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Abstract

In most of the various stepwise confidence interval procedures formulated for identifying maximum safe dose (MSD),
homogeneity of variances among different dose levels were required. But in practice, homogeneity of variance is often in
doubt. This paper proposes a stepwise confidence set procedure for identifying MSD of drugs based on ratio of population
means for normally distributed data under heteroscedasticity without the need for multiplicity adjustment. The procedure
employed Fieller’s method and obtained individual (1 − α)100% confidence intervals for identification of the MSD. We
illustrate the procedure with a real life example. In addition, we show that power of the procedure increases with increasing
ratio of means, and sample size. Power however decreases with increase in clinical relevance margins. We also illustrate
that the new procedure can properly control familywise error rate (FWER).
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1. Introduction

Dose-finding trials are defined as clinical investigations in which different doses of a pharmaceutical compound bring
out therapeutic and toxic responses. These trials with a new drug are differentiated from the placebo of a single dose
that produces either therapeutic or toxic response and for which appropriate designs have been suggested. The minimum
effective dose (MED) is that which produces a prescribed lowest therapeutic response whereas the maximum safe dose
(MSD) is that which elicits a prescribed highest frequency of adverse reactions (Turri & Stein, 1986). These two doses
define the interval of therapeutically useful doses. Identifying the MSD level of a pharmaceutical compound is one of the
major objectives in toxicological studies and the conventional approach to finding the MSD is to identify the highest dose
with toxicity below a certain pre-specified level (Korn et al., 1994).

Under the assumptions of normality, a variety of papers have been published on the identification of the MSD.
Tamhane, Dunnett, Green and Wetherington (2001) proposed a stepwise procedure that used contrasts or order restricted
test in estimating the MSD. However, it is a common knowledge that making inferences using confidence interval based
approaches provide additional information such as confidence bounds. In this regard, a number of simultaneous confidence
intervals methods to estimate MSD were proposed. For example: Hauschke, Kieser and Hothorn (1999), and Hothorn
and Hauschke (2000). The stepwise confidence intervals procedures according to Bretz, Hothorn and Hsu (2003) yield
more information about the parameters of interest than a traditional p-value method does. Furthermore, once stepwise
confidence intervals are derived, it becomes easy to show that directional errors (that is, correct side decisions at each step)
are simultaneously controlled with the familywise error rate (FWER). Adjabui, Howard and Luguterah (2017) proposed a
simultaneous nonparametric upper bound procedure based on the Wilcoxon Mann-Whitney test in situations when normal
assumptions are violated. Their paper incorporated the partitioning principle for confidence sets procedure proposed by
Hsu and Berger (1999) for estimating MSD.

Most of the articles mentioned above were proposed under the assumption of equal variance, but the homoscedasticity
assumption is rarely satisfied in practice. This is because, certain biological factors can cause patients in different groups
to respond differently with a change of dose levels. The following papers: Tao, Guo and Shi (2002), Tamhane and Logan
(2004), just to mention a few, developed various multiple comparison procedures under the heteroscedastic setting. Tao,
Guo and Shi (2002) proposed a simultaneous confidence intervals approach that makes inferences based on a difference
of treatment and control for identification of MSD. However, according to Laster and Johnson (2003), the ratio parameter
has the advantage of being available as a dimensionless percentage, easily estimated, and enhances comparison among
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studies. Laster and Johnson (2003) further stated that the ratio formulation approach is more powerful in a test for non-
inferiority of an experimental therapy as compared to that of the difference. In considering log-normally distributed data,
logarithmic transformation of the ratio test problem can lead to an acceptance range formulated in terms of the difference
of means. However, there are many practical situations that require ratio test formulation in which the (untransformed)
observations of the primary variable follow a normal distribution. Under homoscedastic setting, Bretz, Hothorn and
Hsu (2003) considered the case of relevance shifts defined in terms of ratio of population means, where the original,
untransformed data are normally distributed. Tamhane and Logan (2004) developed a contrast testing/decision making
approach to estimate MSD. But confidence intervals procedures provide additional information such as a confidence
bound for the first unsafe dose. Or, provides an upper confidence bound on how safe the doses are if all the doses are
regarded safe.

