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Abstract

This study proposed a scheme originated from the Galerkin finite element method (GFEM) for solving nonlinear parabolic
partial differential equations (PDEs) numerically with initial and different types of boundary conditions. The scheme is ap-
plied generally handling the nonlinear terms in a simple way and throwing over restrictive assumptions. The convergence
and stability analysis of the method are derived. The error of the method is estimated. In the series, eminent problems
are solved, such as Fisher’s equation, Newell-Whitehead-Segel equation, Burger’s equation, and Burgers-Huxley equa-
tion to demonstrate the validity, efficiency, accuracy, simplicity and applicability of this scheme. In each example, the
comparison results are presented both numerically and graphically.

Keywords: Burger’s equation, Burgers-Huxley equation, Convergence analysis, GFEM, Newell-Whitehead-Segel equa-
tion

1. Introduction

In this paper, we consider a standard form of nonlinear parabolic partial differential equations (PDEs) in the following
way defined on the spatio-temporal domain, R = Λ × (0,T ], T > 0

∂A(x, t)
∂t

= η
∂2A(x, t)
∂x2 + Ψ

(
x, t, A(x, t),

∂A(x, t)
∂x

)
, (x, t) ∈ R. (1)

The initial condition is defined as

A(x, 0) = Θ(x), x ∈ Λ, (2)

subject to the boundary conditions α1A(`1, t) + β1
∂A(`1, t)
∂x = γ1, (x, t) ∈ ∂R,

α2A(`2, t) + β2
∂A(`2, t)
∂x = γ2, (x, t) ∈ ∂R,

(3)

where η > 0 is the diffusion coefficient, x is the space, and t, the time. The variable A is the function of time, t and
space, x. The initial condition A(x, 0) = Θ describes the function of the spatial variable, x. The notation Λ is a region
bounded in R j, typically j = {1, 2, 3}, with boundary ∂Λ ∈ C2+δ, 0 < δ < 1. The function Ψ presents the reaction-
advection map (either reaction or advection or both of them simultaneously). The reaction function is smooth enough,
i.e. Ψ is continuous and at least first partial derivative exist. The advection term is defined as ∂A

∂x in (1). The notations
αi ∈ R, βi ∈ R, γi ∈ R (i = 1, 2) are constants and either α1 = α2 = 0 or, β1 = β2 = 0. It is noted that α1 and β1 both
are not zero at the same time. Similarly α2 and β2 are not zero simultaneously. The left and right boundary points are
`1 and `2 respectively and both `1, `2 ∈ R. Also, in this study Ψ and Θ describe the nonlinear function of A(x, t) and x,
respectively. It is also remarked that in many cases, Θ(x) can be linear steady state. The boundary conditions (3) cover a
wide class depending on the parameters, for example:

1. Dirichlet boundary conditions if β1 ≡ β2 ≡ 0, and α1 . α2 . 0,

2. Neumann boundary conditions if α1 ≡ α2 ≡ 0, and β1 . β2 . 0,
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3. Robin boundary conditions for all non-zero parameters, α1, α2, β1 and β2.

The mixed boundary conditions are the next possibility based on proper parameters selection.

These types of nonlinear parabolic partial differential equations (PDEs) (1) frequently arise in the field of engineering
and science. They are generally used to describe a wide variety of time-dependent phenomena. Some instantaneous
applications are drawn in the following series (Mittal & Jain, 2012):

• particle diffusion and the modeling of turbulence,

• pricing of derivative investment instruments,

• filtration of liquids, gas dynamics and elasticity,

• modeling of biological species (organisms) with harvesting and Allee effect, and

• chemical reactions, environmental pollution etc.

So the solutions of those types of equations have great significance in science and engineering, see, (Ozis, Aksan & Ozdes,
2003; Caldwell, Wanless & Cook, 1981; Reddy, 2014; Rao, 2017; Lewis & Ward, 1991; Chen, 2005; Akter et al., 2020)
and references therein. The analytic solutions of second or higher order nonlinear PDEs are not easy and impossible
in many cases except some simple cases. Many difficulties encountered, such as the nature of the governing equation,
to construct an appropriate mesh, complex geometrical shapes, ill conditions, and singularity problems. So researchers
devoted their attention to developing new and efficient solution methodologies to solve those problems numerically.

