙 Area 𝑨𝒐 

(Outward) (Inward)   (Outward) 

𝜸𝟏𝒐 = 𝟗𝟎°  𝛾1𝑖 = 60° 𝑧1 = 0.21322963 𝑥1 = 0.12166382 𝐴𝑜,1 = 0.00624891 

𝜸𝟐𝒐 = 𝟏𝟐𝟎°  𝛾2𝑖 = 90° 𝑧2 = 0.19685619 𝑥2 = 0.10586211 𝐴𝑜,2 = 0.00383579 

𝜸𝟑𝒐 = 𝟏𝟓𝟎°  𝛾3𝑖 = 120° 𝑧3 = 0.18553534 𝑥3 = 0.09577667 𝐴𝑜,3 = 0.00220960 

𝜸𝟒𝒐 = 𝟏𝟓𝟎° 𝛾4𝑖 = 120° 𝑧4 = 0.178101792 𝑥4 = 0.08975867 𝐴𝑜,4 = 0.00100180 

  𝑧5 = 0.17387747   

Area 𝑨𝒊 (Inward)    

𝑨𝒊,𝟏 = 𝟎. 𝟎𝟎𝟕𝟎𝟑𝟖𝟖𝟏 ; 𝑨𝒊,𝟐 = 𝟎. 𝟎𝟎𝟒𝟕𝟑𝟏𝟏𝟎 ; 𝑨𝒊,𝟑 = 𝟎. 𝟎𝟎𝟑𝟏𝟑𝟗𝟕𝟑 ; 𝑨𝒊,𝟒 = 𝟎. 𝟎𝟎𝟏𝟗𝟒𝟎𝟔𝟓 

 

It was shown in a previous work (Teia 2022) that the ratio between the area of a circle (corresponding to the inner 

circle in Figure 1a) and the polygon circumscribing it (corresponding to the pentagon of side 1=AB) is equal to 

the ratio of the relative value of π (that for a pentagon is 𝜋108∘ = 4.324031329886049) divided by the number 

of sides of the polygon (i.e., 𝑁 = 5 for a pentagon). Like pealing layers from an onion, transforming the inner 

circle area into the outer circle area simply requires the addition of an outer ring.  
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Figure 4. Accuracy of the predicted area of circle 𝐴⊙ for varying number of interfered rotating pentagons 

From the perspective of Eq.(20), this is achieved by dividing the aforementioned area of the inner circle by a scaling 

factor cos2(36°) (instead of multiplication, which would reduce the area of the rings inwardly).A recent published 

work (Teia 2022) showed that the numerical approximation given by Eq.(21) corresponds (at infinity) to the exact value 

given by 

𝐴⊙(𝑁 = 5) = {
𝜋108∘

5

5(12)

4√5 − 2√5
}

1

cos2(36°)
=  2.273277799899                                  (22) 

3.2 Circle Area as a Function of 𝜑 

The process here is essentially the same (as in section 3.1), except that the pentagons are replaced by five-pointed stars 

or pentagrams, and the reference length of the series is now 𝜑 − 1. Figure 5a shows five angularly-equidistant 

pentagrams, which forms twenty-five identical interference strips. For convenience, the zoom into the strip in Figure 5b 

has been rotated 90 degrees clockwise. The strip’s orientation does not really matter, as it is an angularly recurrent 

feature that exists all around the circle.  

