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Abstract

This study was designed to obtain the energy eigenvalues and the corresponding Eigenfunctions of the Quantum Harmonic
oscillator through an alternative approach. Starting with an appropriate family of solutions to a relevant linear differential
equation, we recover the Schrödinger Equation together with its eigenvalues and eigenfunctions of the Quantum Harmonic
Oscillator via the use of Gram Schmidt orthogonalization process in the usual Hilbert space. Significantly, it was found
that there exists two separate sequences arising from the Gram Schmidt Orthogonalization process; one in respect of the
even eigenfunctions and the other in respect of the odd eigenfunctions.
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1. Introduction

The Quantum Harmonic Oscillator is perhaps the most celebrated and useful of all the Quantum Mechanical systems with
applications in all areas of modern physics from subatomic and molecular physics through condensed matter physics to
high energy physics and to more exotic fields such as Quantum Computing and Quantum Finance (Wolf, 2021 & Schaden,
2002).

In the context of the standard formulation of Quantum Mechanics, Schrödinger Equation is obtained from the classical
energy equation

E =
1
2

p2

2m
+

1
2

mω2x2 (1)

in which the system can be put in Quantum form (Quantization) by means of the correspondence principle where we have
the associations:

x̂→ x

p̂→ −
i~∂
∂x

Ê →
i~∂
∂t

.

The Hamiltonian of the Harmonic Oscillator is an operator which acting on a wave function Ψn is given by

HnΨn = −
~2

2m
d2Ψn

dx2 +
1
2

mω2x2Ψn (2)

where m, p, ω, ~ have their usual meanings. In this paper, without loss of generality, we shall use standardized units such
that m = ω = ~ = 1. (Bransden,2000).

Existing approaches of solving the Schrödinger Equation for the eigenvalues and eigenfunctions among others are the
Ladder Operator Method and Series method.

A new framework is proposed in this paper which deviates slightly from the above approach which uses the correspon-
dence principle directly. While we do not abandon the usual assumptions of Quantum Mechanics and its pertinent math-
ematical framework, we rather proceed as follows: Starting with appropriate solutions of a relevant Second Order linear
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differential equation, we seek to recover the Schrödinger Equation of the Quantum Harmonic Oscillator together with its
eigenvalues and eigenfunctions.

Our motivation is to eventually formulate an effective framework for studying the Quantum Anharmonic oscillator. This
study on Quantum Anharmonic Oscillator, we hope to do in a subsequent paper. The structure of the current paper is as
follows: We provide in the next section a very brief review of the mathematical foundations of Quantum Mechanics restat-
ing some relevant theorems. This is followed by a section describing the proposed method in terms of a few propositions
which are proved. In subsequent sections, we carry out explicit computations, based on our method, of the eigenvalues
and eigenfunctions of the Quantum Harmonic oscillator for even and odd cases.

2. Brief Theory

2.1 Postulates of Quantum Mechanics

To an ensemble of physical systems one can, in certain cases associate a wave function or state function which contains
all the information that can be known about the ensemble. This function is in general complex; it may be multiplied by an
arbitrary complex number altering its physical significance. A wave function Ψ(x, t) is said to be square integrable if its
normalization integral I =

∫
|Ψ(r, t)|2dr is finite, where the integration is over the real line. It also means that the quantity

P(x, t) = |Ψ(x, t)|2 is interpreted as the Position probability density - Born’s Rule (Bransden, 2000).

The state of a system is represented by a normalized vector (|Ψ〉) in the L2 (Hilbert ). There is an inner product denoted by,
〈Ψ|Φ〉 for any two elements in the space. For example, for functions defined in the interval a ≤ x ≤ b (in one dimension),
we may write

< Ψ|Φ >=

∫ b

a
Φ∗Ψdx (3)

Observable quantities Q(x, p, t) are represented by Hermitian operators Q̂(x, ~i ,
∂
∂x , t); the expectation value of Q in the

state |Ψ〉, is
〈
Ψ|Q̂Ψ

〉
. A measurement of the observable Q on a particle in the state |Ψ〉 is certain to retain the value λ

if and only if |Ψ〉 is an eigenfunction of Q̂, with eigenvalue λ. For example, the time independent Schrödinger equation
ĤΨ = EΨ is the eigenvalue equation for the Hamiltonian operator. The eigenfunction corresponds to a state in which the
total energy has a precise numerical value E. (Griffiths,1999)

The Superposition Principle states that if the state function Ψ1 is associated with one possible state of a statistical ensemble
of physical systems, and the state function Ψ2 with another state of this ensemble, then any linear combination

Ψ = c1Ψ1 + c2Ψ2 (4)

where c1 and c2 are complex constants, is also a state function associated with a possible state of the ensemble.