Instead of analytic solutions, the scientists introduced robust numerical techniques to find an approximation of the so-
lutions, and in this study, we were interested in numerical solutions. Numerous authors had proposed different types of
numerical methods for solving nonlinear parabolic PDEs (Hassan & Rashidi, 2014; Sarwar & Rashidi, 2016). Jacques
solved this type of equations by predictor-corrector method (Jacques, 1983). Mittal and Jain solved nonlinear parabolic
PDEs by Cubic B-splines collocation method (Mittal & Jain, 2012) which is limited only for Neumann boundary condi-
tions. As a consequence, Caldwell et al. applied a finite element approach to solve Burger’s but linear equation (Caldwell,
Wanless & Cook, 1981). After transforming the nonlinear parabolic PDE into linear PDE by Hopf-Cole transformation,
Ozis et al. found the solutions of the Burger’s equation by finite element method with homogeneous Neumann bound-
ary conditions (Ozis, Aksan & Ozdes, 2003). During the solution process, they used the kinematics viscosity within
[0.004−0.01]. Using the classical Lie approach with additional generating conditions method, Cherniha and Dutka estab-
lished the analytic solution of the Fisher’s equation (Cherniha & Dutka, 2001). Ali et al. used quadratic element method
for solving fractional-order differential equation (Ali, Kamrujjaman & Shirin, 2021). At the initial time, they compared
the exact and the numerical solutions found by the finite element method with local perturbations of the analytic solution.
In this method, they replaced the infinite interval into a finite interval so that the method should satisfy the homogeneous
Neumann boundary conditions with sufficient exactness in this minimal interval. Ali et al. used Galerkin finite element
method for solving nonlinear ordinary differential equations (Ali & Islam, 2017) . The FitzHugh-Nagumo equation and
several other nonlinear reaction-diffusion were solved using the standard linear shape functions for various parameter
values (Ali, Kamrujjaman & Islam, 2020; Lima et al., 2020 & 2021; Ali & Kamrujjaman, 2021).

In this study, we have solved the nonlinear parabolic PDEs with various types of boundary conditions by our proposed
scheme. In this method, different types of shape functions (linear, quadratic, cubic etc.) can be used instead of trial
functions which are challenging to find that satisfy the boundary conditions; linear shape function is used in this paper
with multiple nodes. In the literature, the current approach is not available as far as we know. So the main motive in this
paper is to find the numerical solution of the nonlinear parabolic PDEs with different types of boundary conditions by our
proposed scheme.

This paper comprises five sections. In Section , a proper derivation of our proposed scheme for nonlinear parabolic PDEs
is formulated. The convergence and stability analysis along with the iterative procedures are discussed in Section . The
implication of the method is presented in Section considering four problems with strong nonlinearity. Error graphs and
numerical results are also presented in this Section. General discussion and concluding remarks can be found in Section .

In the following section, we are moving to discuss the key idea of our scheme that is based on Galerkin finite element
method to solve nonlinear parabolic PDEs (1).

2. Mathematical Formulation

First of all, we span the domain R into n sub-domains. Let Sl be the l−th sub-domain of Λ with length h (= ∆x), which is
the maximum length of all sub-domains and k (= ∆t) is the step length of t. An illustrative case as such is in Figure 1.
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Figure 1. Domain discrimination for linear shape function at different times

If N is the total node number over the whole domain, then the total number of degrees of freedom over the domain is,
N = (λ − 1) × n + 1, where n is the total number of elements and λ is the local node number per element. The elements
are numbered similarly with parenthesis [e] (Ali & Islam, 2017) .

To find the solution, let us assume the trial solution

ã(x, t) =

λ∑
j=1

a j(t)ψ j(x) (4)

From the governing equation (1), the weighted residual equation for a particular element [e] is∫
[e]

[
∂ã
∂t
− η

∂2ã
∂x2 − Ψ

(
x, t, ã,

∂ã
∂x

)]
ψi dx = 0,

which yields ∫
[e]

∂ã
∂t
ψi dx + η

∫
[e]

∂ψi

∂x
∂ã
∂x

dx −
∫

[e]
Ψ

(
x, t, ã,

∂ã
∂x

)
ψi dx = η

[
ψi
∂ã
∂x

]
[e]
. (5)

Where ψi (i = 1, 2, 3, · · · , λ) are the shape functions. After substituting ã(x, t), ∂ã(x,t)
∂x from equation (4), we obtain∫

[e]

 λ∑
j=1

∂a j(t)
∂t

ψ j(x)