 

Figure 5. Interference strip created by five revolving pentagrams: (a) overview and (b) key lengths and angles 
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The inward triangles are facing right to left towards the center, while the outward triangles are facing left to right away 

from the center. The internal angle of the triangles facing outward away from the centre is given as 

𝛾𝑜,𝑛 = 𝛽 + (𝑛)𝛿                                                                                  (23) 

where 𝑛 is the triangle pair (inward and outward) counting from right to left, and the angles are 𝛽 = 180° 5⁄ = 36° and 

𝛿 = 360 (𝑁 × 𝑃)⁄ = 360 25⁄ = 14.4°. In turn, the internal angle of the triangles facing inward is 

𝛾𝑖,𝑛 = 𝛽 + (𝑛 − 1)𝛿 = 𝛾𝑜,𝑛−1                                                                       (24) 

In Figure 5b, side 𝑥2 (in triangle IFG) relates to side 𝑥1 (in triangle AEI) via the law of cosines (as both have the 

common side 𝑧2) 

𝑥2 =
√1 − cos 𝛾𝑖,1

√1 − cos 𝛾𝑜,2

𝑥1                                                                               (25) 

A program was scripted in the open-source software Octave (Eaton et al 2021) containing the mathematical process herein 

described. This can be found in Annex B, and can be copied and ran directly in the “Editor” tab. Hence in general, any 

side 𝑥𝑛+1 is connected to its predecessor 𝑥𝑛 (and hence also to the initial 𝑥1) via the law of cosines. The equation can 

be further developed by replacing the outward and inward facing angles ― 𝛾𝑜,𝑛+1 from Eq.(23) and 𝛾𝑖,𝑛 from 

Eq.(24) ― resulting in 

𝑥𝑛+1 =
√1 − cos 𝛾𝑖,𝑛

√1 − cos 𝛾𝑜,𝑛+1

𝑥𝑛 =
√1 − cos(𝛽 + (𝑛 − 1)𝛿 )

√1 − cos(𝛽 + (𝑛 + 1)𝛿 )
𝑥𝑛 = 𝐾𝑛𝑥𝑛                                  (26) 

The distance AA’ is always fixed with the position of the pentagram ACEBD, so what changes is the number of times it 

partitions due to the other revolving pentagrams. In this case, the segment AA’ of length 𝜑 − 1 is split in five times by 

the superimposed revolving pentagrams. This relation (in Figure 5b) is expressed as  

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 𝜑 − 1                                                             (27) 

Remembering that all lengths 𝑥 are relatable to the initial 𝑥1 via the law of cosines given by Eq.(26) results in 

𝑥1 + (𝐾1)𝑥1 + (𝐾2. 𝐾1)𝑥1 + (𝐾3. 𝐾2. 𝐾1)𝑥1 + (𝐾4. 𝐾3. 𝐾2. 𝐾1)𝑥1 = 𝜑 − 1                     (28) 

Re-arranging this expression for 𝑥1 to be a function of 𝜑 − 1 gives 

𝑥1 =
𝜑 − 1

1 + 𝐾1 + 𝐾2. 𝐾1 + 𝐾3. 𝐾2. 𝐾1 + 𝐾4. 𝐾3. 𝐾2. 𝐾1
= 𝑥̅1(𝜑 − 1 )                                          (29) 

This means that Eq.(26) can also be reduced to 

𝑥𝑛+1 = 𝑥̅𝑛+1(𝜑 − 1 )                                                                                 (30) 

where the normalized length 𝑥̅𝑛+1 is given as 

𝑥̅𝑛+1 =
1

1 + 𝐾1 + 𝐾2. 𝐾1 + 𝐾3. 𝐾2. 𝐾1 + 𝐾4. 𝐾3. 𝐾2. 𝐾1
                                                         (31) 

For triangle AB’F, the law of cosines establishes a relation between 𝑧1 and the (now known) 𝑥1 via the outward 

facing angle 𝛾𝑜,1 as 

𝑥1
2 − 2𝑥1𝑥1 cos 𝛾𝑜,1 + 𝑥1

2 = 𝑧1
2                                                                  (32) 

This gives an expression for 𝑧1 

𝑧1 = 𝑥1√2(1 − cos 𝛾𝑜,1)                                                                           (33) 

which can be further expanded by replacing 𝑥1 from Eq.(30) and Eq.(31) 

𝑧1 =
√2(1 − cos 𝛾𝑜,1) 

