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Abstract

We give a proof of the so-called Sylvester criterion for quadratic forms (for real symmetric matrices), based on elementary
optimality properties of quadratic functions.
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1. Introduction

Some time ago we have surveyed on this journal (Giorgi (2017)) several proofs of the so-called Sylvester criterion for
quadratic forms. In the present paper we give a new proof of the said criterion, proof based on basic optimality properties
of quadratic functions. A similar approach has been considered also by Hestenes (1966, 1975), however we think that our
treatment is simpler and more suitable for didactic purposes. In our proof we shall make no reference to other properties
of quadratic forms or symmetric matrices.

We consider, without loss of generality, a real symmetric matrix A of order n and x ∈ Rn as a column vector. We recall
that the expression

Q(x) = x>Ax =

n∑
i=1

n∑
j=1

ai jxix j

is a quadratic form associated to the matrix A. We recall that Q(x) (or its associated symmetric matrix A) is

• positive definite, if x>Ax > 0 for all nonzero x ∈ Rn;

• negative definite, if x>Ax < 0 for all nonzero x ∈ Rn;

• positive semidefinite, if x>Ax = 0 for all x ∈ Rn;

• negative semidefinite, if x>Ax 5 0 for all x ∈ Rn.

The reason for choosing a symmetric matrix is that, if A is not symmetric, then 1
2 x>(A + A>)x = x>Ax for any x ∈ Rn and

obviously 1
2 (A + A>) is symmetric.

For simplicity we shall obtain the Sylvester criterion only for definite quadratic forms. For the semidefinite case the reader
may consult Chabrillac and Crouzeix (1984), Debreu (1952), Gantmacher (1959) and Takayama (1985).

We recall that the k-th order leading principal minor (or the k-th order NW-principal minor or the k-th order succes-
sive principal minor) of the square matrix A, of order n, not necessarily symmetric, denoted by ∆k, k = 1, ..., n, is the
determinant of the square submatrix of A, of order k, consisting of the first k rows and the first k columns of A :

∆1 = a11, ∆2 = det
(

a11 a12
a21 a22

)
, ∆3 = det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , ...,∆n = det(A).

The Sylvester criterion for establishing the sign of Q(x) (or of its associated symmetric matrix A) is the following one.

Theorem 1. Let be given the symmetric matrix A, of order n.

1. Q(x) (or A) is positive definite if and only if all its k-th order leading principal minors ∆k, k = 1, ..., n, are positive.
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2. Q(x) (or A) is negative definite if and only if all its k-th order leading principal minors ∆k, k = 1, ..., n, have the sign of
(−1)k, i. e.

∆1 < 0, ∆2 > 0, ∆3 < 0, ..., (−1)n∆n > 0.

2. The Main Results

Let us consider the following quadratic function f : Rn −→ R defined by

f (x) = x>Ax + 2x>b + c, (1)

where x ∈ Rn, A real and symmetric matrix of order n, with det(A) , 0, b ∈ Rn and c ∈ R. We have the following results,
as a consequence of basic optimality properties of (1).

Theorem 2. The stationary point of (1) x0 = −A−1b has the following properties.

1. x0 is the unique stationary point of the quadratic function (1).

2. The following equality holds:

f (x0) =
det(B)
det(A)

,

where

B =


a11 · · · a1n b1
... · · ·

...
...

an1 · · · ann bn

b1 · · · bn c

 .
3. The following equality holds:

f (x) = f (x0) + (x − x0)>A(x − x0), ∀x ∈ Rn. (2)

Proof.

1. As ∇ f (x) = 2Ax + 2b, x ∈ Rn, it holds ∇ f (x) = 0 if and only if x = x0 = −A−1b.

2. We remark that it holds
f (x0) = (x0)>(Ax0 + b) + (x0)>b + c = (x0)>b + c.

On the grounds of this relation and by a well-known property of the determinants, we have

det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 · · · a1n

∑n
j=1 a1 jx0

j + b1
... · · ·

...
...

an1 · · · ann
∑n

j=1 an jx0
j + bn

b1 · · · bn (x0)>b + c

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣
a11 · · · a1n 0
... · · ·

...
...

an1 · · · ann 0
b1 · · · bn f (x0)

∣∣∣∣∣∣∣∣∣∣∣∣ = f (x0) det(A),

from which we get

f (x0) =
det(B)
det(A)

.

3. Being ∇2 f (x) = 2A, x ∈ Rn, by Taylor’s expansion formula we obtain relation (2). �

Theorem 3. Let be given the real symmetric matrix A, of order n and with det(A) , 0. Then, the following conditions are
equivalent.

i) A is positive definite.

ii) For every b ∈ Rn and every c ∈ R, the point x0 = −A−1b is a strict minimizer of f , defined by relation (1).

iii) For every b ∈ Rn and every c ∈ R, the point x0 = −A−1b is a minimizer of f , defined by relation (1).
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iv) A is positive semidefinite.

Proof. The implications i) =⇒ ii) and iii) =⇒ iv) result from relation (2). The implication ii) =⇒ iii) is trivial. It remains
to prove the implication iv) =⇒ i). This implication is well known in the theory of quadratic forms and says, in other
words, that the class of semidefinite quadratic forms, with det(A) , 0, which are not definite, is empty. Let A be positive
semidefinite and suppose that there exists a vector y ∈ Rn� {0} such that y>Ay = 0. The vector y is therefore a local
minimum point of the function g : Rn −→ R defined by g(x) = x>Ax, x ∈ Rn. We have therefore ∇g(y) = 0, i. e.