With every dynamical variable is associated a linear operator. That is, an operator Â is linear if it has the property

Â (c1Ψ1 + c2Ψ2) = c1

(
ÂΨ1

)
+ c2

(
ÂΨ2

)
(5)

where Ψ1 and Ψ2 are two functions and c1 and c2 are complex constants.

The only result of a precise measurement of the dynamical variable A is one of the eigenvalue λ of the linear operator Â
associated with A. The linear operators required are called Hermitian operators and are defined by the condition〈

Ψ|
(
ÂΨ

)〉
=

〈(
ÂΨ

)
|Ψ

〉
(6)

where Ψ is a square integrable function. If Ψ is an eigenfunction of the operator Â corresponding to the eigenvalue λ, then
we have 〈

Ψn|Â|Ψn

〉
= λn 〈Ψn|Ψn〉 (7)

In addition, since (
ÂΨn

)∗
= λ∗nΨ∗n

we also have
〈(AΨn)|Ψn〉 = λ∗n 〈Ψn|Ψn〉 (8)

If Â is Hermitian, then the left-hand sides of equations (7) and (8) are equal, and hence λn = λ∗n.

In another vein, two different eigenfunctions belonging to the same eigenvalue are orthogonal. (Bransden, 2000)
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2.1.1 Gram Schmidt Orthogonalization Process

Suppose {U1,U2...Un} is a basis of an inner product space V . One can use this basis to construct an orthogonal basis
{V1,V2, ...Vn} of V as follows.
Set

V1 = U1 (9)

V2 = U2 −
〈U2,V1〉

〈V1,V1〉
V1 (10)

V3 = U3 −
〈U3,V1〉

〈V1,V1〉
V1 −

〈U3,V2〉

〈V2,V2〉
V2 (11)

V4 = U4 −
〈U4,V1〉

〈V1,V1〉
V1 −

〈U4,V2〉

〈V2,V2〉
V2 −

〈U4,V3〉

〈V3,V3〉
V3 (12)

In general, for Vn , we have

Vn = Un −
〈Un,V1〉

〈V1,V1〉
V1 −

〈Un,V2〉

〈V2,V2〉
V2 − ... −

〈Un,Vn−1〉

〈Vn−1,Vn−1〉
Vn−1 (13)

where the symbol 〈..., ...〉 in section 2.1.1 above represents the inner product between of two eigenfunctions. (Miller,
2008)

3. Results and Discussion

We seek wave functions that reflect the symmetry of the simple harmonic motion. In addition, these functions are to be
smooth and must at the very least be a solution pair (by virtue of Born’s Rule) of some Second Order Linear Differential
Equation . Thus, the most basic of such a pair would be the functions e−

x2
2 and xe−

x2
2 in order to ensure a non - vanishing

Wronskian (Spiegel, 1976). These ideas are what motivate the next results.

3.1 Theoretical Results

3.1.1 Proposition 1

The family of functions

Un = xne−
x2
2 (14)

where n = 0, 1, 2, ... constitutes solutions to the following second order linear differential equation

U′′n = n(n − 1)x−2Un − (2n + 1)Un + x2Un (15)

Proof

We apply Leibniz Theorem to equation (14). Now, let Un = uv where u = xn and v = e−
x2
2 . If u and v are smooth functions,

and we substitute the results into Leibniz expansion
U′′n = u′′v + 2u′v′ + uv′′ (Mendelson,2004), we generate equation (15).

Example

Inserting n = 0 and n = 1 into equation (15), we get the following[
−

1
2

d2

dx2 +
1
2

x2
]

U0(x) =
1
2

U0(x) (16)

[
−

1
2

d2

dx2 +
1
2

x2
]

U1(x) =
3
2

U1(x) (17)

Equations (16) and (17) are eigenvalue problems with eigenvalues 1
2 and 3

2 respectively, and their corresponding eigen-

functions U0 = e−
x2
2 and U1 = xe−

x2
2 . The two (Schrodinger) equations represent respectively the ground state and the

first excited state to the Schrödinger equation respectively.
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Remark 1

However, for n ≥ 2, we failed to obtain an eigenvalue problem and therefore we are not able to immediately recover the
Schrödinger Equation.

For instance, for n = 2, 3, we have [
−

1
2

d2

dx2 +
1
2

x2
]

U2(x) =
5
2

U2(x) + U0(x) (18)[
−

1
2

d2

dx2 +
1
2

x2
]

U3(x) =
7
2

U3(x) + 3U1(x) (19)

Equations (18) and (19) have extra terms such as U0(x) and 3U1(x) respectively.