The purpose of our article is to provide stepwise confidence intervals for identification of MSD when the ratio of treatment
versus control is to be investigated for normally distributed data under unequal variance setting. The proposed method
extends the procedure proposed by Hsu and Berger (1999) into a stepwise confidence set procedure without multiple
adjustments by incorporating the partitioning principle. The article is organized as follows. In Section 2, the preliminaries
give the problem formulation and define the notation. It also defines the intersection-union principle and Hsu and Berger
(1999) stepwise confidence method which will be essential to the proposed procedure. The new stepwise confidence
interval procedure with unequal variances will be developed in Section 3. Simulation studies are carried out in Section 4
to assess the performance of power and FWER of the proposed procedure. In Section 5, we apply the proposed procedure
to examine a real data set. Finally, conclusions and recommendations are given in Section 6.

2. Statistical Background

Let i = 0, 1, . . . , k denote a set of increasing dose levels used in a dose-finding study where 0 corresponds to the zero dose
level called the placebo control. Consider a one-way layout setting in which a random sample Zi1,Zi2,Zi3, . . . ,Zini is an
observed response of toxicity from the ith dose level (i = 0, 1, . . . , k). Assume Zi j, the jth (1 ≤ j ≤ ni) observation at ith

dose level, to be independently normal with means E(Xi j) = ηi and possibly unequal variances Var(Zi j) = τ2
i . Let Z̄i,

i = 0, 1, . . . , k, be the sample means and let τ̂2
i be an estimate of the unequal variances τ2

i .

In this article, we seek to provide a procedure that will estimate ratios of unknown means ηi, i = 0, 1, . . . , k. Without loss
of generality, let large values of treatment means ηi denote high toxicity relative to the mean of the placebo η0. Suppose
that k doses are tested against a placebo, let λi = ηi/η0, i = 1, . . . , k, be the ratios of interest. Let ζ be some pre-specified
threshold constant for toxicity of a drug. The problem of identifying the MSD is formulated as follows:

H0i : λi ≥ ζ versus Hai : λi < ζ for i = 1, . . . , k. (1)

Assume the random sample Zi j has a distribution determined by the parameter θ = (λ1, . . . , λk) with θ ∈ Θ, where Θ is the
parameter space, let Θi = {θ : λi ≥ ζ}, i = 1, . . . , k. The problem in (1) can further be written as:

H0i : θ ∈ Θi versus Hai : θ ∈ Θc
i for i = 1, . . . , k. (2)

In this article, we extend the concept of directed confidence set proposed by Hsu and Berger (1999) to solve the testing
problem (2) and make inference for MSD. In order for our procedure to control the probability of declaring unsafe dose as
safe, we will introduce the Intersection-Union Principle. The Intersection-Union Principle formulated by Berger (1982)
involves testing the union of the individual hypotheses against the intersection of the alternative hypotheses.
Thus, if Θi is a level α test of H0i for i = 1, . . . , k, then the intersection-union test with rejection region Θc

i is a level α test
of H0 =

⋃k
i=1 Θi against Ha =

⋂k
i=1 Θc

i .
The main reason behind the application of the intersectionCunion test is when the global null hypothesis H0 is rejected
each of the individual null hypotheses H0i is rejected. In addition, whenever intersection-union test is introduced, it
cancels a need for multiplicity adjustment. This is because; if each individual test is performed at level α, the global test
is also performed at level α.
Assume Θi = {θ : λi ≥ ζ}, i = 1, . . . , k, are subsets of Θ. Let Θ0 =

⋃k
i=1 Θi and Θc

0 =
⋂k

i=1 Θc
i . Based on the Intersection-

Union Principle, the problem of identifying the MSD can be formulated as follows:

H0 : θ ∈
k⋃

i=1

Θi versus Ha : θ ∈
k⋂

i=1

Θc
i . (3)

Definition 1. Let Θ be a parameter space. A confidence set, C(Z), for θ is directed toward a subset of the parameter
space Θ∗ ⊂ Θ if, for every sample point Z either Θ∗ ⊂ C(Z) or C(Z) ⊂ Θ∗. For example: in a one sided significant ratio
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inference, say Θc
i = {ηi < η0ζ}, confidence intervals for ηi/η0 of the form Ci(Z) = (−∞, Bi) are directed toward Θc

i for
i = 1, . . . , k.