1 + 𝐾1 + 𝐾2. 𝐾1 + 𝐾3. 𝐾2. 𝐾1 + 𝐾4. 𝐾3. 𝐾2. 𝐾1
 (𝜑 − 1 )  =  𝑧1̅(𝜑 − 1 )                            (34)
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While Eq.(29) and Eq.(34) are applicable to the particular case of five revolving unit pentagrams, the general case of 𝑧1 

for any number of rotating squares is extrapolated to 

𝑧1(𝑃) =

√2(1 − cos 𝛾
𝑜,1

)

1 + ∑ ∏ (𝐾𝑛)𝑚
𝑛=1

𝑃−1
𝑚=1

(𝜑 − 1 )                                                              (35) 

while the generalized function for 𝑥1 being inherently  

𝑥1(𝑃) =
𝜑 − 1

1 + ∑ ∏ (𝐾𝑛)𝑚
𝑛=1

𝑃−1
𝑚=1

                                                                              (36) 

Similarly, any side 𝑧𝑛+1 is connected to its predecessor 𝑧𝑛 (and hence also to the initial 𝑧1) via the law of cosines. 

The equation can be further developed by replacing the outward and inward facing angles ― 𝛾𝑜,𝑛 from Eq.(23) and 

𝛾𝑖,𝑛 from Eq.(24) ― resulting in 

𝑧𝑛+1 =
√1 − cos 𝛾𝑖,𝑛

√1 − cos 𝛾𝑜,𝑛

𝑧𝑛 =
√1 − cos(𝛽 + (𝑛 − 1)𝛿 )

√1 − cos(𝛽 + (𝑛)𝛿 )
𝑧𝑛 =  𝑧𝑛̅+1(𝜑 − 1 )                                      (37) 

The same process as in section 1.2 applies here. The expression that defines the areas of the triangles that composes the 

strip is the same as the one defined previously in Eq.(17). As such, the double sum that defined the area of the strip in 

Eq.(18) is modified by normalized Eq.(30) and Eq.(37) to become 

𝐴𝑠𝑡𝑟𝑖𝑝(𝑁 = 5) = ∑ ∑
𝑧𝑖̅+𝑗−1

2
√𝑥̅𝑖

2 −
1

4
𝑧𝑖̅+𝑗−1

2

2

𝑗=1

× (𝜑 − 1 )2                                                 (38) 

𝑃−1

𝑖=1

 

From Eq.(38), the normalized expression for the area of the outer ring in Eq.(19) becomes 

𝐴𝑟𝑖𝑛𝑔(𝑁 = 5) = (5 × 𝑃) {∑ ∑
𝑧𝑖̅+𝑗−1

2
√𝑥̅𝑖

2 −
1

4
𝑧𝑖̅+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=0

} × (𝜑 − 1 )2                                         (39)  

Here, the modeling of the fractality differs from the previous section 3.2. The lengths of the sides of two pentagrams 

belonging to different adjacent fractal levels are interrelated by triangle DIJ (Figure 6a).  

 

Figure 6. Fractal approach using the infinite inward propagation of (a) 2 pentagrams and (b) 16 pentagrams 

The outer most pentagram has an half side of 𝐷𝐼 = 𝐷𝐽 = 𝜑 2⁄ , and the projection of both (DI and DJ) onto the side of 

the pentagram belonging to the next fractal level gives 𝐼𝐽 = 𝜑 sin(18°). This results in areas between two adjacent 

fractal levels being interrelated by the scaling factor sin2(18°). When accounting for all the subsequent rings, their area 
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reduction compounds by multiplying each subsequent level by sin2(18°). The entire area contribution for all rings is 

accounted for by adding these area factors as a sum   

sin2(18°) + sin4(18°) + sin8(18°) + ⋯ = ∑ sin2𝑘(18°)

∞

𝑘=1

                                               (40) 