ψi(x)dx + η

∫
[e]

∂ψi

∂x

 λ∑
j=1

a j(t)
∂ψ j(x)
∂x

 dx

−

∫
[e]

Ψ

x, t,

 λ∑
j=1

a j(t)ψ j(x)

 ,
 λ∑

k=1

a j(t)
∂ψ j(x)
∂x


ψidx = η

ψi

λ∑
j=1

a j(t)
∂ψ j(x)
∂x


[e]

⇒

λ∑
j=1

∂a j(t)
∂t

(∫
[e]
ψi(x)ψ j(x)dx

)
+

λ∑
j=1

a j(t)
(
η

∫
[e]

∂ψi

∂x
∂ψ j(x)
∂x

dx
)

−

λ∑
j=1

a j(t)

∫
[e]

Ψ

x, t,
λ∑

k=1

a j(t)
∂ψ j(x)
∂x

ψi(x)ψ j(x)dx

 = η

ψi

 λ∑
j=1

a j(t)
∂ψ j(x)
∂x




[e]

⇒

λ∑
j=1

∂a j(t)
∂t

(∫
[e]
ψi(x)ψ j(x)dx

)
+

λ∑
j=1

a j(t)
∫

[e]

η∂ψi

∂x
∂ψ j(x)
∂x

− Ψ

x, t,
λ∑

k=1

a j(t)
∂ψ j(x)
∂x

ψi(x)ψ j(x)

 dx

=

ηψi

 λ∑
j=1

a j(t)
∂ψ j(x)
∂x




[e]

⇒

λ∑
j=1

∂a j(t)
∂t

Ce
i j +

λ∑
j=1

a j(t)Ke
i j = ze

i (6)
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The last equation is the matrix form of the system of ordinary differential equations with respect to t, where

Ce
i j =

∫
[e]
ψiψ j dx (7)

Ke
i j =

∫
[e]

ηdψi

dx
dψ j

dx
− Ψ

x, t, ψi,

n∑
k=1

(
ak(t)

dψk

dx

)ψi

 dx (8)

ze
i =

ηψi

n∑
k=1

(
ak(t)

dψk

dx

)
[e]

. (9)

Equation (6) can be rewritten in a convenient matrix form as

C[e] da(t)
dt

+ K[e]a(t) = z[e]. (10)

Here K and C are called the stiffness and forced matrices and z is called the load vector. Since C is symmetric, it is also
referred to as damping matrix.

To transform the ordinary differential equation (10) into a recurrent equation, lots of different methods are available in
the literature. For good accuracy, it is imperative to choose an effective but generalized iterative method. So we choose
the α-family of approximation instead of traditional finite difference method that comprises forward difference, backward
difference, or central difference approaches.

In α-family of approximations, for different values of α, we find the following well-known numerical integration schemes
(Reddy, 2014):

α =


0, the forward difference scheme; order of accuracy = O(k)
1
2 , the Crank-Nicolson scheme; order of accuracy = O(k2)
2
3 , the Galerkin method; order of accuracy = O(k2)
1, the backward difference scheme; order of accuracy = O(k)

By applying α-family of approximation, we form a system of algebraic equations to take a sequence of time steps of
length h from time level j to j + 1.

Then equation (10) becomes

(
C[e]

k
+ αK[e]

)
a j+1 =

(
C[e]

k
− (1 − α)K[e]

)
a j + z[e]

j . (11)

After assembling over all elements, equation (11) will be



h̄1
11 h̄1

12 0 0 0 0 ... 0

h̄1
21 h̄1

22 + h̄2
11 h̄2

12 0
...

...
... 0

0 h̄2
21 h̄2

22 + h̄3
11 h̄3

12 0
...

...
...

... 0 0
. . .

. . .
...

...
...

...
...

...
. . .

. . .
. . . 0

...
...

...
...

...
. . . h̄n−2

22 + h̄n−1
11 h̄n−1

12 0
...

...
...

... 0 h̄n−1
21 h̄n−1

22 + h̄n
11 h̄n

12
0 ... 0 0 0 0 h̄n

21 h̄n
22





a1
a2
a3
...
...
...

an

an+1


j+1
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= 

ĥ1
11 ĥ1

12 0 0 0 0 ... 0

ĥ1
21 ĥ1

22 + ĥ2
11 ĥ2

12 0
...

...
... 0

0 ĥ2
21 ĥ2

22 + ĥ3
11 ĥ3

12 0
...

