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Abstract 
We proposed and studied a flexible distribution with wider applications called Generalized Burr X Lomax (GBX-L) 
distribution. Some well-known mathematical properties such as ordinary moments, incomplete moment probability 
weighted moments, stress-strength model, mean residual lifetime, characteristic function, quantile function, order 
statistics and Renyi entropy of GBX-L distribution are investigated. The expressions of order statistics are derived. 
Parameters of the derived distribution are obtained using the maximum likelihood method and simulation studied is 
carried out to examine the validity of the method of estimation. The applicability of the proposed distribution is 
exemplified using aircraft data. 
Keywords: Quantile function, Probability Weighted Moments, Characteristics function, Generalized Bur X Lomax 
distribution 
1. Introduction 
The Lomax or Pareto type II distribution was developed by Lomax (1954). It has several areas of applications such as 
determining the size of cities, flood, internet traffic control,, income and wealth inequality, reliability analysis, actuarial 
science, biological and medical sciences, queue theory, wind speed, life testing, sea waves and many others. A random 
variable 𝑋 is said to be distributed according to Lomax distribution, if it distribution function is given by 𝐺(𝑥; 𝑎, 𝑏) = 1 − ቀ1 + 𝑥𝑎ቁ௕ ,                                        𝑥 > 0; 𝑎, 𝑏 > 0                     (1) 

And its associated pdf is given by 𝑔(𝑥; 𝑎, 𝑏) = 1 − ቀ1 + 𝑥𝑎ቁ௕ ,                                     𝑥 > 0; 𝑎, 𝑏 > 0                        (2) 𝑏 is 𝑎 shape parameter and 𝑎 is a scale parameter. It should be noted that the 𝑝𝑑𝑓 of Lomax distribution is naturally a 
special case of some well-known distributions, and this includes Feller-Pareto, Pareto type II, Pareto type IV, Fisher 
distribution, and many others. However, the Lomax distribution is limited in applications as a result of some of its 
limitations, and this includes: Lack of flexibility, heavy tailed features, poor fits etc. when used to model real life data 
which exhibits non-monotonic, bathtub failure rate. Based on the afore-mentioned reasons various efforts have been made 
to generalize the Lomax distribution in other to induce flexibility into the distribution and also improve its fits for a better 
modeling capability. Among these are: exponentiated Lomax (El-Bassiouny et al., 2015), beta-Lomax, 
Kumaraswamy-Lomax, McDonald-Lomax (Lemonte and Cordeiro, 2013), gamma-Lomax (Cordeiro et al., 2013), 
Marshall-Olkin Extended Lomax distribution by Ghitany et al. (2007), Al-Zahrani and Sagor (2014) developed and 
studied the Poisson Lomax distribution , Weibull Lomax was developed by Tahir et al. (2015), half logistic Lomax by 
Anwar and Zahoor (2018)., Abdul-Moniem and Abdel-Hameed (2012) developed and studied the Exponentiated Lomax 
distribution, the transformed-transformer Lomax distribution was studied by Alzaghal and Hamed (2019), Kilany (2016) 
studied the weighted Lomax distribution, and the Power Lomax distribution was developed and studied by Rady et al. 
(2016) and Harris Extended Power Lomax Distribution was developed by Ogunde et al. (2021). 
We are motivated by the advantages offer by the generalized distribution when use to extend the baseline distribution. 
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Such advantage includes the ability of the new distribution to model data of any shape of the hazard function which 
further extend its scope of applications. Based on this, we are proposing a new extension of the Lomax distribution 
developed by using Generalized Bur X family of distributions which added two extra shape parameters to the Lomax 
distribution that induces flexibility into the Lomax distribution and also improve its fits by controlling its skewness and 
kurtosis for a better modeling capability. The new model is called Generalized Burr X Lomax (GBX-L) distribution.  
The rest of the paper is organized as follows. In Section 2, we introduce the GBX-L model. Section 3 focuses on its 
properties. In Section 4, we carried out the estimation procedures and also simulation of data set and finally in Section 5, 
we concluded. 
2. Generalized Burr X Lomax (GBX-L) Distribution 
Let 𝑓(𝑥;  𝜑) and 𝐹(𝑥;  𝜑) represents the 𝑃𝐷𝐹 and 𝐶𝐷𝐹 of the baseline distribution with parameter vector 𝜑. Then, 
according to Aldahlan and Khalil (2021), the CDF of the 𝐺𝐵𝑋 − 𝐺 family is given by  𝐺(𝑥) = ቈ1 − 𝑒𝑥𝑝 ቆ− ൤ 𝐹(𝑥; )ఈ1 − 𝐹(𝑥)ఈ൨ଶቇ቉ఎ                                                                (3) 

And its associated PDF is given by 𝑔(𝑥) = 2𝛼𝜂𝑓(𝑥)𝐹(𝑥; )ଶఈିଵ[1 − 𝐹(𝑥)ఈ]ଷ 𝑒𝑥𝑝 ቆ− ൤ 𝐹(𝑥; )ఈ1 − 𝐹(𝑥)ఈ൨ଶቇ ቈ1 − 𝑒𝑥𝑝 ቆ− ൤ 𝐹(𝑥; )ఈ1 − 𝐹(𝑥)ఈ൨ଶቇ቉ఎିଵ                (4) 