We consider cases with inferences θ ∈ Θc
i and formulate an approach that provides confidence intervals Ci(Z) for θ

in a stepwise scenario. The procedure stops at the largest integer i when Ci(Z) 1 Θc
i . To validate our procedure, we

partition the parameter space Θ =
⋃k

i=1 Θi into disjoint sets Θ∗1,Θ
∗
2, . . . , and Θ∗k such that for some index set K, the set

Θ∗k ⊆ Θ : k ∈ K and Θ∗k ∩ Θ∗k′ = ∅ for any k, k′ ∈ K with k , k′. We partition the parameter space into disjoint sets so
that exactly one partition contains the true parameter θ. In so doing, the procedure controls FWER by controlling FWER
within each Θ∗k ⊆ Θ : k ∈ K.

The first step in solving problem (3) is to define the MSD as the max{i : λi < ζ}. We then employ Fiellers (1954) method
to obtain individual (1 − α)100% confidence intervals Ci(Z) for λi. Taking Z̄i and τ̂2

i as the sample mean and sample
variance of the ith group, i = 0, 1, . . . , k, we test H0 : θ ∈

⋃k
i=1 Θi versus Ha : θ ∈

⋂k
i=1 Θc

i using the test statistics:

T Z
i =

Z̄i − ζZ̄0√
τ̂2

i
ni

+
ζ2 τ̂2

0
n0

.

A significant dose-response signal is established, if T Z
i < −t1−α,vi , where t1−α,vi is the (1 − α) percentile of the k-variate

central t-distribution with vi degrees of freedom. The degrees of freedom in problems like this was stated in Welch (1938)
and improved in Satterthwaite (1946). The different degrees of freedom are given by:

v̂i =

(
τ̂2

i
ni

+
ζ2 τ̂2

0
n0

)2

(
τ̂4

i

n2
i (ni−1) +

ζ4 τ̂4
0

n2
0(n0−1)

) .
These degrees of freedom, v̂i, are not exact but estimates because they depend on unknown group variances. The
upper limits for the confidence intervals of interest Ci(Z) are derived to be the larger root of the quadratic equations
(T Z

i )2 = t2
1−α,v̂i

. These upper confidence limits are given by:

Bi =
Z̄ i Z̄ 0 +

√
b0 Z̄

2
i

+ bi Z̄
2
0
− bi b0

Z̄
2
0
− b0

.

And the (1 − α)100% confidence intervals Ci(Z) for λi are derived as follows: Ci(Z) = (−∞, Bi), where bi = τ̂2
i t1−α,v̂i/ni,

i = 1, . . . , k and b0 = τ̂2
0t1−α,v̂i/n0 .

3. The Proposed Stepwise Confidence Interval Procedure With Different Variances

To identify the MSD, first compute the upper limits Bi for various dose levels i = 1, . . . , k. Secondly, scan, starting from
the lowest dose level (i = 1). Sequentially scan doses i = 2, . . . , k in a step by step manner without adjusting the nominal
level α in ascending order searching for the step i = W if it exists, such that BW < ζ and BW+1 ≥ ζ. We take the dose
at W for which BW < ζ and BW+1 ≥ ζ to be the MSD. No MSD is identified if B1 ≥ ζ, indicating that all doses are
unsafe. Likewise, a state of no toxicity occurs and all doses are declared as safe if Bk < ζ. Once the dose level at W
is identified as MSD, computing the upper confidence limits corresponding to the dose levels at W + 2, . . . , k becomes
unnecessary. In other words, if the test statistic associated with the hypothesis H0{i} is statistically significant and the test
statistic associated with H0{i+1} is statistically insignificant, we can conclude that the doses 1, 2, . . . , i are the only safe
doses. As a result, patients may not be subjected to doses i + 1, . . . , k. This reduces the risk of unnecessary exposure of
patients to possible toxic effect of a new drug or compound during clinical trials.