...
...

... 0 0
. . .

. . .
...

...
...

...
...

...
. . .

. . .
. . . 0

...
...

...
...

...
. . . ĥn−2

22 + ĥn−1
11 ĥn−1

12 0
...

...
...

... 0 ĥn−1
21 ĥn−1

22 + ĥn
11 ĥn

12
0 ... 0 0 0 0 ĥn

21 ĥn
22





a1
a2
a3
...
...
...

an

an+1


j

+



f̄ 1
1

f̄ 1
2 + f̄ 2

1
f̄ 2
2 + f̄ 3

1
...
...
...

f̄ n−1
2 + f̄ n

1
f̄ n
2


j

.

Which can be written as [
H̄

]
{a} j+1 = ˆ[H] {a} j +

{
F̄
}

j
. (12)

Where the triangular matrices
[
H̄

]
& ˆ[H] are N × N and the vectors

{
F̄
}

j
is an N × 1 in sizes, whose entries are as follows:

h̄[e]
i j =

C[e]
i j

h
+ αK[e]

i j (13)

ĥ[e]
i j =

C[e]
i j

h
− (1 − α)K[e]

i j (14)

f̄ [e]
i = z[e]

i . (15)

However, to treat the nonlinearity, we convert the nonlinear term as a multiple of A(x, t) to express in matrix form. Which
we transform as a function of a j by using equation (4). Applying the initial condition into the recurrent equation (12),
we iterate to find a better approximation for a particular time t. Putting back the values of a j for a particular element in
equation (4), we find a piece-wise function of space and time for that element. Using the previously obtained function,
we can find values of A(x, t) at any point on the element for a particular time t. Next Section contains one important
branch of this study, the convergence and stability analysis which ensures that our method is convergent and our iterative
procedure is stable for small time steps.

3. Convergence and Stability Analysis

Let the shape functions are ψ j(x) ∈ H1
2 , j = 1, 2, · · · , λ where H1

2 is the Hilbert space. Since η is a constant and
Ψ

(
x, t, A(x, t), ∂A(x,t)

∂x

)
is continuous functions, so the solution of equation (1) uniquely exist (Babuska & Rheinboldt,

1978). Now substitute the trial function from equation (4) into (1), then we find equation (10) as{
da(t)

dt

}
+ [C]−1 [K] {a(t)} = [C]−1

{z} . (16)

Equation (16) is an initial value problem

da j

dt
+ ζ ja j = = j, (17)

a j(0) = φ(x).

The integrating factor of equation (17) is
e
∫
ζ jdt = eζ jt.

Multiplying on both sides of the first equation of (17) by integrating factor and then integrating over (0,T ], we have

eζ jta j =

∫ T

0
eζ jx= j(x)dx

⇒ a j = e−ζ jt
∫ T

0
eζ jx= j(x)dx =

∫ T

0
e−ζ j(t−x)= j(x)dx, (18)

and

|a j|
2 ≤

1
2ζ j

∫ T

0
|= j(x)|2dx. (19)

34



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 1; 2022

So in energy norm for a fixed t, we have

∥∥∥Ã(x, t)
∥∥∥2

E =

λ∑
j=1

|a j(t)|2ζ j

⇒
∥∥∥Ã(x, t)

∥∥∥2
E ≤

λ∑
j=1

(
1

2ζ j

∫ T

0
|= j(x)|2dx

)
ζ j =

λ∑
j=1

(
1
2

∫ T

0
|= j(x)|2dx

)
.

Therefore, the series in equation (4) converges for a specific value of t.

Let D p,q be the space of (p − 1) times continuously differentiable functions on Λ̄, the closure of the domain, for which
the restriction to Λ j, j = 0, 1, 2, · · · , n − 1 is a polynomial of degree at most λ − 1, where λ is the number of local nodes
in each element. Let Ã ∈ D p,q be the finite element solution for a particular value of t, then for all υ ∈ D p,q(

∂Ã
∂t
, υ

)
0

+ B
(
Ã, υ

)
= (z, υ)0, (20)

where (., .)0 is the inner product andB(., .) is the bilinear transformation defined in (Babuska & Rheinboldt, 1978; Babuska,
1972). Equation (20) provides an initial value problem instead of the system of ordinary differential equations. It is well
known that for decreasing the increments in x, this result will converge to the solution of equation (10) for a particular t.