By taking F(x) as the CDF of the Lomax distribution in (1), we obtain the CDF OF GBX-L distribution with a wide range 
of applications including ecology, medicine, and reliability. The four-parameter GBX-L distribution is given by  

𝐺(𝑥) = ⎣⎢⎢
⎢⎡1 − 𝑒𝑥𝑝 ⎝⎜

⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ
1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ

⎠⎟
⎞

⎦⎥⎥
⎥⎤ఎ

   ,                                                  (5) 

for 𝑥 > 0; 𝑎, 𝑏, 𝛼, 𝜂 > 0. The corresponding PDF is given by 

𝑔(𝑥) = 2𝑏𝛼𝜂𝑎 ቀ1 + 𝑥𝑎ቁି௕ିଵ ൤1 − ቀ1 + 𝑥𝑎ቁି௕൨ଶఈିଵ 𝑒𝑥𝑝 ⎝⎜
⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ

1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ
⎠⎟
⎞

 

× ቈ1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ቉ିଷ
⎣⎢⎢
⎢⎡1 − 𝑒𝑥𝑝 ⎝⎜

⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ
1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ

⎠⎟
⎞

⎦⎥⎥
⎥⎤ఎିଵ

                        (6) 

for 𝑥 > 0, 𝑎, 𝑏, 𝛼, 𝜂 > 0. 
Plots of the CDF and PDF are given in Figure 1 for several values of 𝑎, 𝑏, 𝛼, and 𝜂. The plots of the CDF show that the 
GBX-L has a proper PDF and the plots of the PDF show that the GBX-L can both be symmetric and asymmetric shape.   

 
Figure 1. Plot of the CDF and the PDF of GBX-L distribution for different values of 𝑎, 𝑏, 𝛼, and 𝜂 
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2.1 Reliability, Hazard, Cumulative Hazard Function of GBX-L Model 
The Reliability function [𝑅(𝑥)] and the hazard function [ℎ(𝑥)] for the GBX-L will be obtained in this sub-section. 
Using some values of  𝑎, 𝑏, 𝛼, and 𝜂, some plots of the survival and the hazard function are presented. The Reliability 
and the hazard function of the GBX-L are respectively given by 𝑅(𝑥) = 1 − 𝐺(𝑥) 

𝑅(𝑥) = 1 − ⎣⎢⎢
⎢⎡1 − 𝑒𝑥𝑝 ⎝⎜

⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ
1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ

⎠⎟
⎞

⎦⎥⎥
⎥⎤ఎ

   ,                                                (7) 

ℎ(𝑥) =
𝐻∗ 2𝑏𝛼𝜂𝑎 ቀ1 + 𝑥𝑎ቁି௕ିଵ ൤1 − ቀ1 + 𝑥𝑎ቁି௕൨ଶఈିଵ 𝑒𝑥𝑝 ⎝⎜

⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ
1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ

⎠⎟
⎞

1 − ⎣⎢⎢
⎢⎡1 − 𝑒𝑥𝑝 ⎝⎜

⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ
1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ

⎠⎟
⎞

⎦⎥⎥
⎥⎤ఎ                   (8) 

for 𝑥 > 0, 𝑎 > 0, 𝑏 > 0, 𝛼 > 0, and 𝜂 > 0, where, 

𝐻∗ = ቈ1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ቉ିଷ
⎣⎢⎢
⎢⎡1 − 𝑒𝑥𝑝 ⎝⎜

⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ
1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ

⎠⎟
⎞

⎦⎥⎥
⎥⎤ఎିଵ

 

The graph the hazard function is drawn below in figure 2 for various values of  𝑎, 𝑏, 𝛼, and 𝜂. This graph indicates that 
new GBX-L model is capable of modeling upside-down bathtub (unimodal), increasing, decreasing hazard rate functions 
which are widely used in engineering for repairable systems.  

 
Figure 2. Plot of the hazard function of GBX-L model  
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𝑄(𝑢) =  𝑎 ⎝⎜
⎛൦1 − ቐ −𝑙𝑜𝑔 ቀ1 − 𝑢ଵ ఎൗ ቁ1 − 𝑙𝑜𝑔 ቀ1 − 𝑢ଵ ఎൗ ቁቑଵ ఈൗ ൪ିଵ ௕ൗ − 1⎠⎟

⎞                                                   (9) 

where, 𝑢 is a uniform distribution  on the interval ( )0,1  and In particular, the first quartile, the median, and the third 
quartile are obtained by putting 𝑢 = 0.25, 0.5 an 0.75, respectively, in (9).  
3.2 Important Representation  
In this subsection, a useful expansion of the pdf for GBX-L is provided. 
Since the generalized binomial series is  

(1 − 𝑧)௠ = ෍(−1)௜ ቀ𝑚𝑖 ቁ 𝑧௜ஶ
௜ୀ଴                                                                             (10) 

And  

(1 − 𝑧)ି௠ = ෍ ൬𝑚 + 𝑖 − 1𝑖 ൰ 𝑧௜ஶ
௜ୀ଴                                                                         (11) 

|𝑧| < 1 and 𝑚 is a positive real non-integer. Then, by applying the binomial theorem (10) in (11), the density function of 
GBX-L distribution becomes      

