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Abstract 

This article presents a new way to determine the value of π, using as an approach the area formed by the interference 

pattern of several rotating unit squares. The same approach is then applied to other N-sided unit polygons (i.e., triangles, 

pentagons and hexagons) to investigate how they affect this proportionality between circularity and linearity to a degree 

other than orthogonal (i.e., when the system axes do not form a right-angle, expressible in the new method as an approach 

that uses squares). Applied examples involving the Earth’s size and an orbiting satellite constellation are given. 

Keywords: relativity, Pi, number theory, geometry, polygon, rotation 

1. Introduction 

The constant π is an essential tool in mathematics that interconnects circularity to linearity (i.e., “the fact of being 

shaped like a circle” to “the fact of consisting of straight lines”, according to the Cambridge online dictionary) in 

various aspects of modern society (e.g., a wheel rolling on a road, a turning engine pulling a convey belt, a pulley 

heaving a rope in a crane, etc). Records documenting the fundamental concept of this constant date back to the time of 

the Babylonians (Robson 2001, Swetz 2014). One definition presented in the 18th century defines π as the ratio of a 

circle's circumference to its diameter (Jones 1706). Various approaches are known to determine π, some being 

polygonal algorithms ― for example, Archimedes approach and its modified version from Liu Hui increase the number 

of sides of a polygon as the means to achieve an estimation of 𝜋 ― infinite series ― such as in the work of Leibniz 

and Lambert ― iterative algorithms ― derived by John Machin’s, and more recently by the Chudnovsky brothers ― 

and finally statistical approaches are also possible using Monte Carlo simulations (Ye 2016). The importance of 𝜋 in 

science is highlighted by the considerable effort employed in determining its ever-increasing accuracy. In 2021, an 

attempt to compute a new world record accuracy of π to 62.8 trillion digits was achieved using the Chudnovsky 

algorithm, where the main venue was the testing of supercomputers and numerical analysis algorithms (Lu 2021, 

Thomas et al 2021). The importance of π in education can never be understated (Canadian Ministry of Education 2020). 

The present article contributes to the pool of methods to compute π by offering a new approach using the interference 

pattern caused by the rotation of N-sided unit regular polygons, while at the same time it presents a new perspective on 

the definition of π beyond a constant, into the idea of a function. 

2. Hypothesis 

It is the hypothesis of this article that the relation between linearity and circularity ― mathematically represented by 

π ― can be defined from the ratio between the area of a circle ― computed from the rotational pattern of infinite 

N-sided unit revolving regular polygons ― and a fraction of the area of the (respective) circumscribed polygon (sized 

by the number of sides of the polygon), where the constant value giving the proportion π becomes a function dependent 

on the properties of the regular polygon used during this process (that encompasses within it the constant 3.1415…).   

3. Theory 

Consider a regular polygon of side unit. Rotating copies of this polygon about its centre at equidistant angles generates 

an interference pattern composed of small triangles which are interconnected to each other. As the number of polygons 

tends to infinity, their interference creates an endless number of triangles that when summed fill completely the area 

between two circles – external and internal formed by the edges and tangents of the square – creating a ring. The fractal 

sum of the rings inside the initial allows the entire area of the circle to be numerically computed. The area of the circle 

can then be related to express π. Usage of polygons to define π is not uncommon – Archimedes approach and Liu Hui 

method are examples ― creating a relation between the perimeter of a polygon with an ever-increasing number of sides 

(tending to a circle at infinity) that establishes the means to compute the circle’s perimeter, as thus the value of π. The 

new method is different, in that a polygon (of number of sides 𝑵) is rotated by 𝑷 times around its center O, and it’s 
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the interference pattern between these polygons that allows the computation of the circle’s area, as thus of the constant 

π.   

3.1 Square Approach 

Figure 1a shows the fine interference pattern formed by the angular equidistant rotation of sixteen (𝑃 = 16) unit squares 

(𝑁 = 4), and Figure 1b shows a zoom of the fundamental strip that tessellates it. For reference, the simpler approach of 

using only two squares (in black) is also shown for comparison. In both cases, it is possible to compute an 

approximation of the area of the circle, and thus of the value of the constant π. The greater the number of revolving 

squares, the finer the interference pattern, and thus the more accurate the prediction of 𝜋 will be. With the rotation of 

the squares, the number of outer points and inner tangent points tends to infinity, and both form an outer circle (here in 

blue) and an inner circle (here in red). Since the internal angle of the square is 𝜃 = 180° − 360° N⁄ = 90°, this means 

that when one side of the square is tangent to the inner circle (at 𝑇1 for instance), the other adjacent side is both 

perpendicular and equal to the diameter 𝑇1𝑇2 (of the inner circle). The first phase of the method is to compute the area 

in between the two circles, here called a ring. A ring is composed of many triangle strips (visible in Figure 1a), which in 

turn is divided into a series of smaller triangles (that is, each parallelogram in the strip is divisible along the diagonal 

into two triangles ― as shown in the zoom in Figure 1b). For increasing number of revolving polygons, the strips 

gradually become thinner and more numerous. The second phase comprises of filling the interior of the ring by 

repeating it inwards in a fractal manner, allowing for the completion of the circle’s area. To illustrate this effect, Figure 

2a shows two squares (clocked by 45 degrees) scaled down continuously.  

 

Figure 1. (a) Ring formed by evenly spaced 16 revolving squares, and (b) zoom into interference strip AB’H 

This is achieved by iteratively joining their midpoints, in a fractal convergence pattern towards the center. Then, by 

revolving this pair of squares in small steps creates a fine mesh that tends to occupy the whole center area (as seen in 

Figure 2b). The interference pattern in each fractal ring is composed of many copies of a single strip that also scales 

down ― AB’H for the first (Figure 1b) and scaled down versions of AB’H for the remainder infinite fractal levels 

(Figure 2b). In order to keep the method mathematically manageable, consider the simple rotation of four squares 

(instead of sixteen). As a major outcome, the mathematical process to be described leading to the calculation of π is 

programmed (in a fully working manner) in the Octave open-source program (Eaton et al 2021) in annex. This program 

can run directly in the Octave’s open-source software, when copied into an m-file in the “Editor” tab. Input of key 

parameters and initial formulas is done in line 1 to 19. The first part of the present process implies finding an expression 

for the area of the strip ― here present as AB’H in Figure 3 resulting from the interference of the squares ― that in 

itself is the sum of a series of small triangles. As it will be shown, this series of triangles is interconnected by their sides 

and internal angles via the law of cosines. The method starts by finding the expression for the length of the longest side 

𝑧1 of the most outward triangle. Instead of relating the area of a circle to its radius, the present method will interconnect 

it to the side of the revolving square ABCD instead (which, for convenience and from our reference point view, will be 

assumed ― for the purpose of the analysis ― fixed with respect to all other), and this side will be defined as a function 

of the individual sides triangles composing the strip in the following manner. The length segment AD is assumed 
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stationary and constant 𝐿 = 1, and it is partitioned several times by the revolving squares.  