Now the iterative schemes can be applied in a relaxed way, if it is numerically stable. So write equation (12) as[
H̄

]
{a} j+1 = ˆ[H] {a} j +

{
F̄
}

j
(21)

{a} j+1 = [A] {a} j +
[
H̄

]−1 {
F̄
}

j
, (22)

where [A] =
[
H̄

]−1 ˆ[H] is the amplification matrix. Here {a} j+1 , {a} j are the solution vector at time (t + 1) and t,
respectively.

The solution {a} j+1 at time (t +1) relies on the solution {a} j at time t. So error can grow with iteration. An iterative method
is said to be stable if the error does not grow in an unbounded way with iteration. The necessary and sufficient conditions
to bound the error within a borderline, the eigenvalue χmax of the amplification matrix [A] must be less or equal unity such
that

([A] − χmax[I]) {a} = 0. (23)

Equation (23) is an eigenvalue problem which is unconditionally stable if χmax is less or equal to unity for any time steps
k (Reddy,2014). If χmax depends on the step size of time to be less or equal unity, then the procedure will be called
conditionally stable. Thus α-family of approximation for α < 1

2 , all numerical schemes are stable for the time increment
which satisfies the condition that is written as

k <
2

(1 − 2α)χmax
. (24)

And for α ≥ 1
2 , the largest eigenvalue of the amplification matrix satisfies the following inequality

χmax = ‖
1 − (1 − α)kχmax

1 + αkχmax
‖ ≤ 1, (25)

which reveals that α-family of approximation is unconditionally stable if α ≥ 1
2 .

In the following Section , we are going to present the solution of several nonlinear parabolic PDEs to demonstrate the
efficiency of this method. Also, we will study the role played among different parametric values, exact-approximate
solution, number of linear elements, and error terms while time varies.

4. Numerical Examples and Applications

In this section, the solutions of some re-known nonlinear parabolic equations with different boundary conditions are
considered. All results are presented graphically and numerically, along with the exact solution.
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4.1 Burger’s Equation

Nonlinear Burger’s equation is one of the most famous equations that frequently raised in fluid dynamics, magnetohy-
drodynamics, etc. Here we solve this by our proposed scheme with homogeneous Dirichlet boundary conditions (Wood,
2006) and the problem is

∂A(x, t)
∂t = 1

Re
∂2A(x, t)
∂x2 − A(x, t)∂A(x, t)

∂x , x ∈ Λ ≡ [0, 1], t > 0,

A(0, t) = A(1, t) = 0, t > 0, x ∈ ∂Λ,

A(x, 0) =
2π sin(πx)

Re (σ + cos(πx)) , x ∈ Λ,

(26)

where Re > 0 is the Reynolds number and σ > 1 is a parameter. The analytic solution of the problem (26) is

A(x, t) =
2e

−π2 t
Re sin(πx)

Re
(
σ + e

−π2 t
Re cos(πx)

) .
For computation, we use only 40 linear elements with Re = 1, σ = 2, k = 0.01, h = 0.025, and α = 0.5. The numerical
results are presented numerically in Table 3 (Appendix A). The graphical parallelism between the exact and approximate
solutions are depicted in Figure 2 and in Figure 4.

Figure 2. Comparison of the exact and approximate solutions of (26) over the domain while time varies

Figure 3. Approximate and exact solutions of (26) over the domain while time varies

To clarify the understanding, let us consider the three dimensional surface plot, Figure 3 of the Burger’s equation (26).
Compared with left and right diagrams in Figure 3, it is clear that the method is more suitable to solve such nonlinear
parabolic PDEs without any complexity.

Figure 4 exhibits the corresponding difference between two graphs of approximate and exact solutions where the error
term is very negligible. They also ensure the accuracy of the solution and acceptance of the proposed scheme.
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Figure 4. Absolute error of (26) over the domain while time varies

4.2 Fisher’s Equation

In this illustration, we consider the renowned Fisher’s equation with non-homogeneous Dirichlet boundary conditions
(Wazwaz & Gorguis, 2004; Kamrujjaman, Ahmed & Alam, 2019; Ahmed & Kamrujjaman, 2019). This equation arises
in many applications of heat and mass transfer, biology, and ecology. Let us now consider the Fisher’s equation



∂A(x, t)
∂t =

∂2A(x, t)
∂x2 + 6A(x, t) (1 − A(x, t)) , x ∈ Λ ≡ [0, 1], t > 0,

A(0, t) =
(
1 + e−5t

)−2
, t > 0, x ∈ ∂Λ,

A(1, t) =
(
1 + e1−5t

)−2
, t > 0, x ∈ ∂Λ,

A(x, 0) = (1 + ex)−2 , x ∈ Λ.