Theorem 1. Suppose that the random sample Zi1,Zi2, . . . ,Zini is observed from the ith dose level having a distribution
determined by the parameter θ = (λ1, . . . , λk) with θ ∈ Θ, the parameter space, and θ ∈ Θc

i = {θ : λi < ζ}, i = 1, . . . , k, a
multiple comparison of interest. Consider a confidence set Ci(Z) for θ based on a set of data Z such that Ci(Z) is directed
toward subsets Θc

i ⊆ Θ. Let W be the largest integer i such that Ci(Z) 1 Θc
i if such an i (1 ≤ i ≤ k) exists; otherwise, let

W = 0. Furthermore, let Θk+1 = ∅, Θ0 = Θ, and

C(Z) = CW (Z) ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
W+2 ∩ Θc

W+1.
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Then for all θ ∈ Θ,
P(θ ∈ C(Z)) ≥ 1 − α.

See Appendix A for the proof of Theorem 1.

Remark. Theorem 1 indicates that the FWER can be controlled in a strong sense at pre-specified nominal level α. In
other words, all declarations are guaranteed with probability of at least 100(1 − α)%.

Hence, from the result of Theorem 1, we state the following proposition.

Proposition 3.1. The stepwise confidence procedure for normally distributed data under heteroscedaticity strongly con-
trols the FWER at level α.

Proof. For any subset I of set {1, 2, · · · , k}, suppose that I = ∅, then no FWER will ever exist. Thus assume that I , ∅ and
I = {i1, i2, · · · , im}, where 1 ≤ i1 < i2 < · · · < im ≤ k. Without loss of generality, let

P( Reject one of H0i, i ∈ I | H0i, i ∈ I is true )
= 1 − P( do not reject all H0i, i ∈ I | H0i, i ∈ I is true)
≤ 1 − P( do not reject H0im | H0i, i ∈ I is true)

the procedure then stops at step im
= 1 − P({Bim (Z) 1 (−∞, ζ) | H0i, i ∈ I is true)
≤ 1 − P(θ ∈ C(Z))
≤ 1 − (1 − α)( By Theorem 1)
= α.

�

Remark. Therefore, Proposition 1 shows that our resulting stepwise procedure strongly control the FWER at level α.

Hence, we conduct the following simulations to confirm the above theoretical results.

4. Simulation Studies

4.1 FWER Study

Controlling the right type of error rate in multiple testing procedures is a daunting task. There are three competing error
rates in multiple comparison methods. Namely, the FWER, false discovering rate (FDR) and per-family error rate (PFER).
As pointed out by Huang and Hsu (2007) in Section 7 of their article, FDR cannot be used for the type of clinical trials
discussed in this article. Details and examples of failure of FDR to control type I error can also be found in Finner
and Roter (2001). In recent times, Lawrence (2019) claimed that PFER is universally ignored and deserved necessary
attention. He argued that PFER is more useful in investigations that deal with social and behavioural sciences. Frane
(2015) also confirms the previous authors assertion that PFER is more relevant than FWER in the fields of social and
behavioural sciences. The reason is that controlling PFER require stricter standard and large sample sizes compared
to a procedure that controls the FWER at the same significant level α. Hence PFER is only better than FWER with
multiple endpoint. However in a single endpoint, FWER is preferred, especially in our case when multiplicity adjustment
is needless.

FWER is strongly controlled at nominal level α when

max(α∗) ≤ α where α∗ = supH0i
[Pr{any H0i is re jected (1 ≤ i ≤ k)}].