 

 

Figure 2. Fractality of the approach shown by the infinite inward propagation of (a) 2 squares and (b) 16 squares 

 

Figure 3. Interference strip created by four revolving squares: (a) overview and (b) key variables (lengths and angles) 

For this particular case of four rotating squares (Figure 3a), the side of the square is expressible as the sum 

2(𝑥1 + 𝑥2 + 𝑥3) + 𝑧4 = 1 ≡ 𝐿                                                                          (1) 

This will later be generalized to an infinite number of squares (𝑁 = ∞). The longest side of each successive triangle 

within the strip is denoted by the variable 𝑧, while the shorter side by the variable 𝑥. Symmetry mirrors the partition 

about the midpoint of AD, hence the multiplying factor two in some of the terms. One can simply scale the circle area 

by changing the value of L, but (for the purpose of determining π), it is a matter of convenience to set it as 𝐿 = 𝐴𝐷 = 1. 
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Zooming into the interference strip AB’H (Figure 3b) allows the identification of all angles and lengths necessary for 

determining its area. The strip can be decomposed into pairs of adjacent outward and inward facing triangles, located by 

the index 𝑛 along the strip (starting outside and moving inwards). The outward facing angles of the triangles are given 

by  

𝛾𝑜,𝑛 = 𝜃 + (𝑛)𝛿                                                                                  (2) 

where 𝜃 = 180° − 360° N⁄  is the polygon internal angle, the subscript 𝑜 denoting an obtuse angle facing outward 

away from the center of the circle (starting with the most outer triangle AB’E at 𝑛 = 1). In turn, the inward facing 

angles of the triangles are given as  

𝛾𝑖,𝑛 = 𝜃 + (𝑛 − 1)𝛿 = 𝛾𝑜,𝑛−1                                                                       (3) 

and the subscript 𝑖 denotes an obtuse angle facing inward towards the center of the circle (starting with the most outer 

triangle AEF at 𝑛 = 1). Creating a relation between all sides of 𝑥 and 𝑧 is possible via the law of cosines. When 

applied between two adjacent triangles at the same level ― like AB’E and AEF, both at 𝑛 = 1 ― establishes a 

connection between two successive values of 𝑧. That is, for triangle AB’E, the following relation is present 

𝑥1
2 − 2𝑥1𝑥1 cos 𝛾𝑜,1 + 𝑥1

2 = 𝑧1
2                                                                         (4) 

Herein, and throughout the remainder of this article, all trigonometric functions work directly on an argument specified 

in degrees. At the same time, for triangle AEF, the associated relation becomes 

𝑥1
2 − 2𝑥1𝑥1 cos 𝛾𝑖,1 + 𝑥1

2 = 𝑧2
2                                                                      (5) 

Both Eq.(4) and Eq.(5) have the common variable 𝑥1. Equating both gives the (already simplified) relation 

𝑧2 =
√1 − cos 𝛾𝑖,1

√1 − cos 𝛾𝑜,1

 𝑧1                                                                                  (6) 

Further generalizing to a relation between two subsequent lengths 𝑧𝑛 and 𝑧𝑛+1 [while also expanding with Eq.(2) and 

Eq.(3)], results in 

𝑧𝑛+1 =
√1 − cos 𝛾𝑖,𝑛

√1 − cos 𝛾𝑜,𝑛

𝑧𝑛 =
√1 − cos(𝜃 + (𝑛 − 1)𝛿 )

√1 − cos(𝜃 + (𝑛)𝛿 )
𝑧𝑛 = 𝑄𝑛𝑧𝑛                                             (7) 

In turn, when the law of cosines is applied between two adjacent triangles at different levels ― like AEF at 𝑛 = 1 and 

GEF at 𝑛 = 2 ― determines a connection between two successive values of 𝑥. For triangle GEF, the following 

relation is present 

   𝑥2
2 − 2𝑥2𝑥2 cos 𝛾𝑜,2 + 𝑥2

2 = 𝑧2
2                                                                           (8) 

Equating to the formed relation for triangle AEF given by Eq.(5) ― where both have the common variable 𝑧2 ― 

results in the (already simplified) relation 

𝑥2 =
√1 − cos 𝛾𝑖,1

√1 − cos 𝛾𝑜,2

𝑥1                                                                                 (9) 

Similarly, this can be generalized and further expanded using Eq.(2) and Eq.(3) as 

𝑥𝑛+1 =
√1 − cos 𝛾𝑖,𝑛

√1 − cos 𝛾𝑜,𝑛+1

𝑥𝑛 =
√1 − cos(𝜃 + (𝑛 − 1)𝛿 )

√1 − cos(𝜃 + (𝑛 + 1)𝛿 )
𝑥𝑛 = 𝐾𝑛𝑥𝑛                                  (10) 

We are now in a position to expand Eq.(1) using both Eq.(7) and Eq.(10), resulting in 

2(1 + 𝐾1 + 𝐾1𝐾2)𝑥1 + (𝑄3𝑄2𝑄1)𝑧1 = 1                                                                          (11) 

Substituting a re-arranged version of Eq.(4) as 𝑧1 = 𝑥1√2(1 − cos 𝛾𝑜,1) gives 

 𝑥1(𝑃 = 4) =
1

2(1 + 𝐾1 + 𝐾1𝐾2) + (𝑄3𝑄2𝑄1)√2(1 − cos 𝛾𝑜,1)

                                                     (12) 
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Consequentially, the expression for 𝑧1 becomes 

𝑧1(𝑃 = 4) =
√2(1 − cos 𝛾𝑜,1)

2(1 + 𝐾1 + 𝐾1𝐾2) + (𝑄3𝑄2𝑄1)√2(1 − cos 𝛾𝑜,1)

                                             (13) 

While Eq.(12) and Eq.(13) are applicable to the particular case of four revolving unit squares, the general case of 𝑧1 

for any number of rotating squares is extrapolated to 

𝑧1(𝑃) =
√2(1 − cos 𝛾𝑜,1)

2[1 + ∑ ∏ (𝐾𝑛)𝑚
𝑛=1

𝑃−2
𝑚=1 ] + ∏ (𝑄𝑛)𝑃−1

𝑛=1 √2(1 − cos 𝛾𝑜,1)

                                              (14) 

while the generalized function for 𝑥1 being inherently  

𝑥1(𝑃) =
1

2[1 + ∑ ∏ (𝐾𝑛)𝑚
𝑛=1

𝑃−2
𝑚=1 ] + ∏ (𝑄𝑛)𝑃−1

𝑛=1 √2(1 − cos 𝛾𝑜,1)

                                              (15) 

These equations can be seen at work in the annexed Octave program, being composed of two for-loop cycles (lines 20 

to 34 in the annexed program). Knowing first 𝑥1 [from Eq.(12)] and 𝑧1 [from Eq.(13)], it is possible ― using Eq.(7) 

and Eq.(10) ― gives values for 𝑥𝑛 and 𝑧𝑛 (these expression are programmed in lines 35 to 40). Now that expressions 

for the sides of the triangles have been determined, it is possible to compute their areas. The area 𝐴𝑜,1 of the triangle 

AB’E along the strip AB’H is defined as 

𝐴𝑜,1 = ℎ ×
𝑧1

2
                                                                                           (16) 

where an expression for height ℎ is obtained by applying the Pythagoras’ theorem 

𝑧1
2

2
+ ℎ2 = 𝑥1

2         ⟹         h = √𝑥1
2 −

𝑧1
2

2
                                                     (17) 

Both areas 𝐴𝑜,1 [triangle AB’E] and 𝐴𝑖,1 [triangle AEF] (at 𝑛 = 1) result from replacing Eq.(17) into Eq.(16) giving 