(27)

The exact solution of equation (27) is given by

A(x, t) =
(
1 + ex−5t

)−2
.

We compute the numerical solution of this problem at different nodes of x and at different time levels by using only
40 linear elements with α = 1, k = 0.01, and h = 0.025. We reported the parallelism between exact and approximate
solutions in Table 1. The graphical representation of exact and approximate solutions for different time levels are displayed
in Figure 5 and in Figure 6.

Figure 5. Comparative graphical scenarios of exact and approximate solutions of (27) at different time levels
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Figure 6. Approximate and exact solution of (27) over the domain while time varies

From Figure 6, we can observe that the graphical representation between the exact and approximate solution of (27).
Since the approximate solution is very close to the exact solution, so from these diagrams, it is not straightforward and
easy to identify the difference between them. Both solutions are exhibited by two transparent graphs concerning time and
space to overcome this difficult situation.

To clarify this, let us consider the absolute error map of (27) over space using various time levels. Eventually, it is apparent
that this method is more applicable for solving such types of nonlinear parabolic PDEs with a perfect consent between the
approximate and exact solution of (27); Figure 6.

Table 1. Comparison of exact and approximate solutions of (27)

t = 0.05 t = 0.10
x Exact Approximate Abs.Error Exact Approximate Abs.Error

0.00 0.31604 0.31604 3.4548×10−17 0.38746 0.38746 2.3036×10−17

0.10 0.28581 0.28883 3.0202×10−03 0.35710 0.35843 1.3277×10−03

0.20 0.26186 0.26265 7.9096×10−04 0.33277 0.32998 2.7832×10−03

0.30 0.23826 0.23766 6.0294×10−04 0.30748 0.30232 5.1643×10−03

0.40 0.21532 0.21397 1.3530×10−03 0.28187 0.27560 6.2664×10−03

0.50 0.19331 0.19169 1.6189×10−03 0.25640 0.2500 6.4044×10−03

0.60 0.17240 0.17089 1.5136×10−03 0.23143 0.22564 5.7870×10−03

0.70 0.15270 0.15160 1.0980×10−03 0.20719 0.20265 4.5391×10−03

0.80 0.13424 0.13386 3.8682×10−04 0.18381 0.18110 2.7125×10−03

0.90 0.11701 0.11764 6.3637×10−04 0.16135 0.16105 2.9391×10−04

1.00 0.10293 0.10293 9.6702×10−18 0.14254 0.14254 6.3233×10−18

Now, we are devoted to demonstrating the famous Burgers-Huxley equation with homogeneous Neumann boundary con-
ditions.

4.3 Burgers-Huxley Equation

Another renown nonlinear parabolic partial differential equation is the Burgers-Huxley equation with no-flux boundary
conditions (Mittal & Jain, 2012; Zhou & Cheng, 2011)

∂A
∂t = ∂2A

∂x2 − ϕA∂A
∂x + εA(x, t) (A(x, t) − 1) (τ − A(x, t)) , x ∈ [−25, 17], t > 0,

∂A
∂x |x=−25 = ∂A

∂x |x=17 = 0, t > 0, x ∈ ∂Λ,

A(x, 0) = 3
2 + 1

2 tanh
( x
2
)
, x ∈ Λ.

(28)

Here ϕ, ε, and τ are real parameters. It is easily verified that the exact solution of Burgers-Huxley equations (28) is

A(x, t) =
3
2

+
1
2

[
tanh

1
2

(x + 3t)
]
,

where ϕ = −1, ε = 1, and τ = 2 is being used to get the numerical solution while time varies. We compute the numerical
solution of the above system (28) at different nodes of x and at different time levels by using 40 linear elements with
α = 1, k = 0.01, and h = 1.05.
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Figure 7. The profile of the solutions of (28) at different time levels over the domain

Figure 8. Approximate and Exact solution of (28) over the domain while time varies

Comparison between the exact and approximate solutions are shown in Table 2. Graphical visualizations are shown in
Figure 7. The three-dimensional solutions of (28) are presented in Figure 8 where there is a good correlation between the
exact and imminent solutions, which ensured the acceptance of the numerical illustrations obtained by GFEM.