𝑔(𝑥) = 2𝑏𝛼𝜂𝑎 ෍ (−1)௜ା௞ା௟𝑗! (𝑖 + 1)ି௝ ൬𝜂 − 1𝑖 ൰ஶ
௜,௝,௞,௟ୀ଴ ൬−2𝑗 − 3𝑘 ൰ ቆ𝛼[2𝑗 + 𝑘 + 2] − 1𝑙 ቇ ቀ1 + 𝑥𝑎ቁି(௕[௟ାଵ]ାଵ)

 

𝑔(𝑥) = ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ 𝑓(𝑥; 𝑎, (𝑏[𝑙 + 1] + 1)) 

where 

𝜉௜,௝,௞ = 2𝛼𝜂𝑏(𝑏[𝑙 + 1] + 1) ෍ (−1)௜ା௞ା௟𝑗! (𝑖 + 1)ି௝ ൬𝜂 − 1𝑖 ൰ஶ
௜,௝,௞,௟ୀ଴ ൬−2𝑗 − 3𝑘 ൰ ቆ𝛼[2𝑗 + 𝑘 + 2] − 1𝑙 ቇ 

and 𝑔(𝑥; 𝑎, (𝑏[𝑙 + 1] + 1)) is the Lomax PDF with parameters with positive shape parameter (𝑏[𝑙 + 1] + 1) and 
positive scale parameter 𝑎. This shows that the GBX-L model can be written as a linear combination of Lomas density 
functions. Hence mathematical properties of the GBX-L can be obtained from the Lomax properties.   
Hence, the pdf (6) can be written as  

𝑔(𝑥) = 1𝑎 ෍ 𝜉௜,௝,௞(𝑏[𝑙 + 1] + 1)ஶ
௟ୀ଴ ቀ1 + 𝑥𝑎ቁି(௕[௟ାଵ]ାଵ)                                            (12) 

3.3 Moments of GBX-L Distribution 
Moments are very important in carrying out any statistical analysis, especially in applications. Therefore, we derive the 𝑣௧௛  moment for the GBX-L distribution.  If X has the pdf (6), then 𝑣௧௛ moment is obtained as follows:  

𝜇௩ᇱ = න 𝑥௩𝑓(𝑥)𝑑𝑥ஶ
ିஶ                                                                                 (13) 

Putting (12) in (13), we have 
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𝜇௩ᇱ = 1𝑎 ෍ 𝜉௜,௝,௞(𝑏[𝑙 + 1] + 1)ஶ
௟ୀ଴ න 𝑥௩ ቀ1 + 𝑥𝑎ቁି(௕[௟ାଵ]ାଵ) 𝑑𝑥ஶ

ିஶ                                              (14) 

Consequently, taking 𝑢 = 𝑥 𝑎⁄ , 𝑎𝑑𝑢 = 𝑑𝑥, then (14) we transform to 

𝜇௩ᇱ = 𝑎௩ ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ (𝑏[𝑙 + 1] + 1) න 𝑢௩(1 + 𝑢)ି(௕[௟ାଵ]ାଵ)𝑑𝑥ஶ

ିஶ                                  (15) 

By letting, 𝑢 = ௭ଵି௭ , 1 + 𝑚 = (1 − 𝑧)ିଵ, 𝑑𝑚 = (1 − 𝑧)ିଶ𝑑𝑥 and putting it in (15), we have 

𝜇௩ᇱ = 𝑎௩ ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ (𝑏[𝑙 + 1] + 1) න 𝑧௩(1 − 𝑢)ି(௕[௟ାଵ]ାଵ)𝑑𝑧ஶ

ିஶ  

Since, 

න 𝑧௩(1 − 𝑢)ି(௕[௟ାଵ]ାଵ)𝑑𝑧ஶ
ିஶ = 𝐵[(𝑣 + 1), ሼ𝑏(𝑙 + 1) − 𝑣ሽ] 

where, 𝐵(𝑝, 𝑞) represents the standard beta function defined by 𝐵(𝑝, 𝑞) = ׬ 𝑗௣ିଵ(1 − 𝑗)௤ିଵ𝑑𝑗ଵ଴  with 𝑢 > 0 and 𝑣 > 0. 
Finally, we obtained an expression for the 𝑣௧௛ moment of 𝐺𝐵𝑋 − 𝐿 given as 

   𝜇௩ᇱ = 𝑎௩𝑏 ෍ 𝜉௜,௝,௞(𝑏[𝑙 + 1] + 1)ஶ
௟ୀ଴ 𝐵[(𝑣 + 1), ሼ𝑏(𝑙 + 1) − 𝑣ሽ]                                     (16)  

Table 1 drawn below give various values for the first six moment, coefficient of variation (𝐶𝑉) skewness(𝜎௦) and kurtosis (𝜎௞) for fixed values of 𝑎 = 3.0 and 𝑏 = 5.5 for 𝐺𝐵𝑋 − 𝐿 distribution varying the values of 𝛼 and 𝜂. 
Table 1. The first six moments, 𝐶𝑉 𝜎௦ and 𝜎௞ of 𝐺𝐵𝑋 − 𝐿 distribution 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝛼 = 0.5, 𝜂 = 1.0 