3.1.2 Proposition 2

There exists a mutually orthogonal family of functions Vm =
∑m

k=0 CkUk which constitutes a solution to the equation[
−

1
2

d2

dx2 +
1
2

x2
]

Vm =

(
m +

1
2

)
Vm. (20)

where Uk belong to the family of functions given by equation (14)

Proof

Equation (20) is an eigenvalue problem involving a Hermitian operator and the solutions of this equation are therefore
mutually orthogonal (See section 2). It is clear that to convert equation (15) to equation (20), we need to take linear
combinations of the family Uk which will solve equation (15) such that the first term of equation (15) vanishes. Such
Linear combinations can be obtained through Gram Schmidt Orthogonalization process. Thus,

Vm = Um −

m−2∑
k=0,1

〈Um,Vk〉

〈Vk,Vk〉
Vk (21)

.

For eigenfunctions with m even,i.e, m = 0, 2, 4, 6, .., and m odd, i.e. m = 1, 3, 5, ..., where the initializations are respectively
given by V0 = U0 and V1 = U1.

Remark 2

The family of functions Un = xne−
x2
2 are alternately even or odd functions. Since even and odd functions are already

orthogonal, it follows that we cannot apply Gram Schmidt Orthogonalization process to consecutive functions in the
sequence. This is because consecutive functions are already orthogonal. Hence, we can only apply the Gram Schmidt
Orthogonalization process to alternate members of the sequence that are only even functions or only odd functions.

Some Examples

In reference to proposition 2, if we substitute m = 2, 3, ... into equation (20), we will get[
−

1
2

d2

dx2 +
1
2

x2
]

V2 =
5
2

V2[
−

1
2

d2

dx2 +
1
2

x2
]

V3 =
7
2

V3

(22)

Remark 3

It is noteworthy that equations (22) give the well known eigenvalues of the Quantum Harmonic Oscillator. However , we
still need to compute the corresponding eigenfunctions.

3.2 Specific Computations of the Eigenfunctions of the Quantum Harmonic Oscillator

3.2.1 Even Eigenfunctions for m ≥ 2

According to the Proposition 2 , in order to get the eigenvalue problem, we need to apply Gram Schmidt Orthogonalization
process to the family of solutions Um for m ≥ 2 in order also to compute the eigenfunctions.

For the case m = 2 we start with the initialization condition by setting

V0 = U0 = e−
x2
2 (23)
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We again have

U2 = x2e−
x2
2 (24)

Applying the Gram Schmidt equation, we have

V2 = x2e−
x2
2 −

〈
x2e−

x2
2 , e−

x2
2

〉
〈
e−

x2
2 , e−

x2
2

〉 U0 (25)

This is expanded as

V2 = x2e−
x2
2 −

∫ +∞

−∞
x2e−x2

dx∫ +∞

−∞
e−x2 dx

e−
x2
2 (26)

Equation (26) may be simplified as

V2 = x2e−
x2
2 −

√
π

2
√
π

e−
x2
2 =

(
x2 −

1
2

)
e−

x2
2 (27)

Similarly, we want to generate V4 as we substitute V0,V2,U2, and U4 into the Gram Schmidt equation. This gives us

V4 = x4e−
x2
2 −

〈
x4e−

x2
2 , e−

x2
2

〉
〈
e−

x2
2 , e−

x2
2

〉 e−
x2
2

−

〈
x4e−

x2
2 ,

(
x2 − 1

2

)
e−

x2
2

〉
〈(

x2 − 1
2

)
e−

x2
2 ,

(
x2 − 1

2

)
e−

x2
2

〉 (
x2 −

1
2

)
e−

x2
2

(28)

Equation (28) is simplified as

V4 = x4e−
x2
2 −

∫ +∞

−∞
x4e−x2

dx∫ +∞

−∞
e−x2 dx

e−
x2
2

−

∫ +∞

−∞

(
x2 − 1

2

)
x4e−x2

dx∫ +∞

−∞

(
x2 − 1

2

)2
e−x2 dx

(
x2 −

1
2

)
e−

x2
2

(29)

=⇒ V4 = x4e−
x2
2 −

3
√
π

4
√
π

e−
x2
2 −

3
2

√
π

√
π

2

(
x2 −

1
2

)
e−

x2
2

V4 =

(
x4 − 3x2 +

3
4

)
e−

x2
2

(30)

Therefore, the orthogonal basis {V0,V2,V4} are written as{
e−

x2
2 ,

(
x2 −

1
2

)
e−

x2
2 ,

(
x4 − 3x2 +

3
4

)
e−

x2
2 , ...

}
(31)

Equation (31) replaces the original trial solution basis {U0,U2,U4}. Thus, equation (31) gives the orthogonal basis corre-
sponding to even functions which were orthogonalized.