𝐴𝑜,1 =
𝑧1

2
√𝑥1

2 −
1

4
𝑧1

2          ;            𝐴𝑖,1 =
𝑧2

2
√𝑥1

2 −
1

4
𝑧2

2                                             (18) 

with variables 𝑥1 , 𝑧1  and 𝑧2  expressed by Eq.(12), Eq.(13) and Eq.(6), respectively. Calculation of areas of 

subsequent triangles is done by extrapolating Eq.(18). The computation of these areas is programmed in lines 45 to 50 

of the Octave algorithm. In order to sum all the areas of the triangles within the strip, it is important to note that the fact 

that each radial position 𝑛 has an outward and inward facing triangle is accounted for mathematically by performing a 

sum of triangle pairs (along the circumferential direction). This is achieved by counting the index 𝑗 from 1 to 2. There 

are P-1 pairs of triangles (which in this case is 4-1=3), thus a second sum is required counting another index 𝑖 from 1 

to P-1. This alternation is seen in the first two examples, where for the case of triangle AB’E with indexes (𝑖, 𝑗) =
(1,1), the sides become 𝑧𝑖+𝑗−1 = 𝑧1 and 𝑥𝑖 = 𝑥1 allowing the computation of 𝐴𝑜,1, and for triangle AEF with 

indexes (𝑖, 𝑗) = (1,2)  they become 𝑧𝑖+𝑗−1 = 𝑧2  and 𝑥𝑖 = 𝑥1  allowing for the computation of 𝐴𝑖,1  [given by 

Eq.(18)]. The same occurs for triangles GEF and KFG with indexes (𝑖, 𝑗) = (2,1) and (𝑖, 𝑗) = (2,2) respectively, 

resulting in sides 𝑧𝑖+𝑗−1 = 𝑧2 and 𝑥𝑖 = 𝑥2 for 𝐴𝑜,2, and 𝑧𝑖+𝑗−1 = 𝑧3 and 𝑥𝑖 = 𝑥2 for 𝐴𝑖,2, and so on and so forth. 

Thus, the area in the strip is given by a double sum that accounts for the contributions of index 𝑖 and 𝑗, resulting in 
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𝐴𝑠𝑡𝑟𝑖𝑝(𝑁 = 4) = ∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

                                                      (19)

𝑃−1

𝑖=1

 

The area of the ring is formed by summing 𝑃 × 𝑁 identical strips (i.e., the product of the number of rotating polygons 

𝑃 by its inherent number of sides 𝑁), which for the case of four revolving squares (𝑃 = 4) gives the expression 

𝐴𝑟𝑖𝑛𝑔(𝑁 = 4) = 4𝑁 {∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

}                                                 (20) 

The computation of the area of the strip and ring is programmed in lines 51 to 52 of the Octave algorithm. In order to 

account for the totality of the area in the circle, it is important to realize that there are an infinite number of rings ― 

propagating inwards in a fractal way ― that converge towards the singularity at the center. In practice, this fractality is 

modeled in the following manner. The length of the side of the reference square is related to that of its immediate lower 

fractal by a factor of cos(45°) = 1 √2⁄ , which results in an area relation of 1 √2⁄ × 1 √2⁄ = cos2(45°) = 1 2⁄ . That 

is, multiplying the ring area [given in Eq.(20)] by the factor 1 2⁄  transforms it into the area of the next inward adjacent 

ring (located inside the first). Applying this factor again and again provides the area of the next adjacent inward ring, 

and so on thereafter. Thus, the geometric area progression encompassing all the infinite rings (formed by considering 

the rotating squares at all levels) is modelled as the sum 

1

21
+

1

22
+

1

23
+

1

24
+ ⋯ = ∑

1

2𝑘

∞

𝑘=1

= ∑ cos2𝑘(45°)

∞

𝑘=1

                                                      (21) 

It is important to note that the first term in the scaling series of Eq.(21) is 1 21⁄  (for 𝑘 = 1) which sizes the first ring 

of the series to be the one inside (not outside) the square of side 1 (i.e., the second ring counting from the outside in 

Figure 2b ― outer circle in red and inner circle in blue). This is important, as it sets the computed area of the circle to 

that inscribed within the square side 𝐿 = 𝐴𝐼 = 1 ― a relation that is needed to determine π, where here the circle is 

inside the circumscribing polygon [as seen later in Eq.(24) and Eq.(25), where the area of the circle is smaller than of 

the square]. If desired, the area of the first outer ring (shown in Figure 2b circumscribing the unit square) can be 

included by adding the extra term 1 20 = 1⁄  (for 𝑘 = 0) in the scaling series Eq.(21). For now, we are only interested 

in the rings inside the unit square, hence multiplying the ring area Eq.(20) by the sequence of scaling factors given by 

Eq.(21) gives the resulting final expression of the approximated area of the circle (using in this example the interference 

pattern of four angularly equidistant squares having four sides each 𝑁 = 4) as being 

𝐴⊙(𝑁 = 4) = (4 × 4) {∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ cos2𝑘(45°)

∞

𝑘=1

                                    (22) 

Computing the values of the sides z and x, angles and areas of the successive triangles within the strip (forming 

altogether the most outward ring) ― from Eq.(2), Eq.(3), Eq.(7), Eq.(10) and Eq.(18), respectively ― for this particular 

case gives Table 1. The computation of the area of the circle is programmed in lines 61 to 62 of the Octave algorithm. 

Table 1. Properties of the triangles composing the strip in the most outward ring (square approach) 

Angle 𝜸 Side z Side x Area A 

Outward Inward    

𝛾1𝑜 = 112.5°  𝛾1𝑖 = 90° 𝑧1 = 0.27589938 𝑥0 = 0.16591068 𝐴𝑜,1 = 0.01271552 

𝛾2𝑜 = 135°  𝛾2𝑖 = 112.5° 𝑧2 = 0.23463314 𝑥1 = 0.12698254 𝐴𝑖,1 = 0.01376318 

𝛾3𝑜 = 157.5°  𝛾3𝑖 = 135° 𝑧3 = 0.21116424 𝑥2 = 0.10765060 𝐴𝑜,2 = 0.00570089 

  𝑧4 = 0.19891237  𝐴𝑖,2 = 0.00744858 

    𝐴𝑜,3 = 0.00221739 

    𝐴𝑖,3 = 0.00409721 
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Summing the areas of the triangles gives the area of the strip as 0.04594277 [same as solving Eq.(19)]. Knowing at 

the same time that the scaling series given by Eq.(21) tends to the value 1 at infinity, results in a total area for the 

approximated circle using only four revolved squares [Eq.(22)] to be  

𝐴⊙(𝑁 = 4) = (4 × 4){0.04594277} × 1 = 0.73508432                         (23) 

The ratio between the approximate area of the circle and its circumscribed square becomes 

𝐴⊙(𝑁 = 4)

𝐴∎
=

0.73508432

1
= 0.73508432                                                      (24) 

The computation of the area ratio and area of the circle is programmed in lines 63 to 66 of the Octave algorithm. It is 

found that by multiplying this ratio with the number of sides of a square (𝑁 = 4) gives 

𝜋90∘ = 4 × 0.73508432 = 2.94033728                                                      (25) 

which is ― when using only four angularly equidistant revolved unit squares ― a first approximation to the constant 

𝜋90∘ (where the 90° relate the value of π to the angle between opposing tangents and the respective diameter). 