𝛼 = 1.5, 𝜂 = 2.0 
𝛼 = 1.5, 𝜂 = 2.5 

𝛼 = 2.0, 𝜂 = 2.5 𝛼 = 2.5, 𝜂 = 3.5 𝜇ଵᇱ  0.2589 1.2298 1.2895 1.6274 2.0217 𝜇ଶᇱ  0.0929 1.6066 1.7461 2.7553 4.1924 𝜇ଷᇱ  0.0399 2.2085 2.4675 4.8322 8.9015 𝜇ସᇱ  0.0195 3.1717 3.6214 8.7474 19.3228 𝜇ହᇱ  0.0105 4.7337 5.4986 16.2978 42.8263 𝜇଺ᇱ  0.0061 7.3115 8.6103 31.1718 96.7994 𝜎ଶ 0.0259 0.0942 0.0833 0.1069 0.1051 𝐶𝑉 0.6216 0.2496 0.2238 0.2009 0.1604 𝜎௦ 24.4650 −18.0960 −40.0071 −95.1116 −245.002 𝜎௞ 886.5888 −95.6387 −335.6256 −1093.98 −3415.411 
3.4 Incomplete Moment of GBX-L Distribution 
More importantly, the first incomplete moment can be used to obtain the mean and the Bonferroni and Lorenz curves. The 
curves are very important in reliability, economics, demography, medicine, insurance and many others. The 𝒗𝒕𝒉 
incomplete moment, say 𝝓𝒗(𝒕) can be expressed from (12) as 

𝜙௩(𝑡) = 1𝑎 ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ න 𝑥௩ ቀ1 + 𝑥𝑎ቁି(௕[௟ାଵ]ାଵ) 𝑑𝑥௧

଴                                                        (17) 

Taking 𝑢 = 𝑥 𝑎⁄ , 𝑎𝑑𝑢 = 𝑑𝑥, then (17) we transform to 
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𝜙௩(𝑡) = 𝑎௩ ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ න 𝑢௩(1 + 𝑢)ି(௕[௟ାଵ]ାଵ)𝑑𝑥௧

଴                                                     (18) 

By letting, 𝑢 = ௭ଵି௭ , 1 + 𝑚 = (1 − 𝑧)ିଵ, 𝑑𝑚 = (1 − 𝑧)ିଶ𝑑𝑥 and putting it in (18), we have 

𝜙௩(𝑡) = 𝑎௩ ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ න 𝑧௩(1 − 𝑢)ି(௕[௟ାଵ]ାଵ)𝑑𝑧ஶ

ିஶ  

Finally, we have 

   𝜙௩(𝑡) = 𝑎௩𝑏 ෍ 𝜉௜,௝,௞ஶ
௟ୀ଴ 𝐵 ൤(𝑣 + 1), ሼ𝑏(𝑙 + 1) − 𝑣ሽ; 𝑡1 − 𝑡൨                                        (19) 

3.5 The Probability Weighted Moments 
Considering the class of moments, called the probability-weighted moments (PWMs), has been proposed by (Greenwood 
et al. (1979)). This class is used to derive estimators of the parameters and quantiles of distributions expressible in inverse 
form. For a random variable ,X  the PWMs, denoted by 𝜑௥,௦,  can be calculated through the following relation 

𝜑௥,௦ = 𝐸[𝑋௥(𝐹(𝑥))௦] = න 𝑥௥𝑓(𝑥)(𝐹(𝑥))௦𝑑𝑥ஶ
ିஶ                                                        (19) 

The PWMs of 𝐺𝐵𝑋 − 𝐿 distribution is obtained by substituting (5) and (6) into (19), and using the binomial series given 
in (10) and (11), we have 

𝜑௥,௦ = 2𝑏𝛼𝜂 ෍ 𝑎௩𝑝! (−1)௠ା௣ା௩ ቆ𝜂(𝑠 − 1) − 1𝑚 ቇ ൬4 + 𝑞𝑣 ൰ ൬𝛼𝑞 + 2𝛼 + 1𝑣 ൰ஶ
௠,௣,௤,௩  

× 𝐵(𝑟 + 1, −[𝑟𝑏 + 1])                                                                               (20) 
3.6 Characteristics Function of GBX-L 
The characteristic function of a distribution is always unique and is related to the moments of the distribution by 

𝜙௫(𝑡) = 𝐸(𝑒௜௧) = න 𝑒௜௧𝑓(𝑥)𝑑𝑥ஶ
ିஶ = ෍ (𝑖𝑡)௩𝐸(𝑋௩)𝑣!ஶ

௩ୀ଴ = ෍ (𝑖𝑡)௩𝑣! 𝜇௩ᇱஶ
௩ୀ଴                                   (21) 

Putting (18) in (21), we obtained the characteristics function of 𝐺𝐵𝐿 − 𝑋 distribution as  

𝜙௫(𝑡) = 𝑎௩𝑏 ෍ (𝑖𝑡)௩𝑣!ஶ
௟,௩ୀ଴ 𝜉௜,௝,௞𝐵[(𝑣 + 1), ሼ𝑏(𝑙 + 1) − 𝑣ሽ]                                                (22) 

