Journal of Mathematics Research; Vol. 13, No. 6; December 2021
ISSN 1916-9795 E-ISSN 1916-9809
Published by Canadian Center of Science and Education

Linearized Homotopy Perturbation Method for Two Nonlinear
Problems of Duffing Equations

Chein-Shan Liu

Correspondence: Center of Excellence for Ocean Engineering, Center of Excellence for the Oceans, National Taiwan
Ocean University, Keelung 20224, Taiwan

Received: September 19, 2021  Accepted: October 21, 2021  Online Published: October 27, 2021
doi:10.5539/jmr.v13n6p10 URL: https://doi.org/10.5539/jmr.v13n6p10

Abstract

In the paper, we solve two nonlinear problems related to the Duffing equations in space and in time. The first problem is
the bifurcation of Duffing equation in space, wherein a critical value of the parameter initiates the bifurcation from a trivial
solution to a non-trivial solution. The second problem is an unconventional periodic problem of Duffing equation in time
to determine period and periodic solution. To save computational cost and even enhance the accuracy in seeking higher
order analytic solutions of these two problems, a modified homotopy perturbation method is invoked after a linearization
technique being exerted on the Duffing equation, whose nonlinear cubic term is decomposed at two sides via a weight
factor, such that the Duffing equation is linearized as the Mathieu type differential equation. The constant preceding the
displacement is expanded in powers of homotopy parameter and the coefficients are determined to avoid secular solutions
appeared in the derived sequence of linear differential equations. Consequently, after setting the homotopy parameter
equal to unity and solving the amplitude equation, the higher order bifurcated solutions can be derived explicitly. For
the second problem, we can determine the period and periodic solution in closed-form, which are very accurate. For the
sake of comparison the results obtained from the fourth-order Runge-Kutta numerical method are used to evaluate the
presented analytic solutions.

Keywords: Nonlinear Duffing equation, Analytic solution, Mathieu equation, Linearized homotopy perturbation method
1. Introduction

In the last few decades, considerable attention was directed towards the analytic solutions for nonlinear oscillators, since
most nonlinear phenomena are modeled by nonlinear differential equations. The determination of period and periodic
solution of nonlinear oscillators is one of the most important topics in the research of nonlinear physical problems. Some
analytic techniques have been used to treat nonlinear differential equations, like the perturbation methods (Nayfeh, 1979;
He, 2005). If one attempts to obtain an approximate analytic solution of nonlinear problem, the functional iteration
method, on the other hand, is a convenient tool. An earlier functional iteration method is the Picard iteration method
to find approximate solutions for nonlinear differential equations. However, the Picard iteration has a major drawback
with slow convergence. To accelerate the convergence, He (1999,2000a) has proposed a variational iteration method for
solving strongly nonlinear problems (Herisanu & Marinca, 2010).

There are many computational methods to determine the periodic solutions of nonlinear oscillators, for example, the
harmonic balance method (Donescu, Virgin & Wu, 1996; Wu, Sun & Lim, 2006; Liu, Thomas, Dowell, Attar & Hall,
2006), the variational iteration method (He, 1999; Ozis & Yildirim, 2007), the homotopy perturbation method (He, 2000b;
Shou, 2009), the parameter-expanding method (Koroglu & Ozis, 2011), the exp-function method (He & Abdou, 2007),
the differential transform method (Chu & Lo, 2011), and the optimally scaled polynomial-Fourier-series method (Khan,
Liu & Riaz, 2016). The harmonic balance method approximates the periodic solutions of nonlinear oscillators expanded
in terms of the Fourier series, and the terms associated with each harmonic component are balanced. In general, this
process could be very complicated when the order increases.

The parameter-expanding method developed by He (2001,2006) is a convenient method for nonlinear differential equa-
tions, which has been shown to effectively, easily and accurately solve a large class of linear and nonlinear problems with
components that converge rapidly to accurate solutions. Some papers pertinent to the parameter-expanding method have
been developed. The first one was proposed by He (2002) to modify the Lindstedt-Poincare methods for some strongly
nonlinear oscillations; Xu (2007) suggested to use He’s parameter-expanding methods for strongly nonlinear oscillators,
while Tao (2009) proposed a frequency-amplitude relationship of nonlinear oscillator by using He’s parameter-expanding
method.
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He’s homotopy perturbation method (He, 2000b, 2003) is expressing both the analytic solution and an unknown frequency
in terms of a homotopy parameter, while unknown coefficients are determined by equating each power of the homotopy
parameter. The recent works for the homotopy perturbation method applied to nonlinear oscillators can refer (He & El-
Dib, 2020, 2021). In the original He’s homotopy perturbation method, the computational cost is grew algebraically when
the order is increasing. Inspired by the Newton linearization technique in the development of Newton iteration method,
we propose a linearization technique for the nonlinear differential equation around a fundamental solution satisfying the
prescribed conditions. Then, He’s homotopy perturbation method is applied to the linearized differential equation of
Mathieu type to determine the period and periodic solution.