Naturally, the prediction improves with increasing number of revolved squares (as shown in Figure 4), which at two 

million squares gives the approximated value of 𝜋90∘ = 3.141592653589(155) ― an estimate valid up to twelve 

decimal places of the official value 3.141592653589793 (Bailey & Borwein 2014). This computation takes around a 

minute on an average computer, using the annexed program (at the end of this article) that runs on the open-source 

software Octave (Eaton et al 2021). Greater accuracy is possible by increasing the number of squares in the method, at 

the expense of more computational time. This suggests that the ratio between areas (i.e., circle 𝐴⊙ over circumscribed 

square 𝐴∎) is the same as the ratio between constants (i.e., 𝜋90∘ over the number of sides of a square 𝑁 = 4), or 

𝐴⊙(𝑃 = 4)

𝐴∎
=

𝜋90∘

4
       ⟹        𝐴⊙(𝑃 = 4) = 𝜋90∘

𝐷2

4
                                                    (26) 

Simplification reduces this equality to the commonly known equation of area of a circle based on the side length 

diameter D of its circumscribed square. In this context, the constant 𝜋90∘ is defined in a different way as traditionally, 

becoming equal to the ratio of the area of a circle 𝐴⊙ to a fourth of the area of the circumscribing square 𝐴∎ 4⁄ . 

 

Figure 4. Accuracy of 𝜋90∘ for changing number of interfered rotating squares 

It is interesting to note that polygons (like a triangle, a square, a hexagon, an octagon) are commonly sized by the length 

of their sides (being an explicit measure), not by the connection of their sides or corners to the center point (an implicit 

measure), being done mostly as a convenience (because relating the area and perimeter of a polygon to both implicit 

and explicit measures is possible). Since a circle is an infinitely-sided polygon, extension of the present argument 

suggests that the same reasoning can be applied to a circle when sizing it (that is, relating its properties to its 

infinitesimal tangential side, instead of its radius, which is possible but not convenient). The logic of this argument 
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indicates that the properties of a circle can be expressed as a function of either of the linear lengths ― that is, its radius 

or to the side of the polygon describing the circle by rotation (as demonstrated above) ― with its implied properties 

(area and perimeter, which include π), becoming consequentially dependent of this choice. 

3.2 Triangle Approach 

The same process is now applied using a different polygon ― a unit regular triangle (setting three sides as 𝑁 = 3) 

[Figure 5a]. An important difference caused by this alteration is that while one side of the triangle is tangent to the inner 

circle (at 𝑇1 for instance), the other adjacent side (i.e., parallel to the reference length 𝑇1𝑇2 that represents linearity by 

interconnecting tangencies) is no longer perpendicular to the circle (i.e., the reference length that represents circularity), 

but it is instead at an internal angle 𝜃 = 180° − 360° N⁄ = 60°. The difference in internal angles for different 

polygons ― as in the example of 90° for a square and 60° for a triangle ― will play an important role later during 

the investigation into the relativity of π beyond an individual constant, and instead expressed as a function. The 

overlapping pattern of rotating triangles again forms an interference strip AB’H (Figure 5b), that repeats itself angularly 

and has a higher resolution for increased number of rotating triangles. Continuing the process, the inner area of the 

circle is defined by an inward fractal propagation of two vertically mirrored triangles (Figure 6a), that when revolved in 

an angularly equidistant manner, forms altogether the interference pattern of the inner rings (Figure 6b shows a 

construction formed by 16 triangles per ring, as an example). The areas of two subsequent rings are interconnected by 

the following rule ― the length of the side of a triangle is related to its immediate lower fractal size by the factor 

cos(60°) = 1 2⁄ , resulting in a fractal area relation of 1 2⁄ × 1 2⁄ = cos2(60°) = 1 4⁄ .  

 

Figure 5. (a) Ring formed by 16 evenly spaced revolving triangles, and (b) zoom into interference strip AB’H 

It is worth noting that the size of the circle found by rotation of the unit triangle (in Figure 6b) is different from that 

formed by the unit square (in Figure 2b). Their relative size is inconsequential as π is a ratio (e.g., perimeter over 

diameter), and thus it is independent on the selected size of the circle used to define it. For convenience, the chosen side 

of the regular triangle is 𝐿 = 𝐴𝐼 = 1, and scaling to any circle requires only a different choice of 𝐿. Thus, the 

coefficient accounting for the area contribution of all infinite inward fractal levels (scaled from the first inside the red 

circle) is given by the series 

1

41
+

1

42
+

1

43
+ ⋯ = ∑

1

4𝑘

∞

𝑘=1

= ∑ cos2𝑘(60°)

∞

𝑘=1

                                                       (27) 

It is important to note that the first term in the scaling series in Eq.(27) is 1 41⁄  (for 𝑘 = 1), which sizes the first ring 

of the series to be the one inside (not outside) the square of side 1 (i.e., the second counting from the outside in Figure 

2b). To account for the ring outside (between the blue and red circle) in the area of the circle, simply add to the series its 

respective term 1 40⁄  (for 𝑘 = 0). 
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.  

Figure 6. Fractality of the approach shown by the infinite inward propagation of (a) 2 triangles and (b) 16 triangles 

The total area of the (red) circle is approximated to the sum of the discrete areas formed by the interference pattern of 

(in this example) four angularly equidistant triangles (i.e., 𝑃 = 4) having three sides each (i.e., 𝑁 = 3), being 

described mathematically as 

𝐴⊙(𝑁 = 3) = (N × 𝑃) {∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ cos2𝑘(60°)

∞

𝑘=1

                                (28) 

The various geometrical properties in this particular example ― such as the angles 𝛾𝑜,𝑛 and 𝛾𝑖,𝑛, sides 𝑧 and 𝑥, and 

areas 𝐴 of the successive triangles within the strip (that together form the area of the most outward ring) ― are 

computed from Eq.(2), Eq.(3), Eq.(7), Eq.(10) and Eq.(18) [respectively], being presented in Table 2. Altogether, the 

sum of the area of the triangles gives the area of the strip to be 0.06100423. Replacing the area of the strip back into 

Eq.(28) ― while knowing at the same time that the scaling series given by Eq.(27) tends at infinity to the value 

1 3⁄  ― results in a total area for the approximated circle using only a quantity of four (𝑃 = 4) revolved triangles 

(𝑁 = 3) to be  

𝐴⊙(𝑁 = 3) = (4 × 3){0.06100423} ×
1

3
= 0.24401692𝑚𝑚2                                  (29) 

This means that the ratio between the approximate area of the circle and its circumscribed regular triangle is 

𝐴⊙(𝑁 = 3)

𝐴∆
=

0.24401692

√3 4⁄
= 0.5635329378                                                   (30) 

Following the same process (as done in the previous section 3.1), the multiplication of this ratio by the number of sides 

of a triangle (𝑁 = 3) gives 

𝜋60∘ = 3 × 0.5635329378 = 1.690598813                                                     (31) 

From this new perspective, when using a regular unit triangle during the process, the end result changes. It is important 

to note that this result does not substitute the traditional constant of 𝜋(= 𝜋90∘) = 3.141592653589793, but instead it 

complements as an extension (with a different 𝜋60∘) into a possible function. More specifically, for a 60-degree based 

system, the significance of 𝜋60∘ becomes the area ratio of a circle to its circumscribed triangle times its number of 

sides (i.e., 𝑁 = 3). This suggests that (by replacing the four angularly equidistant revolved unit squares by triangles) 

the constant 𝜋90∘ becomes 𝜋60∘ having (as a first approximation) the value of 1.690598813. Since this approach 

using triangles is new, there is no official value for 𝜋60∘ . One way to ascertain the validity of Eq.(28) is by 

corroborating it against a numerically determined value using a Computer-Aided Design program ― of which 

open-source software Geogebra (Feng 2014) and FreeCAD (Havre 2021) are examples. 
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Table 2. Properties of the triangles composing the strip in the most outward ring (triangle approach) 