3.7 Mean Residual Life of GBX-L Distribution 𝑚(𝑡) = 𝐸[𝑋 − 𝑡/𝑋 > 𝑡] = ׬ (𝑥 − 𝑡)𝑓(𝑥)𝑑𝑥ஶ௧ 𝑅(𝑡) = 𝜇ଵᇱ − ׬ 𝑥𝑓(𝑥)𝑑𝑥௧଴𝑅(𝑡) − 𝑡 

The integral ׬ 𝑥𝑓(𝑥)𝑑𝑥௧଴  is the incomplete moment of GBX-L and 𝜇ଵᇱ  is the first moment obtained by taking 𝑣 = 1 in 

(16) and 𝑆(𝑡) is given in (7). 
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𝑚(𝑡) = 𝜇ଵᇱ − 𝑎௩𝑏 ∑ 𝜉௜,௝,௞ஶ௟ୀ଴ 𝐵 ቂ(𝑣 + 1), ሼ𝑏(𝑙 + 1) − 𝑣ሽ; 𝑡1 − 𝑡ቃ  
1 − ⎣⎢⎢

⎢⎡1 − 𝑒𝑥𝑝 ⎝⎜
⎛− ൦ ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ

1 − ൬1 − ቀ1 + 𝑥𝑎ቁି௕൰ఈ൪ଶ
⎠⎟
⎞

⎦⎥⎥
⎥⎤ఎ − 𝑡                                         (23) 

3.8 Stress-Strength Model of 𝑮𝑩𝑿 − 𝑳 Distribution 
Stress-Strength model is the most commonly used approach in reliability estimation. This model can be applied in 
engineering and physics as system collapse and strength failure. In stress-strength modeling, Ɽ = 𝑷𝒓(𝑿𝟐 < 𝑿𝟏) is a 
measure used in determining the reliability of a system when it is subjected to random stress 𝑿𝟐 and has strength 𝑿𝟏. The 
system fails if the applied stress is greater than its strength and function satisfactorily whenever 𝑿𝟏 > 𝑿𝟐. Ɽ can be taken 
a measure of system performance is commonly encountered in electrical and electronic systems. Let 𝑿𝟏 and 𝑿𝟐 be two 
independent random variables having 𝑮𝑩𝑿 − 𝑳(𝜶𝟏, 𝜼𝟏, 𝒂, 𝒃) and GBX-L(𝜶𝟐, 𝜼𝟐, 𝒂, 𝒃) distribution. Then, we can write 

           Ɽ = න 𝒇𝟏(𝒙; 𝜶𝟏, 𝜼𝟏, 𝒂, 𝒃)𝑭𝟏(𝒙; 𝜶𝟐, 𝜼𝟐, 𝒂, 𝒃)𝒅𝒙ஶ
𝟎                                                                 (𝟐𝟒) 

= 𝒃 ෍ (−𝟏)𝒛(𝒊 + 𝟏)𝒌 ቀ𝜼𝟐𝒊 ቁ ൬𝜼𝟏 − 𝟏𝒋 ൰ ൬𝟐𝒌 + 𝒑𝒑 ൰ ൬𝟐𝒍 + 𝒒 − 𝟏𝒒 ൰ ቀ𝒗𝒓ቁ 𝑩[𝟏, −(𝒃 + 𝒓)]ஶ
𝒊,𝒋,𝒌,𝒍,𝒑,𝒒,𝒓ୀ𝟎  

Where, 𝒛 = 𝒊 + 𝒋 + 𝒌 + 𝒍 + 𝒓 and 𝒗 = 𝜶𝟏(𝟐𝒌 + 𝒑 + 𝟐) + 𝜶𝟐(𝟐 + 𝒒) − 𝟏 

3.9 Order Statistics of 𝑮𝑩𝑿 − 𝑳 Distribution 
Order statistics have been extensively studied and found applications in many applied fields of statistics, such as 
reliability and life testing. Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡  be independent and identically distributed (i.i.d) random variables with 
their corresponding continuous distribution function ( )F x .  Let 𝑋ଵ:௡ < 𝑋ଶ:௡ < ⋯ < 𝑋௡:௡  the corresponding ordered 
random sample from a population of size 𝑛. According to (David, 1981), the pdf of the 𝑠௧௛ order statistic, is defined as  

𝑓௦:௡ = 𝑓(𝑥)𝐵(𝑠, 𝑛 − 𝑠 + 1) ෍(−1)௦௡ି௦
௜ୀ଴ ቀ𝑛 − 𝑠𝑖 ቁ 𝐹(𝑥)௜ା௦ିଵ                                                  (25) 

Putting (5) and (6) in (25), we have 

𝑓௦:௡ = 𝑓(𝑥)𝐵(𝑠, 𝑛 − 𝑠 + 1) ෍(−1)௦௡ି௦
௜ୀ଴ ቀ𝑛 − 𝑠𝑖 ቁ 𝐹(𝑥)௜ା௦ିଵ                                                  (26) 

Putting equation (5) and (6) in (26) and thereafter applying (10) and (11), the 𝑠௧௛  order statistics of GBXL is given by 

𝑓௦:௡ = 2𝑏𝛼𝜂𝑎𝐵(𝑠, 𝑛 − 𝑠 + 1) ෍ ෍ (−1)௦ା௝ା௞ା௠ା௣𝑘!ஶ
௝ା௞ା௟ା௠ା௣

௡ି௦
௜ୀ଴ ቆ𝜂(1 + 𝑠) − 1𝑗 ቇ ൬2𝑘 + 𝑙 − 1𝑙 ൰ 

                    ∗ ቆ𝛼(𝑙 + 2) − 2𝑚 ቇ ൬𝑚𝛼𝑝 ൰ (𝑗 + 1)௞ ቀ1 + 𝑥𝑎ቁି[௕(ଵା௣)ାଵ]                                                    (27) 

