
Journal of Mathematics Research; Vol. 14, No. 1; February 2022 

ISSN 1916-9795   E-ISSN 1916-9809 

Published by Canadian Center of Science and Education 

46 

Relationship between Event Prevalence Rate and Gini Coefficient of 

Predictive Model 

Fei Han
1,2

, Ian Stockwell
1,3,4

 

1
 The Hilltop Institute, University of Maryland, Baltimore County, Baltimore, USA 

2
 Computer Science and Electrical Engineering Department, University of Maryland, Baltimore County, Baltimore, USA 

3
 Department of Information Systems, University of Maryland, Baltimore County, Baltimore, USA 

4
 Erickson School of Aging Studies, University of Maryland, Baltimore County, Baltimore, USA 

Correspondence: Fei Han, The Hilltop Institute, University of Maryland, Baltimore County, Baltimore, USA 

 

Received: November 13, 2021   Accepted: January 6, 2022   Online Published: January 14, 2022 

doi:10.5539/jmr.v14n1p46          URL: https://doi.org/10.5539/jmr.v14n1p46 

 

Abstract 

Predictive models are currently used for early intervention to help identify patients with a high risk of adverse events. 

Assessing the accuracy of such models is a crucial part of the development process. To measure the predictive 

performance of a scoring model, quantitative indices such as the K-S statistic and C-statistic are used. This paper 

discusses the relationship between Gini coefficients and event prevalence rates. The main contribution of the paper is the 

theoretical proof of the relationship between the Gini coefficient and event prevalence rate.  
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1. Introduction 

Risk prediction models are currently being used in the health care sector to help care providers identify high-risk patients 

in order to implement diversionary interventions (Morgan et al., 2019; Henderson et al., 2021). Prediction model 

evaluation is a crucial step in the development of such models and is normally focused on discrimination and calibration 

(Steyerberg et al., 2010). Model discrimination refers to the ability of the model to discriminate between patients with and 

without the event of interest. Commonly used measures for evaluating model discriminative ability for binary events are 

receiver operating characteristic curves, concordance statistic (C-statistic), and precision-recall plots. Geometrically, the 

C-statistic is equal to the area under the receiver operating characteristic curve. C-statistic can also be interpreted as the 

probability that a randomly selected patient who had the event will have a higher predicted probability of having the event 

than a randomly selected patient who did not have the event. In ideal discrimination, in which predicted probabilities of 

the patients with the event are all higher than predicted probabilities of patients without the event, the C-statistic is equal 

to 1. Calibration, on the other hand, refers to the agreement between observed events and predictions. K-S statistics and 

Net Benefit can be used to evaluate model calibration but may not be appropriate in some circumstances (Morgan et al., 

2019). As more and more machine learning algorithms are used in predictive models, especially in ensemble models, 

calibration may not be necessary for models that are only used for ranking, or when the predicted score cannot be 

interpreted as probability (Morgan et al., 2019). 

Concentration curves and associated Gini coefficients are widely used tools for analyzing economic inequality. See 

Cowell (2011) and Jackson (1992). Concentration curves are also appropriate for measuring predictive model 

performance (Morgan et al., 2021). Concentration curves display the relationship between the accumulative true positive 

rate and the accumulative population proportion when patients are ranked in descending order by predicted risk score. 

Concentration curves provide more insight than receiver operating characteristic curves, especially in the case of 

low-prevalence events when interventions are prioritized to only the highest risk individuals (Keya et al., 2020). For 

example, from Figure 1, below, one can easily see that the top 10% riskiest patients include around 50% of patients who 

have the outcome. Thus, if health care professionals provide outreach to the top 10% riskiest patients, then half of all 

patients who will experience the event will have been contacted. The Gini coefficient is defined as two times the area 

between the concentration curve and the diagonal line and gives a summarized measure of the model discrimination. A 

larger Gini coefficient means better model discrimination. As with C-statistic, Gini coefficients are rank order statistics; 

that is, if the risk score values change while the relative ranking of individuals within the population remains unchanged, 

then both the C-statistic and Gini score will remain unchanged. 
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Although concentration curves and Gini coefficients are valuable in model discrimination evaluation, they are affected by 

the prevalence rate of the event of interest. As far as the authors know, this paper is the first one that rigorously proves the 

relationship between Gini coefficients and event prevalence rates. The main contribution is the mathematical theoretical 

proof of the relationship between Gini coefficients and event prevalence rates through introducing a parametric equation. 

This formula provides an upper bound of Gini coefficient for evaluating predictive model performance. 