3.2.2 Verification that the Even Eigenfunctions V2 and V4 are Solutions of the Schrödinger Equation

Consider

V2 =

(
x2 −

1
2

)
e−

x2
2 (32)

Substituting (32) into equation (15) and applying Leibniz’s Theorem, we obtain

V ′′2 = 2e−
x2
2 + 2 (2x)

(
−xe−

x2
2

)
+

(
x2 −

1
2

) (
x2 − 1

)
e−

x2
2

=⇒ V ′′2 = −4
(
x2 −

1
2

)
x2e−

x2
2 +

(
x2 −

1
2

) (
x2 − 1

)
e−

x2
2

(33)
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Equation (33) may finally be simplified and written as[
−

1
2

d2

dx2 +
1
2

x2
]

V2 =
5
2

V2 (34)

Similarly, we want to consider

V4 =

(
x4 − 3x2 +

3
4

)
e−

x2
2 (35)

Applying Leibniz expansion to equation (35), it is simplified as

V ′′4 = −8
(
x4 − 3x2 +

3
4

)
e−

x2
2 +

(
x4 − 3x2 +

3
4

) (
x2 − 1

)
e−

x2
2 (36)

If we substitute (35) into equation (36), we can simplify it as

V ′′4 = −8V4 + x2V4 − V4 (37)

Equation (37) can finally be written as [
−

1
2

d2

dx2 +
1
2

x2
]

V4 =
9
2

V4 (38)

Therefore, equations (34) and (38) represent the precise (Schrodinger) equations for the quantum harmonic oscillator with
the eigenfunctions V2 and V4 respectively.

3.2.3 Odd Eigenfunctions of the Quantum Harmonic Oscillator for m ≥ 3

Similarly, we want to consider the Proposition 2 given above,and apply Gram Schmidt

Orthogonalization process to the odd trial solutions for m ≥ 3 in order to generate the Schrödinger equations.

For convenience, we want to find V3.

We now start by inserting n = 1 and n = 3 into equation (14) and this gives

V1 = U1 = xe−
x2
2 (39)

U3 = x3e−
x2
2 (40)

Substituting V1 and U3 into the Gram Schmidt equation and proceeding as in the even case, we get

V3 = x3e−
x2
2 −

∫ +∞

−∞
x4e−x2

dx∫ +∞

−∞
x2e−x2 dx

xe−
x2
2 (41)

V3 = x3e−
x2
2 −

3
√
π

4
√
π

2

xe−
x2
2 =

(
x2 −

3
2

)
xe

x2
2 (42)

We can go through the same process to generate V5 as

V5 =

(
x4 − 5x2 +

15
4

)
xe−

x2
2 (43)

The Orthogonal Basis are {
xe−

x2
2 ,

(
x2 −

3
2

)
xe−

x2
2 ,

(
x4 − 5x2 +

15
4

)
xe−

x2
2

}
(44)

3.2.4 Verification that the Odd Eigenfunctions V3 and V5 are Solutions of the Schrödinger Equation

Proceeding in the same way as in the even case, the Schrödinger Equation for the eigenfunction V3 and V5 when calculated
are given by [

−
1
2

d2

dx2 +
1
2

x2
]

V3 =
7
2

V3 (45)
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−

1
2

d2

dx2 +
1
2

x2
]

V5 =
11
2

V5 (46)

Equations (45) and (46) are also eigenvalue equations which have exact eigenvalues as compared with the Linear Har-
monic Oscillator.

Table 1. A summary of the results obtained in the sample calculations in section 3

m

Eigenvalues,(
m + 1

2

) Eigenfunctions,
Vm

0 1
2 e−x2/2

1 3
2 xe−x2/2

2 5
2 (x2 − 1

2 )e−x2/2

3 7
2 (x2 − 3

2 )xe−x2/2

4 9
2 (x4 − 3x2 + 3

2 )e−x2/2

5 11
2 (x4 − 5x2 + 15

4 )xe−x2/2

It is quite clear from the table that the results when normalized agree with the well-known eigenvalues and eigenfunctions
of quantum harmonic oscillator.

4. Conclusion

We have in this study presented a new framework for the determination of the Eigenvalues and Eigenfunctions of the
Quantum Harmonic Oscillator. Starting with appropriate solutions of a Second Order Linear Differential Equation, we
were able to recover the Schrödinger Equation of the Quantum Harmonic Oscillator by making use of Gram - Schmidt
Orthogonalization process, which yielded two separate sequences of Even and Odd eigenfunctions. Explicit sample
computations of the said eigenfunctions were also implemented. In a subsequent paper, we shall apply the framework
developed here to a class of Quantum Anharmonic oscillators.

References

Bransden, B., & Joachain, C. J. (2000). Quantum Mechanics.(2nd ed.).Pearson Education Limited, Asia.
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