Angle 𝜸 Side z Side x Area A 

Outward Inward    

𝛾1𝑜 = 90°  𝛾1𝑖 = 60° 𝑧1 = 0.29885849 𝑥0 = 0.21132487 𝐴𝑜,1 = 0.022329100 

𝛾2𝑜 = 120°  𝛾2𝑖 = 90° 𝑧2 = 0.21132487 𝑥1 = 0.12200847 𝐴𝑖,1 = 0.019337568 

𝛾3𝑜 = 150°  𝛾3𝑖 = 120° 𝑧3 = 0.17254603 𝑥2 = 0.08931640 𝐴𝑜,2 = 0.0064458558 

  𝑧4 = 0.15470054  𝐴𝑖,2 = 0.0074430331 

    𝐴𝑜,3 = 0.0019943547 

    𝐴𝑖,3 = 0.0034543237 

 

The software Geogebra is used here, and this exercise is encouraged to students and experts to allow for an independent 

verification of the results. Draw a regular triangle of side unit with an inscribed circle, and measur the area of the circle 

and triangle 0.261799387799149 and 0.433012701892219, respectively. According to Eq.(28) and Eq.(29), the value of 

𝜋60∘ is obtained by dividing the two areas, and multiplying the result by the number of sides of a triangle (𝑁 = 3), 

resulting in 

𝜋60∘ = 3 ×
𝐴⊙(𝑁 = 3)

𝐴∆
= 3 ×

0.261799387799149

0.433012701892219
= 1.813799364                           (32) 

This estimate is confirmed by measuring the perimeter of the circle, which gives in CAD a value with fourteen decimal 

places as 1.81379936423421. Selecting any arbitrary circle circumscribed by a regular triangle of side 𝐿 = 𝐴𝐼 

results in the same value of 𝜋60∘ (𝐿 = 𝐴𝐼 = 1 is used as a matter of convenience). Now that an accurate reference 

value is determined, the prediction given by the method can be compared. More accurate estimates (than 1.690598813) 

can be computed from the annexed Octave program with the following settings: the number of sides is set to 𝑁 = 3;  

and the fractal area scaling factor set to 𝑓 = 1/4 (which essentially means, replacing ― in the computation ― the 

unit-side square by a unit-side regular triangle). As mentioned before, more time and/or more computational power 

allows for a greater number of triangles to be used, and thus achieving greater accuracy. By increasing the number of 

rotating triangles to two million, the approximation of the present method to 𝜋60∘ reaches nine decimal places of the 

reference CAD value as 1.813799364(099003) [Figure 7].  

 

Figure 7. Accuracy of 𝜋60∘ for changing number of interfered rotating triangles 
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This suggests that the ratio between areas (of circle over circumscribed triangle) is the same as the ratio between 

constants (𝜋60∘ and the number of sides in a triangle), or 

𝐴⊙(𝑁 = 3)

𝐴∆

=
𝜋60∘

3
       ⟹        𝐴⊙(𝑁 = 3) = 𝜋60∘

√3

12
𝐿2                                               (33) 

This variant equation offers a new perspective to find the area of a circle using triangles ― Eq.(31) ― is just as valid as 

the classical Eq.(24) that uses squares, where the main different being the term composed of the fractional area of the 

polygon (i.e., that represents the linearity aspect within the ratio 𝜋). In this new view, the definition of 𝜋60∘ (from an 

area perspective, instead of length) is the ratio of the area of a circle 𝐴⊙ to a third of the area ABC of the 

circumscribed triangle 𝐴∆ 3⁄  (i.e., area CGOH) [Figure 8a], while the definition of 𝜋90∘ is the ratio between the area 

of a circle 𝐴⊙ to a fourth of the area ABCD of the circumscribed square 𝐴∎ 4⁄  (i.e., area DGOH) [Figure 8b]. Figure 

8 shows in transparency the superimposed state of both the areas of the circle and of the fraction of the polygon. Note 

that a sector with the same area is achievable either as CGOH or COA for the triangle (Figure 8a), and DGOH or DOA 

for the square (Figure 8b). 

 

Figure 8. Ratio of areas provides the value of (a) 𝜋60∘ for triangles and (b) 𝜋90∘ for squares 

3.4 Higher polygons approach 

This method can be applied to even higher polygons ― like pentagons (Figure 9a) and hexagons (Figure 9b). The grid 

pattern becomes tighter as the polygon exhibits wider internal angles. In both Figures 9a and 9b, the side of the most 

outward polygon is 𝐿 = 𝐴𝐼 = 1, and are not to scale with respect to one another, which does not affect the associated 

estimates of 𝜋108∘ and 𝜋120∘. As shown before (for squares and triangles), the same process can be applied using other 

polygons, having only to change (in the annexed Octave program) the following key values: the number of sides of the 

new polygon (i.e., 𝑁 = 5 for the pentagon and 𝑁 = 6 for the hexagon); area of the polygon circumscribing the circle 

(i.e., 1.720477400588967 for the pentagon and 2.598076211353316 for the hexagon) and the area fractal scaling (i.e., 

cos2(36°) for pentagon and cos2(30°) for hexagon). In the pentagon approach (Figure 9a), the ratio of the area of the 

approximated circle and its circumscribed regular pentagon is 

𝐴⊙(𝑁 = 5)

𝐴Pentagon

=
(4 × 5){0.03679145127946321} × ∑ cos2𝑘(36°)∞

𝑘=0

1.720477400588967
= 0.8102254139                (34) 

And for the hexagon approach (Figure 9b), the ratio becomes 

𝐴⊙(𝑁 = 6)

𝐴Hexagon
=

(4 × 6){0.03067014936071338} × ∑ cos2𝑘(30°)∞
𝑘=0

2.598076211353316
= 0.736083584657121           (35) 
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Figure 9. Area of the circle defined fractally by multiple rings, each formed by 16 (a) pentagons and (b) hexagons 

Following the same procedure (as for the square and triangle), multiplying these ratios by the number of sides of the 

respective polygon gives 

𝜋108∘ = 5 × 0.8102254139 = 4.051127069515934                                                    (36) 

and 

𝜋120∘ = 6 × 0.736083584657121 = 5.099736668974243                                              (37) 

where Eq.(36) and Eq.(37) providing two extra constants for the function expression of 𝜋𝜃 (to de discussed later). As 

before, accuracy of the prediction increases with the number of rotating polygons (when comparing to the CAD 

measuring of the perimeter of the incircle with 15 decimal places). When the number of rotating pentagons and 

hexagons reaches two million, seven decimal places are achieved for 𝜋108∘ = 4.3240313(30148895) [Figure 10a] 

and nine decimal places for 𝜋120∘ = 5.441398092(964926) [Figure 10b].  