Traditionally, the perturbation method is applied to the original nonlinear differential equation and then derived a sequence
of linear differential equations to determine the analytic solutions. Here, we first linearize the nonlinear differential
equation to a linear one and then apply the perturbation method to the linearized differential equation. In doing so, the
computational cost can be reduced, and the work to seek the period and analytic solution becomes simpler and easier.

The present paper is organized as follows. In Section 2, the Duffing equation to describe the deflection of a short strut in an
one-dimensional space is given and we transform it into a Mathieu equation with forcing terms using a novel linearizing
technique. The linearized homotopy method is developed in Section 3 to seek the bifurcated solutions of eigenfunction
and eigenvalue up to the third-order analytic approximation, whose accuracy with different length of the strut is assessed
by comparing to that computed from the fourth-order Runge-Kutta method (RK4). In Section 4, we turn our attention
to an unconventional periodic problem of the Duffing equation in time, where the period (or frequency) and mode shape
of the free vibration of the Duffing equation are determined from a zero initial displacement and an extra condition
of displacement at one quarter of the unknown period. Here, we develop a linearized homotopy method to determine
the period and the free vibration mode up to second-order and the accuracy of the period and the analytic solution are
confirmed by comparing to the exact one and the one computed from the RK4. Finally, the conclusions are drawn in
Section 5.

2. Linearizing Duffing Equation to Mathieu Equation

Consider the deflection of a short strut governed by the Duffing equation:

w' () +w@) -w()=0,0<z<L, (1)
w(0) = w(L) =0, 2

which only has the trivial solution w(z) = 0 when the length L is shorter than a critical value.

To unfold the bifurcation behavior of Egs. (1) and (2), Liao (2004) has considered the following transformations:

2

x:= %, £= 5. v(x) = w(z), 3)
and then they become
V'(x) + ev(x) =V (x)] =0, 0 < x <, )
v(0) = v(mr) = 0. &)
Further letting
¥ =2 A= v =y = 2 2, (©)
Egs. (4) and (5) are recast to
Y (%) + ly(x) - A%} (0] =0, 0 < x < 7, (7)
y(0) =0, y(r/2) =1, y(m) =0, 3)

where A is an unknown amplitude function of & to be determined such that the problem possesses a non-trivial solution
(He, 2005; Motsa & Sibanda, 2012). Egs. (7) and (8) constitute a three-point nonlinear boundary value problem.

In (Kahn & Zarmi, 1998), the relation between £ > 0 and A is given by

2 M ds
== ) 9
Ve ﬂfo VA2 — 52 — (A% — %)/2 ©
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As pointed in (Liao, 2004; He, 2005), the traditional perturbation method led to

e—1
3 b

A=+2 (10)

which is merely applicable in a small range of € > 1.

Before deriving the analytic solution for Egs. (7) and (8), we discuss the linearization of Eq. (7). For a single nonlinear
equation f(x) = 0, the Newton technique is giving an initial guess x( and solving a linearized equation

() = f(x0) + f'(x0)(x = x0) ~ 0 Y
to approximate the solution of f(x) = 0, which results to the famous Newton iterative method:

_ S(x)
f(a)

n=0,1,.... (12)

Xn+1 = Xn

To satisfy the three-point conditions in Eq. (8), the zeroth-order fundamental solution is found to be
yo(x) = sin x. (13)

Similarly, giving a zeroth-order fundamental solution yo(x) in Eq. (13), we can linearize the nonlinear cubic term y*(x) in
Eq. (7) around yo(x) by

Y (x) + ey(x) — eA*{yg(x) + 3y5(0)[y(x) — yo()]} = 0, (14)
which can be rearranged to
¥ (x) + ey(x) — 3eA%y5(0)y(x) = —2eA%y3(x). (15)
We generalize Eq. (15) as
Y (x) + ey(x) — qoeA*yR(X)y(x) = (1 — qo)eA%y3(x), (16)

where g is a weight factor. Taking g¢ = 3, Eq. (16) coincides to Eq. (15). Obtained from Eq. (13):
2 1 3 | :
Yo(x) = 5(1 — €08 2x), yy(x) = 4_1(3 sin x — sin 3x), (17

and inserting them into Eq. (16), leads to a linear differential equation:

V(%) + (1 — 2ep cos 2x)y(x) = 3e sin x — e; sin 3x, (18)
where 5 R , R
A A 1- A A

Azg_qo; ’60:_%2 e _ cio)s :eO+ST_ 19)

Eq. (18) is the Mathieu equation with periodic forcing terms appeared on the right-hand side. We are going to develop
the homotopy perturbation method [He (2000b)] to seek the higher order analytic solutions of Eqgs. (7) and (8) through
Eq. (18).

3. Homotopy Perturbation Method for Forced Mathieu Equation

Now, we demonstrate how to apply He’s homotopy perturbation method [He (2000b,2003)] for solving the eigenvalue
problem of Mathieu equation [Cartmell (1990); Bujurke, Salimath & Shiralashetti (2008); Gadella, Giacomini & Lara
(2015); Liu (2020)], which is a special case of the following one with ¢; = 0:

V(%) + (1 —2ep cos 2x)y(x) = 3e; sinx — ey sin3x, 0 < x <, (20)
¥(0) = y(x) =0, 21

where the eigenvalue A is to be determined.