Numerical simulations depicted in Figure 7 indicate that the visible exact and approximate solutions have an excellent
agreement. The error curves are presented in Figure 8 and are showing the higher accuracy, which ensures the stability of
this algorithm.

Table 2. Comparison of exact and approximate solutions of Burgers-Huxley equation (28)

t = 0.10 t = 0.20
x Exact Approximate Abs.Error Exact Approximate Abs.Error

-25.00 1.0000 1.0000 4.7294×10−13 1.0000 1.0000 3.8443×10−12

-20.80 1.0000 1.0000 1.8569×10−10 1.0000 1.0000 4.0890×10−11

-16.60 1.0000 1.0000 1.2383×10−08 1.0000 1.0000 2.7267×10−09

-12.40 1.0000 1.0000 8.2579×10−07 1.0000 1.0000 1.8184×10−07

-8.20 1.0003 1.0004 5.5026×10−05 1.0004 1.0004 1.2109×10−05

-4.00 1.0206 1.0241 3.4881×10−03 1.0234 1.0241 7.1801×10−04

0.20 1.5875 1.6225 3.4979×10−03 1.6251 1.6225 2.6666×10−03

4.40 1.9898 1.9910 1.2231×10−03 1.9917 1.9910 7.5409×10−04

8.60 1.9998 1.9999 1.8603×10−05 1.9999 1.9999 1.1858×10−05

12.80 2.0000 2.0000 2.7902×10−07 2.0000 2.0000 1.7796×10−07

17.00 2.0000 2.0000 8.4850×10−09 2.0000 2.0000 4.1123×10−09

Finally, we illustrate the Newell-Whitehead-Segel equation with non-homogeneous Neumann boundary conditions.

4.4 Newell-Whitehead-Segel Equation

Let us consider the Newell-Whitehead-Segel equation that models the interaction of the impact of the diffusion term with
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the nonlinear effect of the reaction term (Salman Nourazar, Soori & Nazari-Golshan, 2015).



∂A(x, t)
∂t = η

∂2A(x, t)
∂x2 + µA(x, t) − νA(x, t)ρ, x ∈ Λ ≡ [0, 1], t > 0,

∂A
∂x |x=0 = − 2

√
6

e
−5t
6(

1+e
−5t
6

)3 , t > 0, x ∈ ∂Λ,

∂A
∂x |x=1 = − 2

√
6

e
√

6−5t
6(

1+e
√

6−5t
6

)3 , t > 0, x ∈ ∂Λ,

A(x, 0) =
(
1 + e

x
√

6

)−2
, x ∈ Λ,

(29)

where η, µ, ν are real numbers with η > 0 and ρ is a positive integer. To get the approximate solution of Newell-
Whitehead-Segel equation, we choose η = 1, µ = 1, ν = 1 and ρ = 2.

The exact solution of (29) is defined as

A(x, t) =

(
1 + e

x
√

6
− 5t

6

)−2
.

Figure 9. Comparative solutions of (29) at different time levels over the domain x ∈ [0, 1]

The numerical computations are performed using only 41 nodes with α = 1, k = 0.01 and h = 0.025. The numerical
results are presented in Table 4 (Appendix A). Additionally, the graphical visualization between the exact and approximate
results is depicted in Figure 9. Visibly it is seen that the approximate and exact solutions coincide.

Figure 10. Approximate and exact solution of (29) over the domain while time varies

For better understanding, we also affix the 3D solution maps (Figure 10) of (29) over the independent time and space
variables, which depicts the acceptability of this method by displaying high accuracy with the exact solution.
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Figure 11. Absolute error of (29) at different time levels over the domain x ∈ [0, 1]

The error curves, the absolute difference between the exact and numerical solutions of (29) are presented in Figure 11.
The absolute error map provided a minimal error which is acceptable for numerically illustrated results.

4.5 Problem With Robin Boundary Condition

Let us consider the uniformly propagating shock problem (Sapa, 2018)



∂A(x, t)
∂t = 1

Re
∂2A(x, t)
∂x2 − A(x, t)∂A(x, t)

∂x , x ∈ Λ ≡ [−1, 1], t > 0,

A(−1, t) +
∂A(−1, t)

∂x = t2 + 8t + 13
(t + 3)2 , t > 0, x ∈ ∂Λ,

A(1, t) − ∂A(1, t)
∂x = t2 + 4t + 5

(t + 1)2 , t > 0, x ∈ ∂Λ,

A(x, 0) = x−4
x−2 , x ∈ Λ.