This multiplies the area of the outer ring Eq.(39) to give the total area of all the internal rings summed together, which is 

in the end the area of the entire circle (Figure 6b), resulting in 

𝐴⊙(𝑁 = 5) = (5 × 𝑃) {∑ ∑
𝑧𝑖̅+𝑗−1

2
√𝑥̅𝑖

2 −
1

4
𝑧𝑖̅+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ sin2𝑘(18°)

∞

𝑘=1

 (𝜑 − 1 )2                                  (41) 

The novelty in Eq.(41) is that the area of the circle is defined as a function of the golden ratio 𝜑 (without the presence 

of π). Scaling of the circle, and its area, is achieved by multiplying the reference length by variable 𝐿, that in this case 

works by replacing the length (𝜑 − 1 ) by (𝜑 − 1 )𝐿 [where L is a scalar that increases or decreases the side of the 

pentagram]. The area of the circle is computed by substituting the values from Table 2 into Eq.(41) resulting in 

2.245631227704724, which is an initial estimate based upon only five rotating pentagrams (as indicated in Figure 7). 

When the number reaches two million, the estimate becomes 2.273277799(900334), matching the CAD value 

(2.273277799898968) up to nine decimal places. 

Table 2. Properties of the triangles composing the strip in the outer ring (pentagram approach) 

Angle 𝜸 Side 𝒛 Side 𝒙 Area 𝑨 

(Outward) (Inward)   (Outward) 

𝜸𝟏𝒐 = 𝟓𝟎. 𝟒°  𝛾1𝑖 = 36.0° 𝑧1 = 0.21322963 𝑥1 = 0.25039925 𝐴𝑜,1 = 0.02415551 

𝜸𝟐𝒐 = 𝟔𝟒. 𝟖°  𝛾2𝑖 = 50.4° 𝑧2 = 0.15475525 𝑥2 = 0.14440790 𝐴𝑜,2 = 0.00943447 

𝜸𝟑𝒐 = 𝟕𝟗. 𝟐°  𝛾3𝑖 = 64.8° 𝑧3 = 0.12297179 𝑥3 = 0.96459964 𝐴𝑜,3 = 0.00456986 

𝜸𝟒𝒐 = 𝟗𝟑. 𝟔° 𝛾4𝑖 = 79.2° 𝑧4 = 0.10337167 𝑥4 = 0.70902686 𝐴𝑜,4 = 0.00250864 

𝜸𝟓𝒐 = 𝟏𝟎𝟖° 𝛾5𝑖 = 93.6° 𝑧5 = 0.90390145 𝑥5 = 0.55864182 𝐴𝑜,5 = 0.00148403 

𝜸𝟔𝒐 = 𝟏𝟐𝟐. 𝟒° 𝛾6𝑖 = 108° 𝑧6 = 0.81446472 𝑥6 = 0.46471443 𝐴𝑜,6 = 0.00091170 

𝜸𝟕𝒐 = 𝟏𝟑𝟔. 𝟖° 𝛾7𝑖 = 122.4° 𝑧7 = 0.75192375 𝑥7 = 0.40435726 𝐴𝑜,7 = 0.00055963 

𝜸𝟖𝒐 = 𝟏𝟓𝟏. 𝟐° 𝛾8𝑖 = 136.8° 𝑧8 = 0.70868193 𝑥8 = 0.36583433 𝐴𝑜,8 = 0.00032238 

𝜸𝟗𝒐 = 𝟏𝟔𝟓. 𝟔° 𝛾9𝑖 = 151.2° 𝑧9 = 0.68028831 𝑥9 = 0.34284761 𝐴𝑜,9 = 0.00014616 

  𝑧10 = 0.66415284   

Area A  (Inward)    

𝑨𝒊,𝟏 = 𝟎. 𝟎𝟏𝟖𝟒𝟐𝟕𝟎𝟎 ; 𝑨𝒊,𝟐 = 𝟎. 𝟎𝟎𝟖𝟎𝟑𝟒𝟎𝟎 ; 𝑨𝒊,𝟑 = 𝟎. 𝟎𝟎𝟒𝟐𝟎𝟗𝟒𝟗 ; 𝑨𝒊,𝟒 = 𝟎. 𝟎𝟎𝟐𝟒𝟔𝟗𝟎𝟕 ;  