Without loss of generality, we set ζ = 0.8 and α = 0.025. Observation were generated using R statistical software with
ten thousand replications from a normal distribution based on the assumption of unequal variance across dose groups.
This is indicated in Table 1 as HETRO (τ0 , τe). We explored the effect of violation of this assumption as a way of
comparing the two situations and this is also indicated in Table 1 as HOMO (τ0 = τe = 6.0). We used a fixed sample size
of the placebo, n0 = 15, and an increasing number of experimental observations ne = 4, · · · , 29. The mean and standard
deviation configuration of the placebo are set at η0 = 30.0 and τ0 = 14.0 respectively, with the experimental treatment
mean and standard deviation set at ηe = 24.0 and τe = 6.0. In the simulation study, we considered only k = 1 experimental
treatment. Results from Table 1 indicated that the FWER is properly controlled at a nominal value α = 0.025 in the case
of unequal variances while the FWER is not controlled for equal variances because simulated values are far above 0.025,
the nominal level.
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Table 1. Simulated FWER results. Set ζ = 0.8, α = 0.025, n0 = 15, η0 = 30.0, and ηe = 24.0

ne HETRO HOMO
4(5) 0.0180(0.0185) 0.0408(0.0380)
6(7) 0.0220(0.0202) 0.0370(0.0318)
8(9) 0.0219(0.0208) 0.0325(0.0351)

10(11) 0.0202(0.0208) 0.0298(0.0296)
12(13) 0.0213(0.0237) 0.0301(0.0300)
14(15) 0.0226(0.0235) 0.0300(0.0312)
16(17) 0.0215(0.0233) 0.0270(0.0278)
18(19) 0.0222(0.0241) 0.0285(0.0270)
20(21) 0.0242(0.0228) 0.0308(0.0267)
22(23) 0.0227(0.0230) 0.0286(0.0251)
24(25) 0.0218(0.0221) 0.0253(0.0297)
26(27) 0.0223(0.0210) 0.0290(0.0300)
28(29) 0.0226(0.0209) 0.0269(0.0288)

Table 2. Simulated power results α = 0.025, ζ = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6

Treatment effect(λ) 1.1 1.2 1.3 1.4 1.5 1.6
0.8 0.6662 0.5278 0.3879 0.2632 0.1646 0.0949
0.9 0.7795 0.6583 0.5200 0.3814 0.2586 0.1618
1.0 0.8668 0.7722 0.6499 0.5118 0.3746 0.2538
1.1 0.9268 0.8608 0.7642 0.6410 0.5032 0.3675
1.2 0.9635 0.9225 0.8542 0.7557 0.6316 0.4943
1.3 0.9836 0.9608 0.9176 0.8470 0.7466 0.6217
1.4 0.9933 0.9820 0.9577 0.9123 0.8393 0.7370
1.5 0.9976 0.9926 0.9802 0.9541 0.9065 0.8310

Table 3. Simulated power results ζ = 1.15, n0 = ne = 5, 10, 15, 20, 25, 30

Treatment effect(λ) 5 10 15 20 25 30
0.8 0.1155 0.2238 0.3289 0.4278 0.5180 0.5983
0.9 0.1396 0.2825 0.4169 0.5364 0.6381 0.7219
1.0 0.1668 0.3477 0.5092 0.6422 0.7459 0.8233
1.1 0.1971 0.4176 0.6009 0.7381 0.8339 0.8975
1.2 0.2304 0.4902 0.6874 0.8187 0.8993 0.9460
1.3 0.2666 0.5631 0.7645 0.8817 0.9436 0.9742
1.4 0.3052 0.6338 0.8298 0.9273 0.9709 0.9889
1.5 0.3460 0.7002 0.8821 0.9581 0.9861 0.9957

4.2 Power Calculation

In recent times, confidence interval approaches for the analysis of a clinical study are frequently becoming insufficient
in the design of clinical trials. Power estimation has therefore become a major task in the design phase of clinical trials.
This article seeks to correctly estimate MSD S i for a fixed i ∈ 1, · · · , k. The MSD is correctly specified, if and only if
C j(Z) ⊂ (−∞, ζ) and Ci+1(Z) 1 (−∞, ζ) for j = 1, ..., i. Thus

P(MS D = S i) = P
( i⋂

j=1

{
T Z

j > t1−α,v̂ j

}
∩

{
T Z

i+1 ≤ t1−α,v̂ j

})
. (4)

The probability of correctly estimating any of the doses, S 1, · · · , S i, as the true MSD is referred to as the power of the
procedure. Here, the power is defined solely in terms of rejecting the incorrect null hypotheses. Equation (4) will therefore
be expressed as