2
n∑

j=1

ai jy j = 0, ∀i = 1, ..., n.

Being y , 0, it results det(A) = 0, in contradiction with the assumptions. Therefore A is positive definite. �

We are now ready to prove Theorem 1. We begin by proving the point 1.

Proof of Theorem 1, point 1.

a) Necessity. Let be j ∈ {1, ..., n} . As A is positive definite, it is easy to see that also the submatrix

A j =


a11 · · · a1 j
... · · ·

...
a j1 · · · a j j


is positive definite: being

Q(x1, ..., x j) = Q(x1, ..., xn),

with (x1, ..., xn) = (x1, ..., x j, 0, ..., 0), it results that Q(x1, ..., x j) is definite positive. We want to show that ∆ j > 0, j =

1, ..., n. Let be t ∈ [0, 1] . The matrix (1− t)I + tA j, with I identity matrix of order j, is positive definite, as, for every x ∈ Rn

we have
x>

[
(1 − t)I + tA j

]
x = (1 − t) ‖x‖2 + tx>A jx.

We put P(t) = det
[
(1 − t)I + tA j

]
and observe that P(t) , 0 : indeed, if P(t) = 0, then the following system, defined on

R j, [
(1 − t)I + tA j

]
x = 0

admits solutions y , 0. For these solutions we have

y>
[
(1 − t)I + tA j

]
y = 0,

which contradicts the fact that
[
(1 − t)I + tA j

]
is positive definite. Being t an arbitrary number of the interval [0, 1] , it

holds P(t) , 0, ∀t ∈ [0, 1] . In particular P(0) = det(I) > 0 and, being P(t) a continuous function on the interval [0, 1] , it
will be P(t) > 0, ∀t ∈ [0, 1] . In particular, we have P(1) > 0, i. e. det(A j) > 0, j = 1, ..., n. �

b) Sufficiency. This part of the proof will be performed by induction. For n = 1 the assertion is satisfied. Let us suppose
that the assertion is true for n = k; we prove that the same assertion is true for n = k + 1.

Let us consider the real symmetric matrix B =
[
ai j

]
, of order (k + 1), such that it holds

det


a11 · · · a1 j
... · · ·

...
a j1 · · · a j j

 > 0, j ∈ {1, ..., k + 1} .

Let us put

A =


a11 · · · a1k
... · · ·

...
ak1 · · · akk

 ,
b =

[
a1,k+1, ..., ak,k+1

]> , c = ak+1,k+1.
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By the induction assumption A is positive definite. By Theorem 3 the point x0 = −A−1b is a global minimum point of the
function f : Rk −→ R defined by (1). Taking Theorem 2, point 2, into account, we have

f (x) = f (x0) =
det(B)
det(A)

> 0, ∀x ∈ Rk. (3)

Let be y =
[
y1, ..., yk+1

]>
∈ Rk+1� {0} and put z =

[
y1, ..., yk

]> . If yk+1 = 0, then we have z , 0 and hence y>By = z>Az > 0.
If yk+1 , 0, then the point

z̄ =
1

yk+1
z

satisfies, by relation (3), the following relation

y>By = z>Az + 2yk+1z>b + c(yk+1)2 = (yk+1)2 f (z̄) > 0.

Therefore y>By > 0, ∀y ∈ Rk+1� {0} , i. e. B is positive definite. �

The proof of Theorem 1, part 2, is very easy: the symmetric matrix A is negative definite if and only if −A is positive
definite and the k-th leading principal minor of −A is (−1)k times the corresponding leading principal minor of A.

Remark 1. The necessity part of Theorem 1 can be proved in a more direct way if we make reference to (well known!)
properties of quadratic forms. For example, if we recall that A (symmetric) is definite positive if and only if all its (real!)
eigenvalues λ1, λ2, ..., λn are positive and that

det(A) = λ1λ2...λn > 0,

we have at once that ∆1 > 0, ∆2 > 0, ...,∆n > 0.

Another classical result establishes that the symmetric matrix A is definite positive if and only if there exists a non-singular
matrix P, such that

A = P>P.

Then we have det(A) = det(P>P) = [det(P)]2 > 0.

Remark 2. Also the equivalence iv) ⇐⇒ i) of Theorem 3 is immediate if we make reference to the characterization of
the sign of Q(x) by means of eigenvalues of A : if A is positive semidefinite, without being positive definite, one at least
of its eigenvalues is zero, but then det(A) = 0, in contradiction with the assumptions of Theorem 3.

Remark 3. It is well known that the examination of the sign of the leading principal minors is not sufficient to check if a
symmetric matrix is positive (negative) semidefinite. For example the matrix[

0 0
0 −1

]
has nonnegative leading principal minors, but it is not positive semidefinite. Indeed, it is negative semidefinite. See, e. g.,
Chabrillac and Crouzeix (1984), Debreu (1952).

For other considerations on the relations between quadratic forms and quadratic functions, the reader may consult Han
and Mangasarian (1984).
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