𝑨𝒊,𝟓 = 𝟎. 𝟎𝟎𝟏𝟓𝟓𝟕𝟑𝟐 ; 𝑨𝒊,𝟔 = 𝟎. 𝟎𝟎𝟏𝟎𝟐𝟔𝟗𝟓 ; 𝑨𝒊,𝟕 = 𝟎. 𝟎𝟎𝟎𝟔𝟗𝟎𝟐𝟔 ; 𝑨𝒊,𝟖 = 𝟎. 𝟎𝟎𝟎𝟒𝟓𝟖𝟎𝟖 ;  

𝑨𝒊,𝟗 = 𝟎. 𝟎𝟎𝟎𝟐𝟖𝟑𝟏𝟒 

 

3.3 Connection between 𝜋 and 𝜑 

As a major outcome, there are two expressions ― Eq.(22) and Eq.(41) ― to compute the area of a circle, both created 

using similar approaches and adopting different geometrical references. The first approach expresses it as a function of 

𝜋, while the second as a function of 𝜑. Equating the two expressions establishes a relation between these two constants, 

resulting in 

𝜋108∘
𝐿2

4√5 − 2√5

1

cos2(36°)
= lim

𝑃→∞
(5𝑃) {∑ ∑

𝑧𝑖̅+𝑗−1

2
√𝑥̅𝑖

2 −
1

4
𝑧𝑖̅+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ sin2𝑘(18°)

∞

𝑘=1

 (𝜑 − 1 )2          (42) 

In a previous mathematical research work (Teia 2022), it was found that a relative value of function 𝜋𝜃 is obtained 

when the polygon circumscribing the circle changes from a square (that is linked to the typical concept of orthogonality, 

with side equal to the diameter) as to another polygon (where 𝜃 is the internal angle of the polygon). 
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Figure 7. Accuracy of the predicted area of circle 𝐴⊙ for varying number of interfered rotating pentagrams 

In the present work, the selected polygon is a pentagon (due to the presence of 𝜑 inherent in its star configuration as a 

pentagram), and for which the value of the function becomes 𝜋108∘ = 4.2340313299 [in the same manner as 

𝜋90° = 3.1415926535 was obtained when using a square during prior work (Teia 2022)]. In general, the relativity of 

the function 𝜋𝜃 to the selected circle-circumscribing polygon follows the subsequent rule 

𝜋𝜃 = 𝜋90°𝑡𝑎𝑛 (
𝜃

2
)                                                                                      (43) 

where N is the number of sides of the polygon used (in the case of a pentagon, 𝑁 = 5). Replacing Eq.(43) into the left 

hand side of Eq.(42) gives 

𝜋90°𝑡𝑎𝑛 (
108

2
)

1

4√5 − 2√5

1

cos2(36°)
= lim

𝑃→∞
(5𝑃) {∑ ∑

𝑧𝑖̅+𝑗−1

2
√𝑥̅𝑖

2 −
1

4
𝑧𝑖̅+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ sin2𝑘(18°)

∞

𝑘=1

 (𝜑 − 1 )2   (44) 

The square term on the right containing 𝜑 can be expanded and simplified into a linear term as 

(𝜑 − 1 )2 = 𝜑2 − 2𝜑 + 1 = (1 + 𝜑) − 2𝜑 + 1 = 2 − 𝜑                                          (45) 

Replacing this back into Eq.(44), while moving the terms multiplying 𝜋(= 𝜋90°) to the right as denominators, gives 

𝜋 =

lim
𝑃→∞

(5𝑃) {∑ ∑
𝑧𝑖̅+𝑗−1

2
√𝑥̅𝑖

2 −
1
4

𝑧𝑖̅+𝑗−1
22

𝑗=1
𝑃−1
𝑖=1 } × ∑ sin2𝑘(18°)∞

𝑘=1

𝑡𝑎𝑛 (
108

2
)