 

Figure 10. Accuracy of 𝜋𝜃 for changing number of rotating (a) pentagons [for 𝜋108∘] and (b) hexagons [for 𝜋120∘] 
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Here, the generic circle area for any polygon is 

𝐴⊙(𝑁, 𝑃) = (𝑁 × 𝑃) {∑ ∑
𝑧𝑖+𝑗−1

2
√𝑥𝑖

2 −
1

4
𝑧𝑖+𝑗−1

2

2

𝑗=1

𝑃−1

𝑖=1

} × ∑ cos2𝑘 (
180

𝑁
)

∞

𝑘=1

                                (38) 

where 𝑁 is the number of sides of the polygon, 𝑃 the number of rotating elements, 𝑧 the circumferentially aligned 

length of the small triangles [given by Eq.(14)] and 𝑥 their radially aligned lengths [given by Eq.(15)]. Extrapolating 

from the triangular approach [Eq.(33)] and square approach [Eq.(26)] gives the resulting area expression for each 

corresponding circle as given by the product of relevant π and the fractional area of that polygon (of side L), thus giving 

the corresponding expressions for polygons and hexagons respectively as 

𝐴⊙(𝑁 = 5) = 𝜋108∘
𝐿2

4√5 − 2√5
           ;         𝐴⊙(𝑁 = 6) = 𝜋120∘

√3

4
𝐿2                                       (39) 

All together ― Eq.(26), Eq.(33) and Eq.(39) ― form (side-by-side) Table 3, highlighting the progression of the ratios.  

Table 3. Ratio of areas of a circle over that of the corresponding circumscribed polygon 

Triangle Square Pentagon Hexagon 

𝜋60∘
√3
12

𝐿2

√3
4

𝐿2

=
𝜋60∘

3
 

𝜋90∘ 𝐷2 4⁄

𝐷2
=

𝜋90∘

4
 

𝜋108∘
𝐿2

4√5 − 2√5
5𝐿2

4√5 − 2√5

=
𝜋108∘

5
 

𝜋120∘
√3
4

𝐿2

3√3
2

𝐿2

=
𝜋120∘

6
 

3.3 Exercise Earth 

A simple practical application of this method is the measurement of the projected area of the Earth (which, for the 

purpose of this exercise, is assumed to be a circle). Imagine taking a photograph of Earth from space (Figure 11) with 

its dimensions calibrated by a visible measurement (possibly a known distance between two points on the surface), 

allowing the conversion of any length in the photograph to a distance in kilometers. Circumscribing a square to the 

Earth (Figure 11a) and measuring its side 𝐿 = 𝐴𝐵 = 𝐷 gives a value of 12,756.274 km (Williams 2021) ― which is in 

fact the same as measuring the diameter of the Earth 𝐴’𝐵’ (i.e., since the diameter is by definition the line within the 

circle that is perpendicular to two opposing tangents, then this perpendicularity denotes, for the purpose of this approach, 

implicitly the presence of a square). Applying the conventional area formula Eq.(26) gives 

𝐴⊙(𝑁 = 4) = 𝜋90∘
𝐷2

4
= 3.1415926536 ×

12,756.2742

4
= 127,801,973.3𝑘𝑚2                            (40) 

 

Figure 11. Measuring the projected area of Earth using revolving (a) squares and (b) triangles [not to scale] 
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Here, the projected area of the Earth was computed using an orthogonal axes system, where lengths are measured along 

linear paths (axes) at right angles to each other. Note that the interference pattern shown in Figure 11 (circling the Earth) 

is only to highlight the presence of the present method, in which only the overlapping fractal rings play a role in 

determining the Earth’s projected area. While the application of radius/diameter (in Figure 11a) is one possibility, there 

are other approaches that provide the same result. Circumscribing a regular triangle to the Earth (Figure 11b) and 

measuring its side 𝐿 = 𝐴𝐶 gives a value of 14,539.008 km. Alternatively, inscribing a triangle within the Earth 

provides a side 𝐿 2⁄ = 𝐴′𝐶′ = 7,269.504 𝑘𝑚, which also provides the same end result L above. Applying this value of 

𝐿 to the area formula Eq.(33) for triangles gives the same area as Eq.(40) for squares or  

𝐴⊙(𝑁 = 3) = 𝜋60∘
√3

12
𝐿2 = 1.8137993642 ×

√3

12
22,094.514682 = 127,801,973.3𝑘𝑚2                     (41) 

Here, the projected area of the Earth was computed using a triangular axes system, where lengths are measured along 

linear paths (axes) at 60 degrees to each other. Since both equations give the same answer, they are both equally valid 

when determining the area of a circle, in any context, the main difference being a change in the adopted reference linear 

length, which is dependent on the chosen polygon. One equation does not replace the other, and they are both in fact 

complementary. Even higher polygons could be used to compute the same area via their respective equations. For 

instance, for pentagon ABCDE the side 𝐿 = 𝐸𝐴 (in Figure 12a) would measure 9,365.959212 𝑘𝑚 giving the area 

𝐴⊙(𝑁 = 5) = 𝜋108∘
𝐿2

4√5 − 2√5
= 4.2340313299 ×

9,365.9592122

4√5 − 2√5
= 127,801,973.3𝑘𝑚2                    (42) 

And for hexagon ABCDEF, the side 𝐿 = 𝐹𝐴 (in Figure 12b) would measure 7,364.837069 𝑘𝑚 giving the area 

𝐴⊙(𝑁 = 6) = 𝜋120∘
√3

4
𝐿2 = 5.4413998027 ×

√3

4
× (7,364.837069)2 = 127,801,973.3𝑘𝑚2                   (43) 

 

Figure 12. Measuring the projected area of Earth using revolving (a) pentagons and (b) hexagons [not to scale] 

As another example, imagine a constellation of six equidistant satellites transiting around the Earth in the same circular 

orbit (Figure 13). This exercise aims to provide insight into the simple application of the method onto a realistic 

scenario ― like for example, a properly geometrically-spaced GPS satellite constellation orbiting the Earth (Moorefield, 

Jr. 2020). It is worth noting that in reality such a constellation has typically 24 satellites disposed in a 3D configuration, 

however, for the purpose of this simplistic exercise the chosen 2D case of six satellites is deemed sufficient. It is also 

assumed that they are in a Low Earth Orbit at an altitude of 400km. Imagine now that two adjacent satellites A and B 

measure the distance to each other (by means of laser, for example) to be 𝐴𝐵 = 6,778.137𝑘𝑚, which is the side of the 

hexagon ABCDEF inscribed inside the orbit defined by the six satellites (i.e., the distance of a corner of a hexagon to its 

centre is the same as the radius R, which incidentally is the same as the side of the hexagon).  
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Figure 13. Constellation of angularly equidistant satellites in a circular orbit around Earth 

However, the distance AC between two alternating satellites A and C (forming altogether the triangular configuration 

ACE) is unknown. The computation of distance AC (by means of the present method) is achieved by equating the area 

of the circular orbit using the triangular approach [with Eq.(33)] to that using the hexagonal approach [with Eq.(39)], 

resulting in 

𝐴⊙ = 𝜋120∘
√3

4
(

6,778.137

cos 30°
)

2

= 𝜋60∘
√3

12
(

𝐴𝐶

cos 60°
)

2

= 144,334,634.8𝑘𝑚2                                (44) 

The length of the side of the regular hexagon circumscribing the orbit is 6,778.137 cos 30° = 7826.718𝑘𝑚⁄  (that is, 

one fractal level outwards), and the length of the side of the regular triangle also circumscribing the orbit is 

𝐴𝐶 cos 60°⁄  (also located one fractal level outwards). As explained before ― as part of Eq.(21) for Figure 2a, and 

Eq.(27) for Figure 6a ― the sides of two polygons of subsequent fractal levels are related via the multiplication/division 

coefficient cos(180° 𝑁⁄ ), where 𝑁 is the number of sides of the polygon. As an outcome, the distance between the 

satellites in a triangular formation is 𝐴𝐶 = 11,740.077𝑘𝑚. While there may be other trigonometrical ways to compute 

this, the present method offers a solution that uses a circular medium ― i.e., the area of a circle ― to interlink two 

linear lengths AB and AC pertaining to inscribed polygons, and this is done without having to know the altitude or 

radius R of the orbit. Similar relations can be achieved between other polygons. 