5



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 3; 2022

P(re jecting H0 j, 1 ≤ j ≤ i) = P
( i⋂

j=1

{
T Z

j > t1−α,v̂ j

})
. (5)

Equation in (5) can be interpreted as the probability of correctly estimating any of the doses, S 1, · · · , S i, as the true MSD.
(4) and (5) gives similar results. Nevertheless, the stepwise procedure presented in Section 3 controls the familywise
error rate indicating that the probability of incorrectly estimating any of the S i+1, · · · , S k to be the true MSD is still
controlled. The probability in (5) can be evaluated using existing numerical methods published in Genz and Bretz (2002)
for the computation of non-central multivariate t-probabilities. Expression in (5) involves a k − i + 1 variate non-central
t-distribution with v̂ degrees of freedom as stated in section 2 above. The non-centrality parameters are given by

Θ j =
η j − ζη0√
τ2

j

n j
+

ζ2τ2
0

n0

, j = 1, ..., i.

A simulation study concerning the impact of various parameters on the power was done setting ζ = 1.1 and α = 0.025.
Results for different ratio of means and clinical relevance margins are presented in Table 2. As expected, power increases
with increasing ratio of means (incresing effect, λ), and decreases for higher clinical relevance margins (that is, larger
values of ζ). In Table 3, power increases with an increase in both the ratio of means, and the sample size.

5. Practical Application

To illustrate our stepwise confidence interval procedure, we consider an example from Tamhane and Logan (2004). In
the study, 90-day routine rat study was conducted to identify the toxicity of a crop protection compound. Test substance
was added directly to the rodent diet and was thoroughly mixed to ensure homogeneous distribution. Three doses of the
compound were compared with a zero dose control. The goal of the study is to measure the kidney weight to the body
weight ratio. A large value of this ratio is regarded as unsafe with a threshold of a 15% average increase over its value for
the zero dose. Thus, we take ζ = 1.15. The summary statistics for the zero dose control and kidney weight is given in
Table 4. The assumption of normality of the data and heterogeneity of variances across the dose groups are satisfied, (see
Tamhane and Logan (2004)). Given that ζ = 1.15 and α = 0.05, Table 5 shows the 95% lower confidence limits on ηi/η0,
i = 1, 2, 3.

Table 4. Kidney Wt./Body Wt.×103

.

Treatment group ni Mean Standard deviation
Control 18 6.5606 0.5064

1 20 6.9975 0.5755
2 19 7.6778 0.5949
3 18 9.2606 1.0052

Table 5. 95% Upper Confidence Limits for ηi/η0, i = 1, 2, 3

Treatment group Upper confidence limit
1 1.1243
2 1.2326
3 1.5047

The results in Table 5 show that the upper confidence limit for dose 1 is lower than the relevant toxicity threshold and
therefore is declared to be statistically significant at level 0.05. Whereas upper confidence limits for doses 2 and 3 are
however greater than the relevant threshold and therefore are declared to be statistically insignificant at level 0.05. Note
that MSD is correctly specified, if and only if C j(Z) ⊂ (−∞, ζ) and Ci+1(Z) 1 (−∞, ζ) for j = 1, ..., i.

C1(Z) = (−∞, 1.1243) ⊂ (−∞, 1.15) we reject H01 (dose 1 is safe)

C2(Z) = (−∞, 1.2326) 1 (−∞, 1.15) we do not reject H02 (dose 2 is unsafe)

The stepwise confidence interval procedure stops at step 2, and will however need no further testing. In this analysis, our
procedure concluded that dose 1 is safe while doses 2 and 3 are unsafe at level 0.05. Therefore, dose 1 is recommended
as the MSD.
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6. Conclusions