(30)

The exact solution of this problem (30) is A(x, t) = 1 − 2
x−t−2 .

Figure 12. Comparative solutions of (30) at different time levels over the domain x ∈ [−1, 1]

Figure 13. Approximate and exact solution of (30) over the domain while time varies
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Figure 14. Absolute error of (30) at different time levels over the domain x ∈ [−1, 1]

Here Re is the Reynolds number in the range 1 ≤ Re ≤ 105 and for (x, t) ∈ [−1, 1] × [0, 1], A(x, t) ∈ (1.5, 3). Graphical
representations are given in Figures 12, 13, 14.

5. Conclusion

In this study, an efficient scheme based on the Galerkin finite element method has been introduced to find the numerical
solutions of a general class of nonlinear parabolic partial differential equations with different boundary conditions. The
method was applied directly to find the approximate solutions of the equations without any limitations; it excluded lin-
earization technique, no further assumption on trial functions, and no need to transform into lower-order PDE. To verify
the method, we recalled several real-life problems, such as Burger’s equation, Newell-Whitehead-Segel equation, and
additional two renowned PDEs where all the equations carried out various boundary conditions. The approximate results
were compared with the exact solutions and presented graphically (2D & 3D) and in tabular form. By the way of conclu-
sion, it is apparent about the efficiency, accuracy, and acceptance of the proposed scheme because of its low cost, easily
implementable, high accuracy with low compuatation time compared to the well-published literature.
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A. Appendix

This section contains some additional figures and tables to observe the accuracy of the solution methodology; the Galerkin
Finite Element Method.

Table 3. Comparison of exact and approximate solutions of equation (26)

t = 0.02 t = 0.04
x Exact Approximate Abs.Error Exact Approximate Abs.Error

0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.5690 0.5732 4.2015×10−03 0.4833 0.4954 1.2084×10−02

0.20 1.1289 1.1379 9.0897×10−03 0.9528 0.9778 2.4978×10−02

0.30 1.6658 1.6808 1.5057×10−02 1.3909 1.4295 3.8572×10−02

0.40 2.1549 2.1766 2.1634×10−02 1.7727 1.8234 5.0734×10−02

0.50 2.5523 2.5788 2.6538×10−02 2.0605 2.1169 5.6374×10−02

0.60 2.7838 2.8089 2.5080×10−02 2.1990 2.2472 4.8259×10−02

0.70 2.7370 2.7497 1.2625×10−02 2.1127 2.1355 2.2751×10−02

0.80 2.2762 2.2693 6.8314×10−03 1.7197 1.7105 9.1888×10−03

0.90 1.3219 1.3071 1.4806×10−02 0.9832 0.9626 2.0606×10−02

1.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Comparison of exact and approximate solutions of Newell-Whitehead-Segel equation (29)

t = 0.03 t = 0.05
x Exact Approximate Abs.Error Exact Approximate Abs.Error

0.00 0.256288733 0.256253420 3.531×10−05 0.260523635 0.260519434 4.201×10−06

0.10 0.246059526 0.246058049 1.477×10−06 0.250210503 0.250241120 3.062×10−05

0.20 0.236041838 0.236060682 1.884×10−05 0.240105472 0.240159946 5.447×10−05

0.30 0.226243545 0.226273433 2.989×10−05 0.230216706 0.230286547 6.984×10−05

0.40 0.216671793 0.216707468 3.568×10−05 0.220551653 0.220631376 7.972×10−05

0.50 0.207332982 0.207372295 3.931×10−05 0.211117020 0.211204262 8.724×10−05

0.60 0.198232752 0.198276112 4.336×10−05 0.201918757 0.202014293 9.554×10−05

0.70 0.189375975 0.189426519 5.054×10−05 0.192962052 0.193069916 1.079×10−04

0.80 0.180766749 0.180831245 6.450×10−05 0.184251318 0.184379006 1.277×10−04

0.90 0.172408404 0.172498494 9.009×10−05 0.175790198 0.175948651 1.585×10−04

1.00 0.164303506 0.164436046 1.325×10−04 0.167581569 0.167784547 2.030×10−04

Figure 15. Error graph of (27) at different time levels over the domain
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Figure 16. The absolute error of (28) at different time levels over the domain
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