1

4√5 − 2√5

1
cos2(36°)

 (2 − 𝜑 )                         (46) 

Concluding, Eq.(46) can be simply written as a linear relation between 𝜋 and 𝜑 defined as 

𝜋 = Φ(2 − 𝜑 )                                                                                  (47) 

where Φ is a geometrical coefficient (expressing the ratio of normalized areas given by the pentagon and pentagram 

rotation approaches) that is only dependent on the state of refinement of the two meshes (that are defining the same 

reference circle). A program that executes Eq.(46) in the open-source software Octave is available in Annex C (which is a 

modified version of Annex B). Concluding, for two infinitely perfect meshes ― that is, when the number of pentagons 

and pentagrams tends to infinity ― Φ converges to the constant 8.224796346, providing an exact (traceable geometrical 

and mathematical) connection between 𝜋 and the golden ratio 𝜑. 
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Annex A 

clc, clear 

% SETUP 

format long % Increases decimal place output 

N=5; % Sides of pentagon 

p=100000; % Number of pentagons % Line 5 

if p>10 probe=0; else probe=1; end % Enable extra details 

display('PENTAGON Approach -->> function of Pi') 

display('--- Sides in a pentagon and number revolving'), display(N), display(p) 

display('--- Angle per sector (degrees)'), delta=360/(N*p) 

display('--- Internal angle of pentagon (degrees)'), theta=180-360/N % Line 10 

display('--- Area scaling factor due to fractality'), f=cosd(180/N)^2 

display('--- Area of the N-sided unit regular pentagon'), Apoly=[N/(4*tand(180/N))] 

% SIDES X(N) and Z(N) 

display('--- Sides of most outward triangle in the strip') 

for i=1:(p-1) % Line 15 

  Q(i)=sqrt(1-cosd(theta+(i-1)*delta))/sqrt(1-cosd(theta+(i)*delta)); 

  if i~=(p-1) 

    K(i)=sqrt(1-cosd(theta+(i-1)*delta))/sqrt(1-cosd(theta+(i+1)*delta)); 

end end 

sQ=prod(Q); sK(1)=1; % Line 20 

for m=1:(p-2) 

  sK(m+1)=prod(K(1:m)); 

end 

x=1/(2*(sum(sK))+sQ*sqrt(2*(1-cosd(theta+delta)))); x1=x(1) 

z=x1*sqrt(2*(1-cosd(theta+delta))); z1=z(1) % Line 25 

for v=1:(p-1) 

  z(v+1)=sqrt(1-cosd(((theta))+(v-1)*delta))/sqrt(1-cosd(theta+(v)*delta))*z(v); 

  if v~=(p-1) 

    x(v+1)=sqrt(1-cosd(((theta))+(v-1)*delta))/sqrt(1-cosd(theta+(v+1)*delta))*x(v); 

  else x=x(1:v); % Line 30 

end end 

if probe==1 

  display('--- Sides of subsequent triangles'), display(z); display(x);  

end 

% AREAS : TRIANGLE, STRIP & FIRST RING % Line 35 

s=0; l=0; 

for i=1:(p-1) 

  for j=1:2 

    s=s+1; At(s)=z(i+j-1)/2*sqrt(x(i)^2-1/4*z(i+j-1)^2); 

end end % Line 40 

if probe==1 disp('--- Area of each triangle in outward strip'); disp(At) end 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 3; 2022 

33 

display('--- Area of most outward strip'), As=sum(At) 

display('--- Area of most outward ring'), Ar=As*(N*p) 

% FRACTAL SCALING SUM OF RINGS 

SumScale=0; % Starting variable for loop % Line 45 

n=1000; % Number of inward rings considered (ideally infinite) 

for k=1:n 

SumScale=SumScale+f^k; % Formation of the series 

end 

display('--- Scaling series due to inward fractality'), Fseries=SumScale % Line 50 

if probe==1 disp('Scaling series'); disp(Fseries) end 

% APPROX. AREA OF CIRCLE 

display('--- Area of circle');  