Under the assumption of heteroscedasticity, this article established a general way of obtaining a stepwise confidence inter-
val for the ratio of means. Most of the procedures formulated to identify MSD of drugs were done under the assumption of
equal variance, but the homoscedasticity assumption is rarely satisfied in practice. This is as a result of certain biological
factors that can cause patients in different dose groups to respond differently with a change in dose levels. In many stan-
dard situations, inferences on differences are also not a suitable way to investigate the data. Ratios, therefore, are mostly
a better alternative measure of toxicity and often easier to interpret. Ratio formulation approaches are more powerful in
a test for non-inferiority of an experimental therapy as compared to that of the difference, and the ratio parameters have
the advantage of being available as a dimensionless percentage, easily estimated, and enhance comparison among studies.
The strength of the proposed procedure is to provide stepwise confidence intervals using an extended intersection-union
principle which in effect cancels a need for multiplicity adjustment. Furthermore, our procedure provides additional in-
formation such as a confidence bound for the first unsafe dose. Or, provides an upper confidence bound on how safe the
doses are if all the doses are regarded safe. In order to assess the performance of the proposed procedure, a simulation
study is carried out. Results from the simulation study indicated that the power of the procedure increases with increasing
ratio of means and sample size. Meanwhile the power decrease with increase in clinical relevance margins. It is also
found that all the stepwise confidence intervals control the familywise error rate.
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Appendix A: Proof of Theorem 1.

For any θ ∈ Θ, θ ∈
⋃k

i=0 Θi.
Consider the following sets Θ∗0,Θ

∗
1, . . . ,Θ

∗
k, as partitions of the parameter space Θ.

Θ∗k = Θk

Θ∗k−1 = Θk−1 ∩ Θc
k

Θ∗k−2 = Θk−2 ∩ Θc
k ∩ Θc

k−1

...
Θ∗i = Θi ∩ Θc

k ∩ Θc
k−1 ∩ . . . ∩ Θc

i+1

...
Θ∗1 = Θ1 ∩ Θc

k ∩ Θc
k−1 ∩ . . . ∩ Θc

2

Θ∗0 = Θ0 ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
1

Thus

Θ =

k⋃
i=0

Θi =

k⋃
i=0

Θ∗i . (6)

If θ ∈ Θ∗i then a 100(1 − α)% confidence set for θ will be

C(Z) =

k⋃
i=0

(Ci(Z) ∩ Θ∗i ). (7)

Here
k⋃

i=0

(Ci(Z) ∩ Θ∗i ) =

k⋃
i=0

(Ci(Z) ∩ Θi ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
i+1). (8)

For some non negative integer W, (8) can be written as
k⋃

i=0

(Ci(Z) ∩ Θ∗i ) =

W−1⋃
i=0

⋃⋃
i=W

⋃ k⋃
i=W+1

(Ci(Z) ∩ Θi ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
i+1). (9)

From the Theorem 1, W is the largest integer i such that Ci(Z) 1 Θc
i , then for W + 1 ≤ i ≤ k, Ci(Z) ⊂ Θc

i . Thus Ci(Z) is a
subset of Θc

i that has no common element with Θi.
Note that

k⋃
i=W+1

(Ci(Z) ∩ Θi ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
i+1) = ∅. (10)
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We can write

C(Z) =

k⋃
i=0

(Ci(Z) ∩ Θ∗i )

=

W−1⋃
i=0

⋃⋃
i=W

(Ci(Z) ∩ Θi ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
i+1).

Meaning

C(Z) =

W−1⋃
i=0

(Ci(Z) ∩ Θi ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
W ∩ . . . ∩ Θc

i+1) ∪ (CW (Z) ∩ ΘW ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
W+1)

⊆ (Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
W ) ∪ (CW (Z) ∩ ΘW ∩ Θc

k ∩ Θc
k−1 ∩ . . . ∩ Θc

W+2 ∩ Θc
W+1)

= CW (Z) ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
W+2 ∩ Θc

W+1.

Confidence set Ci(Z) is directed toward parameter set Θc
i , therefore for all θ ∈ Θ∗i ,

P(θ ∈ CW (Z) ∩ Θc
k ∩ Θc

k−1 ∩ . . . ∩ Θc
W+2 ∩ Θc

W+1) ≥ P(θ ∈ C(Z)) ≥ 1 − α.
(11)

This completes the proof of Theorem 1. �
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