2. Main Results  

Assume that we have 𝑁 patients, and every patient is associated with a tuple (𝑆𝑖 , 𝐸𝑖), where 𝑖 = 1,2, … , 𝑁 and 𝑆𝑖 is the 

predicted risk score for patient 𝑖, 𝐸𝑖 is the event status for patient 𝑖, and 

𝐸𝑖 = {
1, 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ℎ𝑎𝑠 𝑒𝑣𝑒𝑛𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We assume that 𝑆1 ≥  𝑆2 ≥ …≥ 𝑆𝑁 since patients with high-risk scores are of interest in most situations. To facilitate the 

proof, we introduce some mathematical notations. We denote 𝑝
0
 as the event prevalence rate, 𝑝

0
=

𝑛

𝑁
, where 𝑛 is the 

number of patients who have the event of interest. The empirical distribution function of the scores of the event is the 

accumulative percentage of patients with the event and with scores at least 𝛼. It is denoted as  

𝐷𝑛,𝑒𝑣𝑒𝑛𝑡(𝛼) =
1

𝑛
∑ 𝐼(𝑆𝑖 ≥ 𝛼 ∧ 𝐸𝑖 = 1)

𝑁

𝑖=1

 

where 𝐼 is an indicator function with the definition: 

𝐼(𝑥) = {
1, 𝑥 𝑖𝑠 𝑇𝑟𝑢𝑒
0, 𝑥 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒

 

and 𝛼  is a parameter such that 𝛼 ∈ [𝐿1, 𝐿2] , 𝐿1 = min (𝑆𝑖 , 𝑖 = 1,2, … , 𝑁)  and 𝐿2 = max (𝑆𝑖 , 𝑖 = 1,2, … , 𝑁) . The 

empirical distribution function for the scores of all patients is denoted as  

𝐷𝑁,𝑎𝑙𝑙(𝛼) =
1

𝑁
∑ 𝐼(𝑆𝑖 ≥ 𝛼)

𝑁

𝑖=1

. 

We first prove a mathematical formula between Gini coefficient and the event prevalence rate for ideal discrimination. 

The ideal discrimination is defined as a set of tuples  (𝑆𝑖 , 𝐸𝑖), 𝑖 = 1,2, … , 𝑁 , such that 𝑆1 ≥  𝑆2 ≥  …≥ 𝑆𝑁  and 

min𝑖(𝑆𝑖|𝐸𝑖 = 1) > max𝑖(𝑆𝑖|𝐸𝑖 = 0). 

When 𝛼 ≥ min (𝑆𝑖|𝐸𝑖 = 1), we have 

                       𝑦 = 𝐷𝑛,𝑒𝑣𝑒𝑛𝑡(𝛼) =
1

𝑛
∑ 𝐼(𝑆𝑖 ≥ 𝛼 ∧ 𝐸𝑖 = 1)𝑁

𝑖=1 =
1

𝑛
∑ 𝐼(𝑆𝑖 ≥ 𝛼)𝑁

𝑖=1 , 𝑦 ∈ [0,1],               (1) 

since 𝐸𝑖 = 1 always holds for 𝛼 ≥ min (𝑆𝑖|𝐸𝑖 = 1) with the ideal discrimination. 

We denote 𝑥 as  

                                    𝑥 = 𝐷𝑁,𝑎𝑙𝑙(𝛼) =
1

𝑁
∑ 𝐼(𝑆𝑖 ≥ 𝛼), 𝑥 ∈ [0, 𝑝0

𝑁
𝑖=1 ].                                 (2) 

The range of 𝑥 in [0, 𝑝0] is derived from the assumption of 𝛼 ≥ min (𝑆𝑖|𝐸𝑖 = 1) and that 𝑝0 is the event prevalence 

rate and with the ideal discrimination.  From equation (2) we have  

                                    𝑁𝑥 = ∑ 𝐼(𝑆𝑖 ≥ 𝛼), 𝑥 ∈ [0, 𝑝0
𝑁
𝑖=1 ].                                    (3) 

Plug equation (3) into (1), we have that 

𝑦 =
𝑁𝑥

𝑛
=

1

𝑛/𝑁
𝑥 =

1

𝑝0
𝑥, for 𝑥 ∈ [0, 𝑝0].                                  (4) 

When 𝑚𝑖𝑛(𝑆𝑖) ≤ 𝛼 < 𝑚𝑖𝑛 (𝑆𝑖|𝐸𝑖 = 1), we have that 
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                 𝑦 = 𝐷𝑛,𝑒𝑣𝑒𝑛𝑡(𝛼) =
1

𝑛
∑ 𝐼(𝑆𝑖 ≥ 𝛼 ∧ 𝐸𝑖 = 1)𝑁

𝑖=1 =
1

𝑛
𝑛 = 1,                           (5) 