Ac=Ar*Fseries 

% RATIO OF AREAS % Line 55 

display('--- Ratio of areas circle/polygon'), Ratio=Ac/Apoly  

% FUNCTION PI FOR SELECTED POLYGON  

display('--- Value of Pi (for the chosen polygon)'), PiN=Ratio*N 

 

Annex B 

clc, clear 

% SETUP 

format long % Increases decimal place output 

N=5; % Sides of pentagram 

p=100000; % Number of pentagrams % Line 5 

if p>10 probe=0; else probe=1; end % Enable extra details 

% Identification of approach 

disp('PENTAGRAM Approach -->> function of Phi'); phi=(1+sqrt(5))/2 

disp('--- Number of revolving pentagrams'); disp(p) 

disp('--- Angle per sector (degrees)'); delta=360/(N*p) % Line 10 

disp('--- Internal angle of pentagram (degrees)'); theta=180-360/N; beta=180/N 

disp('--- Area scaling factor due to fractality'); f=sind(180/(2*N))^2 

% ANGLES GAMMA INWARD & OUTWARD 

for v=1:((2*p)-1) 

  gammaO(v)=beta+(v)*delta;   gammaI(v)=beta+(v-1)*delta; % Line 15 

end 

if probe==1 

  disp('--- Angles of triangles, both inward and outward facing') 

  disp('Inward facing angles (deg):'); disp(gammaI); disp('Outward facing angles (deg):'); disp(gammaO) 

end % Line 20 

% SIDES X(N) and Z(N) 

disp('--- Factors K') 

for v=1:(p-1) 
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  K(v)=sqrt(1-cosd(gammaI(v)))/sqrt(1-cosd(gammaO(v+1))); 

end % Line 25 

if probe==1 disp(K) end 

disp('--- Sides of most outward triangle in the strip') 

Q(1)=1; 

for v=1:(p-1) 

  Q(v+1)=Q(v)*K(v); % Line 30 

end 

x(1)=[1/sum(Q)]*(phi-1); x1=x(1) % This is when PHI is introduced in the equation   

z(1)=x(1)*sqrt(2*(1-cosd(gammaO(1)))); z1=z(1) 

for v=1:((2*p)-1) 

  z(v+1)=sqrt(1-cosd(((beta))+(v-1)*delta))/sqrt(1-cosd(beta+(v)*delta))*z(v); % Line 35 

  if v~=((2*p)-1) 

    x(v+1)=sqrt(1-cosd(((beta))+(v-1)*delta))/sqrt(1-cosd(beta+(v+1)*delta))*x(v); 

  else x=x(1:v); 

end end 

disp('--- Sides of subsequent triangles'); % Line 40 

if probe==1 disp('z(n)'); disp(z); disp('x(n)'); disp(x); end 

% AREAS : TRIANGLE, STRIP & FIRST RING 

s=0; l=0; 

for i=1:((2*p)-1) 

  for j=1:2 % Line 45 

    s=s+1; At(s)=z(i+j-1)/2*sqrt(x(i)^2-1/4*z(i+j-1)^2); 

end end 

if probe==1 disp('--- Area of each triangle in outward strip'); disp(At) end 

disp('--- Area of most outward strip'); As=sum(At) 

disp('--- Area of most outward ring'); Ar=As*(N*p) % Line 50 

% FRACTAL SCALING SUM OF RINGS 

SumScale=1; % Starting variable for loop 

n=1000; % Number of inward rings considered (ideally infinite) 

for k=1:n 

SumScale=SumScale+f^k; % Formation of the series % Line 55 

end 

disp('--- Scaling series due to inward fractality'); Fseries=SumScale 

if probe==1 disp('Scaling series'); disp(Fseries) end 

% APPROX. AREA OF CIRCLE 

disp('--- Area of circle') % Line 60 

Ac=Ar*Fseries 

 