3.10 Renyi Entropy of 𝑮𝑩𝑿 − 𝑳 Distribution 
The entropy of a random variable X is a measure of variation of uncertainty and has been used in many fields such as 
physics, engineering and economics. As mentioned by (Renyi 1961), the Renyi entropy is defined by 

𝐼ఘ(𝑋) = 11 − 𝜌 𝑙𝑜𝑔 න 𝑓(𝑥)ఘ𝑑𝑥,ஶ
ିஶ            𝜌 > 0 𝑎𝑛𝑑 𝜌 ≠ 0                                                       (28) 
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By putting (6) in (28) and applying the binomial theory given (10) and (11), then the pdf 𝑓(𝑥)ఘ can be expressed as 
follows   

𝑓(𝑥)ఘ = 𝑎 ෍ (−1)௠ା௣ା௥𝑝!ஶ
௠,௣,௤,௥ (𝑚 + 𝜌)௣ ቆ𝜌(𝜂 − 1)𝑚 ቇ ൬2𝑝 + 𝑞 + 2𝑞 ൰ ቆ𝛼(2𝑝 + 𝑞 + 2𝜌) − 𝜌𝑟 ቇ 

× 𝐵[1, 𝜌𝑏 + 𝜌 − 𝑟 + 3] 
Finally, an expression for the entropy of 𝐵𝐺𝑋 − 𝐿 distribution is given by 

𝐼ఘ(𝑋) = 11 − 𝜌 𝑙𝑜𝑔 ൦(2𝑏𝛼𝜂)ఘ𝑎ଵିఘ ෍ (−1)௠ା௣ା௥𝑝!ஶ
௠,௣,௤,௥ (𝑚

+ 𝜌)௣ ቆ𝜌(𝜂 − 1)𝑚 ቇ ൬2𝑝 + 𝑞 + 2𝑞 ൰ ቆ𝛼(2𝑝 + 𝑞 + 2𝜌) − 𝜌𝑟 ቇ 𝐵[1, 𝜌𝑏 + 𝜌 − 𝑟 + 3]൪ 

4. Simulation Study 
To conduct a simulation study, (9) is used to generate random data from the Generalized Bur X-Lomax distribution. The 
simulation experiment is repeated for 1000 times each with sample of size n = 50, 100, 150 and 200 for parameter values 
of 𝑎 = 0.5, 𝑏 = 0.5, 𝛼 = 1.3, and 𝜂 = 1.3. Table 2 demonstrates the Mean estimate (ME), Absolute Bias (AB), Standard 
error (SE) and Mean square error (MSE).  
Table 2. ME, AB, SE and MSE of distribution 𝑷𝒂𝒓. Sample size 𝑴𝑬 𝑨𝑩 𝑺𝑬 𝑴𝑺𝑬 

 𝑎 = 0.4 
50 0.1263 0.2737 0.4157 0.2477 100 0.1001 0.2999 0.1771 0.1213 150 0.0744 0.3256 0.0747 0.1116 200 0.1305 0.2695 0.0955 0.0817 

 𝑏 = 0.5 
50 0.0461 0.4539 0.0885 0.2139 100 0.0388 0.4612 0.0196 0.2131 150 0.1291 0.3709 0.0742 0.1431 200 0.1367 0.3633 0.0671 0.1365 

 𝛼 = 1.3 
50 0.2628 1.0372 0.3941 1.2311 100 0.1893 1.1107 0.0439 1.2356 150 0.5745 0.7255 0.4126 0.6966 200 0.8039 0.4961 0.3019 0.3372 

 𝜂 = 0.5 
50 1.4878 0.9878 1.3878 2.9017 100 1.5215 1.0215 0.4258 1.2248 150 0.6463 0.1463 0.3271 0.1284 200 0.6466 0.1466 0.2934 0.1076 

4.1 Maximum Likelihood Method 
This section deals with the maximum likelihood estimators of the unknown parameters for the GBXL distributions based 
on the principle of complete samples. Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ represent the observed values from the GBXL distribution with 
set of parameter 𝜔 = (𝑎, 𝑏, 𝛼, 𝜂)்.  The log-likelihood function 𝑙 = 𝑙𝑜𝑔𝐿  for parameter vector 𝜔 = (𝑎, 𝑏, 𝛼, 𝜂)் is 
obtained as follows 

𝑙൫𝑥൯ = 𝑙𝑜𝑔 ൬𝑏𝛼𝛽𝑎 ൰ − (𝑏 − 1) ෍ 𝑍௜ + (2𝛼 − 1) ෍ 𝑙𝑜𝑔ൣ1 − 𝑍௜ି௕൧௡
௜ୀଵ

௡
௜ୀଵ − ෍ ൭ ൣ1 − 𝑍௜ି௕൧ఈ1 − ൣ1 − 𝑍௜ି௕൧ఈ൱ଶ௡

௜ୀଵ  

− ෍ 𝑙𝑜𝑔 ቀ1 − ൣ1 − 𝑍௜ି௕൧ఈቁ + (𝜂 + 1) ෍ 𝑙𝑜𝑔 ൭1 − 𝑒𝑥𝑝 ൥− ൭ ൣ1 − 𝑍௜ି௕൧ఈ1 − ൣ1 − 𝑍௜ି௕൧ఈ൱൩൱௡
௜ୀଵ