3.5 Relativity of π 

The general expression for the area of a circle 𝐴⊙(𝑁)  circumscribed by a N-sided regular polygon of area 

𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁), is extrapolated from Table 3 as being 

𝐴⊙(𝑁) = 𝜋𝜃

𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁)

𝑁
                                                                           (45) 

where the function 𝜋𝜃 has a specific value depending on the selected polygon, here identified by its internal angle 

𝜃 = 180° − 360° N⁄ . Equation (45) means that for any given circle, if the area of the circumscribing N-sided regular 

polygon (of side 𝐿) used as reference 𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) changes, then the specific value of the function 𝜋𝜃 for that 

polygon also needs to change accordingly in order to obtain the same circle area being considered. In so doing, the area 

of a circle is now connected to any polygon (not just squares, as done traditionally).  

𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) =
𝑁

4𝑡𝑎𝑛 (
180

𝑁
)   

𝐿2                                                                       (46) 
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Figure 14a shows the specific values of 𝜋𝜃 (defined from CAD) for the first seven polygons, plot as a function of the 

internal angle θ. When curve fitting, the relation takes on the form of the scaled tangent 

𝜋𝜃 = 𝜋90°𝑡𝑎𝑛 (
θ

2
)                                                                                (47) 

This relation highlights the function 𝜋𝜃 to be dependent on the chosen reference system of axes (i.e., the internal angle 

θ of 90° for orthogonal, 60° for triangular, etc). The reason why 𝜋90° appears as the reference value in Eq.(47) ― 

against which others are defined ― is because trigonometric functions sine and cosine are inherently defined using an 

orthogonal x-y axes system. If another system of axes would be used (e.g., triangular), that would be the new reference 

against which all other values of function 𝜋𝜃 (including 𝜋90°) would be defined against. Figure 15b plots the same 

values of function 𝜋𝜃 for the first seven polygons, but this time with respect to the number of sides 𝑁 of the polygon. 

The purpose is to highlight the underlying relation in Eq.(45) that suggest that as the area of the polygon 𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 

tends to that of the circle 𝐴⊙(𝑁) ― and the number of sides N tends to infinity ― the value of the function 𝜋𝜃 tends 

to the number of sides N of the infinite polygon. Seen from the other way around ― still from the perspective of Figure 

14b ― the discrepancy between the value 3.1415… and 4 reflects the discrepancy in properties (i.e., perimeter and area) 

from an infinitely-sided polygon 𝑁 = ∞ (i.e., the circle) and the corresponding circumscribing finite-sided polygon 

with four sides 𝑁 = 4  (i.e., the square circumscribing the circle). Rewriting Eq.(45) below allows another 

interpretation  

𝐴⊙(𝑁)

𝜋𝜃
=

𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁)

𝑁
                                                                          (48) 

In this equality of ratios, the function 𝜋𝜃 has the purpose of defining the amount of area of the circle that is necessary 

to match the area of a sector of the circumscribing polygon. In other words, if the area of a sector of a circumscribing 

polygon 𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 𝑁⁄  would be defined in a circular manner, it would become the portion of the area of the circle 

𝐴⊙(𝑁) 𝜋𝜃⁄ .    

 

Figure 14. Convergence of function 𝜋𝜃 for evolving polygon’s (a) internal angle 𝜃 and (b) number of sides 𝑁 

Since the properties of a circle are all interconnected, it is plausible to assume that there is an equation similar to Eq.(45) 

relating perimeters instead of areas ― i.e., the perimeter of a circle 𝑃⊙(𝑁) to that of its circumscribed polygon 

𝑃𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) = 𝑁 × 𝐿. The results is a general expression of the perimeter of circle circumscribed by an N-sided 

polygon 

𝑃⊙(𝑁) = 𝜋𝜃

𝑃𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 

𝑁
                                                                      (49) 

It is worth noting that a former observation for the area is again present for the perimeter ― by rewriting Eq.(49) into 

the ratio format in Eq.(50) ― in that the function 𝜋𝜃 has the purpose of segmenting the circle’s perimeter necessary to 

match a sector of the perimeter of the circumscribing polygon. In other words, if the perimeter of a sector of a 
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circumscribing polygon 𝑃𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 𝑁⁄  would be defined in a circular manner, it would become the portion of the 

perimeter of the circle 𝑃⊙(𝑁) 𝜋𝜃⁄ .    

𝑃⊙(𝑁)

𝜋𝜃
=

𝑃𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 

𝑁
                                                                            (50) 

As a first verification that Eq.(50) is valid, consider the polygon to be a square with 𝑁 = 4 and 𝜃 = 90°. Here, Eq.(50) 

simplifies to the classical 𝑃⊙(𝑁 = 4) = 𝜋90∘𝐷, where 𝐷 is both the side of the square and the diameter of its 

inscribed circle. As it happened before in Eq.(48) [for the area of the circle], Eq.(50) establishes an equality between 

the ratio of the circle’s perimeter over the polygon’s perimeter, and the ratio of the corresponding value of the function 

𝜋𝜃 and the number of sides 𝑁 of the polygon. The variants of Eq.(50) for triangles, pentagons and hexagons are listed 

in Table 4. Computer-Aided Design (CAD) software ― such as Geogebra (Feng 2013) or FreeCAD (van Havre et al. 

2021) ― can be used to validate the equations in Table 4. Start by plotting a unit-side regular triangle, square, pentagon 

and hexagon (i.e., 𝐿 = 𝐷 = 1), all sharing a common side (Figure 15). Inscribing in each a circle, and measuring the 

perimeter gives the values for the corresponding 𝜋𝜃, as computed earlier using the revolving polygon approach ― thus 

confirming that Eq.(50) is valid for up to at least 𝑁 = 6. Concluding, from a one-dimensional perspective, the function 

𝜋𝜃 is the ratio of the perimeter of a circle 𝑃⊙(𝑁) to the fraction of the perimeter of the circumscribed N-sided unit 

regular polygon 𝑃𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 𝑁⁄ . From a two-dimensional perspective (and as seen before), the function 𝜋𝜃 is the 

ratio of the area of a circle 𝐴⊙(𝑁) to the fraction of the area of the circumscribed N-sided unit regular polygon 

𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁) 𝑁⁄ . 