Annex C 

clc, clear 

% SETUP 
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format long % Increases decimal place output 

N=5; % Sides of pentagram 

p=100000; % Number of pentagrams % Line 5 

if p>10 probe=0; else probe=1; end % Enable extra details 

% Identification of approach 

disp('EQUATION 44 CONNECTING PI TO PHI'); Phi=(1+sqrt(5))/2 

disp('--- Number of revolving pentagrams'); disp(p) 

disp('--- Angle per sector (degrees)'); delta=360/(N*p) % Line 10 

disp('--- Internal angle of pentagram (degrees)'); theta=180-360/N; beta=180/N 

disp('--- Area scaling factor due to fractality'); f=sind(180/(2*N))^2 

% ANGLES GAMMA INWARD & OUTWARD 

for v=1:((2*p)-1) 

  gammaO(v)=beta+(v)*delta;   gammaI(v)=beta+(v-1)*delta; % Line 15 

end 

if probe==1 

  disp('--- Angles of triangles, both inward and outward facing') 

  disp('Inward facing angles (deg):'); disp(gammaI); disp('Outward facing angles (deg):'); disp(gammaO) 

end % Line 20 

% SIDES X(N) and Z(N) 

disp('--- Factors K') 

for v=1:(p-1) 

  K(v)=sqrt(1-cosd(gammaI(v)))/sqrt(1-cosd(gammaO(v+1))); 

end % Line 25 

if probe==1 disp(K) end 

disp('--- Sides of most outward triangle in the strip') 

Q(1)=1; 

for v=1:(p-1) 

  Q(v+1)=Q(v)*K(v); % Line 30 

end 

x(1)=[1/sum(Q)]; x1=x(1) 

z(1)=x(1)*sqrt(2*(1-cosd(gammaO(1)))); z1=z(1) 

for v=1:((2*p)-1) 

  z(v+1)=sqrt(1-cosd(((beta))+(v-1)*delta))/sqrt(1-cosd(beta+(v)*delta))*z(v); % Line 35 

  if v~=((2*p)-1) 

    x(v+1)=sqrt(1-cosd(((beta))+(v-1)*delta))/sqrt(1-cosd(beta+(v+1)*delta))*x(v); 

  else x=x(1:v); 

end end 

disp('--- Sides of subsequent triangles'); % Line 40 

if probe==1 disp('z(n)'); disp(z); disp('x(n)'); disp(x); end 

% AREAS : TRIANGLE, STRIP & FIRST RING 

s=0; l=0; 

for i=1:((2*p)-1) 
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  for j=1:2 % Line 45 

    s=s+1; At(s)=z(i+j-1)/2*sqrt(x(i)^2-1/4*z(i+j-1)^2); 

end end 

if probe==1 disp('--- Area of each triangle in outward strip'); disp(At) end 

disp('--- Area of most outward strip'); As=sum(At) 

disp('--- Area of most outward ring'); Ar=As*(N*p) % Line 50 

% FRACTAL SCALING SUM OF RINGS 

SumScale=1; % Starting variable for loop 

n=1000; % Number of inward rings considered (ideally infinite) 

for k=1:n 

SumScale=SumScale+f^k; % Formation of the series % Line 55 

end 

disp('--- Scaling series due to inward fractality'); Fseries=SumScale 

if probe==1 disp('Scaling series'); disp(Fseries) end 

% APPROX. AREA OF CIRCLE 

disp('--- Area of circle') % Line 60 

Ac=Ar*Fseries 

% FIND OMEGA 

disp('--- Coefficient Omega');   

Omega=Ac/(tand(theta/2)*1/(4*sqrt(5-2*sqrt(5)))*1/(cosd(36))^2) 

% PI BASED ON PHI % Line 65 

disp('--- Constant Pi');  

Pi=Omega*(2-Phi) 
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