                                𝑥 = 𝐷𝑁,𝑎𝑙𝑙(𝛼) =
1

𝑁
∑ 𝐼(𝑆𝑖 ≥ 𝛼), 𝑥 ∈ (𝑝0, 1𝑁

𝑖=1 ].                              (6) 

In Equation (5), ∑ 𝐼(𝑆𝑖 ≥ 𝛼 ∧ 𝐸𝑖 = 1)𝑁
𝑖=1 = 𝑛 because there are 𝑛 events when the prevalence rate is 𝑝

0 
and under 

condition 𝑚𝑖𝑛(𝑆𝑖) ≤ 𝛼 < 𝑚𝑖𝑛 (𝑆𝑖|𝐸𝑖 = 1) . In Equation (6), n< (∑ 𝐼(𝑆𝑖 ≥ 𝛼)𝑁
𝑖=1 ) ≤ 𝑁  since 𝑚𝑖𝑛(𝑆𝑖) ≤ 𝛼 <

𝑚𝑖𝑛 (𝑆𝑖|𝐸𝑖 = 1) and 𝑆1 ≥  𝑆2 ≥ …≥ 𝑆𝑁.  Based on equations (5) and (6) we have 

                  𝑦 = 1 for 𝑥 ∈ (𝑝0, 1]                                          (7) 

From equation (4) and (7), we have 

                                  𝑦 = {

𝑥

𝑝0
0 ≤ 𝑥 ≤ 𝑝0

1 𝑝0 < 𝑥 ≤ 1
.                                         (8) 

From equation (8), it is clear that the concentration curve consists of two segments of lines, which is illustrated in Figure 

2, below. 

The Gini coefficient (𝐺) is defined as two times the area between the concentration curve and the diagonal line. Hence, we 

see that 0 ≤ 𝐺. By geometry, from Figure 2, we have that 

                             𝐺 = 2 ∙ 𝐴𝑟𝑒𝑎∆𝑂𝐴𝐵 = 2 (
1

2
∙ 𝐴𝐶 ∙ 𝐴𝐵) = 2 (

1

2
∙ 1 ∙ (1 − 𝑝0)) = 1 − 𝑝0. 

Hence, we have 𝐺 = 1 − 𝑝0 for 𝑝0 ∈ (0,1). Thus, we have the following result. 

Theorem 1. For the predicted risk scores with ideal discrimination, the relationship between Gini score and event 

prevalence rate is  

𝐺 = 1 − 𝑝0, 𝑝0 ∈ (0,1), 

where 𝐺 is Gini coefficient and 𝑝0 is the event prevalence rate.  

Equation in Theorem 1 is for ideal discrimination. However, in reality, not all predicted probabilities of the patients with 

the event are higher than the predicted probabilities of patients without the event. Thus, we have the following corollary. 

Corollary 1. For any predicted risk scoring, the relationship between Gini coefficient and event prevalence rate is  

0 ≤ 𝐺 ≤ 1 − 𝑝0, 𝑝0 ∈ (0,1). 

The inequality 𝐺 ≥ 0 is due to its geometric meaning and inequality 𝐺 ≤ 1 − 𝑝0  is because there is at least one 

non-event subject having predicted score larger than the predicted probability of some subject with event. Corollary 1 

gives an upper bound of Gini coefficient for any predicted risk scores.  
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Figure 1. Concentration Curve 

 

Figure 2. Concentration Curve of Ideal Predicted Scores 

 

3. Discussion 

In order to determine the true accuracy of a predictive model, one must know how well a “perfect” model would behave. 

While it is theoretically possible for any model to achieve a C-statistic of 1, the authors have shown that the same cannot 

be said for a model’s Gini coefficient. As shown in Theorem 1 and Corollary 1, the Gini coefficient of a predictive model 

with ideal discrimination increases as prevalence rates decrease. For example, if the event prevalence rate is 40%, then the 

maximum Gini coefficient the predicted risk score could attain is 0.6. However, if the event prevalence rate is 1%, then the 

maximum Gini coefficient the predicted risk score could reach is 0.99.  

These findings suggest two important strategies for determining and comparing the performance of predictive models. 

First, no model should be benchmarked against a Gini coefficient of 1 because that is only possible for events that do not 

occur. Second, the relative performance of models trained on events with different prevalence cannot be determined by 

comparing their Gini coefficients alone. For example, it may not be true that a model predicting an event with 10% 

prevalence with a 0.6 Gini coefficient performs better than a model predicting an event with 50% prevalence with a 0.4 

Gini coefficient, since the upper limit on the Gini coefficient is different in each scenario. Both of these strategies have 

practical applications in applied predictive modeling and provide insights into the relationship between the Gini 

coefficient and event prevalence for model evaluation. 
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