௡
௜ୀଵ  
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Where, 𝑍௜ = ቀ1 + ௫೔௔ ቁ 

The maximum likelihood (ML) method and its procedures exist in the literature with details. 
4.2 Applications to Real Data 
In this section, a real data set is employed to illustrate the importance of the developed GBXL. Recently, considerable 
extensions of Lomax distribution have been introduced, in the literature, by several authors, such as Harris Power Lomax 
(HPL) by Ogunde et al. (2021), Power Lomax (PL) by Rady et al.(2016 ) and Harris Lomax (HL) distribution. We fit 
GBX-L distribution to the two real data sets using MLEs and compared the suggested distribution with HPL, HL, PL and 
L distributions using different information criteria including: the −2𝑙መ(Maximized Log-likelihood), Akaike information 
criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian information criterion (BIC), and Hannan 
Quinn information criterion (HQIC). The mathematical form of these criteria are given by 𝐴𝐼𝐶 = −2𝑙መ + 2𝑧,    𝐵𝐼𝐶 = −2𝑙መ + 𝑧𝑙𝑜𝑔(𝑛),    𝐻𝑄𝐼𝐶 = −2𝑙መ + 2𝑧𝑙𝑜𝑔[log (𝑛)] and  𝐶𝐴𝐼𝐶 = −2𝑙መ + 2𝑧𝑛/(𝑛 − 𝑧 − 1) 

Where, 𝑙 is the maximized likelihood function, 𝑧 stands for the number of the model parameters and 𝑛 is the sample 
size of the data considered. The model with minimum AIC (or CAIC, BIC, and HQIC) value is chosen as the best model 
to fit the data. Finally, we provide a representation of the histograms of the data sets and plot the fitted density functions to 
obtain a visual representation of the data set. 
The data set represents the failure times of 84 Aircraft windshields recently studied by Ramos et al. (2013). The data set 
values are 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309,1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 
0.943, 1.912,2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661,3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 
2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432,2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 
4.255, 1.505, 2.154,2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103,4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 
2.224, 3.117, 4.485,1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757,2.324, 3.376, 4.663. Figure 3 represent 
the total test on test (TTT) plot and the Box plot for the aircraft data. The TTT plot indicates that the aircraft data exhibits 
an increasing failure rate and the Boxplots also indicates that the data is the skewed to the right (positively skewed). 
Figure 4 is shows the fitted densities of the distribution to the data. Table 2 represents the maximum likelihood estimates 
of the GBX-L model for aircraft data. Table 3 represents the goodness of fit criteria including AIC, CAIC, BIC, and HQIC. 
The numerical values in Table 3 indicate that the GBX-L model has the minimum value of the information criterion than 
all other models considered. Hence, we conclude that the GBX-L distribution perform better as compared to Harris Power 
Lomax, Power Lomax, Harris Lomax and Lomax distribution. 

 

           Diagram I                 Diagram II 

Figure 3. Graph of TTT plot (Diagram I) and Box plot (Diagram II) 
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Table 6. the statistics AIC, BIC, HQIC, CAIC, K, P-value values for Aircraft data  𝑀𝑜𝑑𝑒𝑙 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 −2𝑙 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐺𝐵𝑋 − 𝐿 130.063 268.126 277.896 268.626 272.056 𝐻𝑃𝐿 131.011 272.021 284.238 272.781 276.934 𝐻𝐿 149.558 307.115 317.563 307.537 311.333 𝑃𝐿 169.250 344.501 351.829 344.797 347.448 𝐿 200.268 404.536 409.746 404.660 406.644 
The Likelihood Ratio (LR) statistic was obtained for testing the hypotheses 𝐻଴: 𝛼=1 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻ଵ = 𝐻଴ 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢e, that 
is to compare the 𝐺𝐵𝑋 − 𝐿 model with the 𝐿 model. The LR statistic 𝑤 = -2{130.063-200.268} = 140.41(𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 
0.01), sufficient to show that the 𝐺𝐵𝑋 − 𝐿 model is a better model that can be used to fit the data. 

 
Figure 4. Plots of estimated CDF and histogram fitted PDF of the fitted models for the aircraft data 

5. Conclusion 
In the present paper, the new Generalized Burr X Lomax distribution is proposed and studied. Some characteristics  of 
the GBX-L distribution, such as, expressions for the density function, moments, incomplete moment, probability 
weighted moments, characteristic function, quantile function, mean residual life, stress-strength model, orders statistics 
and Renyl entropy are discussed. The maximum likelihood estimation technique is employed for estimating the model 
parameters. Aircraft data is employed to validate the relevance of GBL-X Model when compared to other models such as 
Harris power Lomax, Harris Lomax, Power Lomax, and Lomax models. we also carried out data simulation to validate 
the method of estimation. 
Acknowledgement 
The authors would like to express their thanks to the editor for important remarks, careful reading and support. 
Reference 
Al-Shomrani, A., Arif, O., Shawky, K., Hanif, S., & Shahbaz, M. Q. (2016). Topp Leone family of distributions: some 

properties and application. Pak.j.stat.oper.res., 3, 443-451.  
Anwar, M., & Zahoor, J. (2018). The half logistic Lomax distribution for lifetime modeling. Journal of Probability and 