Table 4. Ratio of the perimeter of a circle over the perimeter of the corresponding circumscribed polygon 

Triangle Square Pentagon Hexagon 

𝜋60∘𝐿

3𝐿
=

𝜋60∘

3
 

𝜋90∘𝐷

4𝐷
=

𝜋90∘

4
 

𝜋108∘𝐿

5𝐿
=

𝜋108∘

5
 

𝜋120∘𝐿

6𝐿
=

𝜋120∘

6
 

 

Figure 15. Relativity of 𝜋𝜃 as a function of the N-sided unit regular polygon circumscribing a circle 

Hence, both definitions result in joining Eq.(48) and Eq.(50) as 

𝐴⊙(𝑁)

𝐴𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁)
 =

𝜋𝜃

𝑁
=

𝑃⊙(𝑁)

𝑃𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑁)
                                                                     (51) 

The relativity of the function 𝜋𝜃 also offers an expansion of the definition of the angular measure radian ― which is a 

unit of angular measure quantifying the arc length covered when it is equal to the linear radius 𝑅 (or half the diameter 

𝐷/2). Here, the usage of radius implies an orthogonal relation (between circular and linear) which indicates that the 
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definition of radian is governed by a square approach. Using other polygons, the relation implied by the radian changes 

as the linear reference radius R (as previously highlighted in Figure 11a) alters to half the characteristic length of the 

polygon L/2 (as highlighted for a triangle in Figure 11b, and for pentagon and hexagon in Figure 12a and 12b). Since 

the etymology of the word radian is derivative from radius, a new term to express the new relation is required, being 

one possibility an equivalent derivation from the key word polygon, as polyan. Here the radian is comprised as a special 

case of a polyan, where the side of the polygon circumscribing the circle (i.e., a square) is 2𝑅 = 𝐷. As a conclusion, the 

relativity of the properties of a circle (i.e., perimeter, area, etc) emerges from the acknowledgment that there is more 

than one linear reference ― that being, the side of a family of regular polygons circumscribing the circle ― against 

which said properties can be readily quantified, and thus to which they are relative. 

References 

Bailey, D. H., & Borwein, J. (2014). Pi Day Is Upon Us Again and We Still Do Not Know if Pi Is Normal. American 

Mathematical Monthly, 121(3), 187-278. Retrieved from 

https://www.maa.org/sites/default/files/pdf/pubs/BaileyBorweinPiDay.pdf 

Canadian Ministry of Education. (2020). The Ontario Curriculum, Grades 1–8: Mathematics. Retrieved from 

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics 

Donna, L. (2021). New mathematical record: what’s the point of calculating pi? The Guardian. Retrieved from 

https://www.theguardian.com/science/2021/aug/17/new-mathematical-record-whats-the-point-of-calculating-pi 

Eaton, J. W., Bateman, D., Hauberg, S., & Wehbring, R. (2021). GNU Octave: A high-level interactive language for 

numerical computations. Retrieved from https://octave.org/octave.pdf 

Feng, G. T. (2013). Introduction to Geogebra – Version 4.4. Retrieved from 

https://www.academia.edu/34890249/Introduction_to_Introduction_to_GeoGebra 

Swetz, F. J. (2014). Mathematical Treasure: Old Babylonian Area Calculation. Convergence. Retrieved from 

https://www.maa.org/press/periodicals/convergence/mathematical-treasure-old-babylonian-area-calculation 

Frederick, D. M. Jr. (2020) GPS Standard Positioning Service (SPS) Performance Standard. Office of the Department of 

Defense. U.S. Government. Retrieved from https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf 

Jones, W. (1706). Synopsis Palmariorum Matheseos: or, a New Introduction to the Mathematics. pp. 243, 263. 

Retrieved from 

https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics 

Keller, T., Mundani, R., Rölke, H., & Schmidt, M. (2021). World record attempt by UAS Grisons: Pi-Challenge. 

University of Applied Sciences Grisons. Retrieved from 

https://www.fhgr.ch/en/specialist-areas/applied-future-technologies/davis-centre/pi-challenge/ 

Pickover, C. A. (2012). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of 

Mathematics. Sterling Milestones. 

Robson, E. (2001) Neither Sherlock Holmes nor Babylon: A Reassessment of Plimpton 322. Historia Mathematica, 28, 

167-206 

van Havre, Y. et al. (2021). “FreeCAD - A Manual”. Retrieved from 

https://freecadweb.org/manual/a-freecad-manual.pdf 

Williams, D. R. (2021). Earth Fact Sheet. NASA. https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 

Xiaojing, Y. (2016) The Long Search for the Value of Pi. Scientific American. Retrieved from 

https://www.scientificamerican.com/article/the-long-search-for-the-value-of-pi/ 

 

  



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 2; 2022 

37 

Annex 

clc, clear 

% SETUP 

format long % Increases decimal place output 

N=4; % Sides of polygon 

p=100000; % Number of polygons % Line 5 

if p>10 probe=0; else probe=1; end % Enable extra details 

% Identification of which polygon approach 

if N==3   display('TRIANGLE Approach') else 

  if N==4   display('SQUARE Approach') else 

    if N==5   display('PENTAGON Approach') else % Line 10 

      if N==6   display('HEXAGON Approach') else 

        if N==7   display('HEPTAGON Approach') 

          else   display('HIGHER POLYGON Approach') 

end end end end end    

display('--- Sides in a polygon and number revolving'), display(N), display(p) % Line 15 

display('--- Angle per sector (degrees)'), delta=360/(N*p) 

display('--- Internal angle of polygon (degrees)'), theta=180-360/N 

display('--- Area scaling factor due to fractality'), f=cosd(180/N)^2 

display('--- Area of the N-sided unit regular polygon'), Apoly=[N/(4*tand(180/N))] 

% SIDES X(N) and Z(N) % Line 20 

Alpha1=(180-delta)/2-theta/2; 

display('--- Sides of most outward triangle in the strip') 

for i=1:(p-1) 

  Q(i)=sqrt(1-cosd(theta+(i-1)*delta))/sqrt(1-cosd(theta+(i)*delta)); 

  if i~=(p-1) % Line 25 

    K(i)=sqrt(1-cosd(theta+(i-1)*delta))/sqrt(1-cosd(theta+(i+1)*delta)); 

end end 

sQ=prod(Q); sK(1)=1;  

for m=1:(p-2) % Line 30 

  sK(m+1)=prod(K(1:m)); 

end 

x=1/(2*(sum(sK))+sQ*sqrt(2*(1-cosd(theta+delta)))); x1=x(1) 

z=x1*sqrt(2*(1-cosd(theta+delta))); z1=z(1) 

for v=1:(p-1) % Line 35 

  z(v+1)=sqrt(1-cosd(((theta))+(v-1)*delta))/sqrt(1-cosd(theta+(v)*delta))*z(v); 

  if v~=(p-1) 

    x(v+1)=sqrt(1-cosd(((theta))+(v-1)*delta))/sqrt(1-cosd(theta+(v+1)*delta))*x(v); 

  else x=x(1:v); 

end end % Line 40 

if probe==1 

  display('--- Sides of subsequent triangles'), display(z); display(x);  
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end 

% AREAS : TRIANGLE, STRIP & FIRST RING 

s=0; l=0; % Line 45 

for i=1:(p-1) 

  for j=1:2 

    s=s+1; At(s)=z(i+j-1)/2*sqrt(x(i)^2-1/4*z(i+j-1)^2); 

end end 

if probe==1 disp('--- Area of each triangle in outward strip'); disp(At) end % Line 50 

display('--- Area of most outward strip'), As=sum(At) 

display('--- Area of most outward ring'), Ar=As*(N*p) 

% FRACTAL SCALING SUM OF RINGS 

SumScale=0; % Starting variable for loop 

n=1000; % Number of inward rings considered (ideally infinite) % Line 55 

for k=1:n 

SumScale=SumScale+f^k; % Formation of the series 

end 

display('--- Scaling series due to inward fractality'), Fseries=SumScale 

if probe==1 disp('Scaling series'); disp(Fseries) end % Line 60 

% APPROX. AREA OF CIRCLE 

display('--- Area of circle'), Ac=Ar*Fseries 

% RATIO OF AREAS 

display('--- Ratio of areas circle/polygon'), Ratio=Ac/Apoly 

% FUNCTION PI FOR SELECTED POLYGON % Line 65 

display('--- Value of Pi (for the chosen polygon)'), PiN=Ratio*N 
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