Statistics; Article ID 3152807, 12 pages. https://doi.org/10.1155/2018/3152807  
Atkinson, A. C. (1985). Plots, transformations and regression: an introduction to graphical methods of diagnostic 

regression analysis. Clarendon Press Oxford, Oxford. 
Bryson, M. C. (1974). Heavy-tailed distribution: properties and tests. Technometrics, 16, 61-68. 

https://doi.org/10.1080/00401706.1974.10489150 
Cordeiro, G., Ortega, E., & Popovic, B. (2013). The gamma Lomax distribution. Journal of Statistical Computing and 

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated Cdfs for Air craft windshield data

x-value

F(
x)

GBX-L
HL
PL
L
HPL

Estimated Pdfs for Air craft windshield data

x-value

f(x
)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

GBX-L
HL
KPL
PL
L
HPL



 
 
http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 2; 2022 

62 

Simulation, 85(2), 305–319.  
Chen, F., Chen, S., & Ma, X. (2018). Analysis of hourly crash likelihood using unbalanced panel data mixed logit model 

and real-time driving environmental big data. Journal of safety research, 65, 153–159. 
https://doi.org/10.1016/j.jsr.2018.02.010 PMID: 29776524  

Chen, F., Chen, S., & Ma, X. (2016). Crash frequency modeling using real-time environmental and traffic data and 
unbalanced panel data models. International journal of environmental research and public health, 13(6), 609.  

Chen, F., & Chen, S. (2011). Injury severities of truck drivers in single-and multi-vehicle accidents on rural highways. 
Accident Analysis & Prevention, 43(5), 1677–1688. https://doi.org/10.1016/j.aap.2011. 03.026 PMID: 21658494 

David, H. A. (1981). Order statistics, Second edition. Wiley, New York. 
Eugene, N., Lee, C., & Famoye, F. (2002). The beta-normal distribution and its applications. Communications in 

Statistics and Theory and Methods, 31, 497-512. 
El-Bassiouny, A. H., Abdo, N. F., & Shahen, H. S. (2015). Exponential Lomax distribution. International Journal of 

Computer applications, 121(13), 24-29.  
Ghitany, M. E., Al-Awadhi, F. A., & Alkhalfan, L. (2007). Marshall–Olkin extended Lomax distribution and its 

application to censored data. Communications in Statistics—Theory and Methods, 36(10), 1855-1866. 
https://doi.org/10.1080/03610920601126571  

Greenwood, J. A., Landwehr, J. M., & Matalas, N. C. (1979). Probability weighted moments: Definitions and relations 
of parameters of several distributions expressible in inverse form. Water Resources Research, 15, 1049-1054. 

Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016). Macro and micro models for zonal crash 
prediction with application in hot zones identification. Journal of transport geography, 54, 248– 256.  

Kilany, N. M. (2016). Weighted Lomax distribution. SringerPlus, 5, 1862. https://doi.org/10.1186/s40064-016-3489-2 
Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of American Statistical 

Association, 49, 847-852. https://doi.org/10.1080/01621459.1954.10501239 
Ogunde, A. A., Laoye, V. E., Ogbonnaya, N. E., & Balogun, K. O. (2021). Harris Extended Power Lomax Distribution: 

Properties, Inference and Applications. International Journal of Statistics and Probability, 10(4). 
https://doi.org/10.5539/ijsp.v10n4p77 

Lemonte, A., & Cordeiro, G. (2013). An extended Lomax distribution. Statistics, 47, 800-816.  
Rady, E. A., Hassaine, W. A., Elhaddad, T. A. (2016). The power Lomax distribution with an Application to bladder 

cancer data. SpringerPlus, 5, 1838. https://doi.org/10.1186/s40064-016-3464-y 
Lomax, K. S. (1954). Business failures: another example of the analysis of failure data. Journal of the American 

Statistical Association, 49(268), 847-852. 
Tahir, M. H., Cordeiro, G. M., Mansoor, M., & Zubair, M. (2015). The Weibull Lomax distribution: properties and 

applications. Hacettepe Journal of Mathematics and Statistics, 44(2), 461–480. 
Zeng, Q., Wen H., Huang, H., Pei, X., & Wong, S. C. (2017). A multivariate random-parameters Tobit model for 

analyzing highway crash rates by injury severity. Accident Analysis & Prevention, 99, 184– 191. 
https://doi.org/10.1016/j.aap.2016.11.018 PMID: 27914307  

Zeng, Q., Guo, Q., Wong, S. C., Wen, H., Huang, H., & Pei, X. (2019). Jointly modeling area-level crash rates by 
severity: a Bayesian multivariate random-parameters spatio-temporal Tobit regression. Transportmetrica A: 
Transport Science, 15(2), 1867–1884.  

Zeng, Q., Hao, W., Lee, J., & Chen, F. (2020). Investigating the impacts of real-time weather conditions on freeway 
crash severity: a Bayesian spatial analysis. International journal of environmental research and public health, 
17(8), 2768. https://doi.org/10.3390/ijerph17082768 PMID: 32316427 

 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 