The first step for the construction of He’s homotopy perturbation method [He (2003,2006)] is writing Eq. (20) as a
homotopy perturbation equation:

Y'(x) + (A — 2peq cos 2x)y(x) = 3pe; sin x — pe; sin3x, p € [0, 1]. (22)
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When p = 1, Eq. (20) is recovered. Hereon, p can be understood as a bookkeeping parameter to help us correctly deriving
the related equations while at the final stage it is set equal to unity.

Then, the eigenfunction and eigenvalue are determined by

Y00 = yo(x) + Y pryi), (23)
k=1
A=1-> aph, (24)
k=1
where @ and y(x), kK = 1,2,...,m are to be determined and yy(x) in Eq. (13) is the zeroth-order solution. Only when A is

given by the characteristic Eq. (24), the eigenfunction exists. We can derive the eigenvalue A and then the corresponding
eigenfunction in Eq. (23) by inserting p = 1 and yi(x), k =0,1,2,...,m.

Inserting Egs. (23) and (24) into Eq. (22) and equating the coefficients preceding p*, k = 0,1,2,...,m, we can derive

Yo (X) + yo(x) = 0, yo(0) = 0, yo(/2) = 1, yo(n) = 0, (25)

Y (x) + y1(x) = (a1 + 2ep cos 2x)yo + 3e; sinx — g sin3x, y1(0) = y1(7/2) = y1(n) = 0, (26)
k=2

Vi () + yi(x) = (a1 + 2e0 cos 2x)yi-1 + Z @-iyi» Y(0) =y(m/2) =y () =0, k=2,...,m. 27

i=0

They are sequential linear differential equations, which can be solved exactly by inserting the solutions obtained from the
previous steps into the right-hand sides.

Inserting Eq. (13) into Eq. (26), yields
y{ (%) + y1(x) = (@1 + 2¢( cos 2x) sin x + 3e; sin x — e; sin 3x. (28)

To avoid the secular solution, we have to take

2go — 3)eA?
(03] =€0—3€1 ZM. (29)
4
Then, the first-order solution obtained from Eq. (28) is
el —eo, . . A% . .
yi(x) = (sin x + sin 3x) = g(sm X + sin 3x), 30)
where the term sin x appears to render y;(7/2) = 0.
Inserting p = 1 into Eq. (24) with m = 1 and with the aid of Egs. (19) and (29), it follows that
qoeA? qoeA?  3(1 — go)eA?
- =1+ + , 31
) 4 4 (1)

which is an amplitude equation to determine A as follows:

A:i%,h-é. (32)

The accuracy of A is of the first-order, which coincides to that derived by Liao (2004) using the homotopy analysis method
at the first-order.

Inserting Eqs. (13) and (30) into Eq. (27) with k = 2, yields
2

A
V() + ya(x) = 83—2(011 + 2¢p cos 2x)(sin x + sin 3x) + @ sin x. (33)

To avoid the secular solution, we can take

eA’a; @3- 2g0)e*A*
32 128

a = - (34)
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Figure 1. For the Duffing equation, comparing A of exact solution and the solution obtained by the present method
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Figure 2. For the Duffing equation, comparing exact solution y obtained by the Runge-Kutta method (RK4) and the
solution obtained by the present method

After inserting Eq. (34) for @, into Eq. (33) the second-order solution is found to be

3e; — 2e)eA? A
%(sin X+ sin3x) + 8328

2
yo(x) = (sin x — sin 5x), 35)
where the two terms of sin x are appeared for satisfying y,(7/2) = 0.

Inserting p = 1 into Eq. (24) with m = 2 and with the aid of Eqs. (19), (29) and (34), it follows a second-order amplitude
equation:

2 2 _ 2 _ 244 2 _2\o244
o qoEA 14 qoEA N 3(1 — go)eA B (3 =2gp)e"A - 3eA N (2q0 — 3)e"A
2 4 4 128 4 128

96 128(1 — &) I
by := s = ,A=+— b5 —4co — by. 37
0= 2g0-3)e T Qgo-me T TR Y VT e &7

The accuracy of A is up to second-order. When € = 1, A = 0 and Eqgs. (7) and (8) have a solution y = sinx. As € < 1,
there exists no solution. Therefore, € = 1 is a bifurcation point.

+1-e=0, (36

We fix go = 2.225 and compare the exact solution (9) to that computed by Eq. (37). As shown in Figure 1, these two
curves are close. As shown in Figure 2, the solution obtained from Eq. (23) with p = 1,m = 2, go = 3 and € = 1.5 is close
to the one obtained by using the fourth-order Runge-Kutta method (RK4) to integrate Eq. (7), where the error is smaller
than 2.34 x 1074,
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To enhance the accuracy, we can raise the order to three. Inserting Egs. (13), (30) and (35) into Eq. (27) with k£ = 3, yields

areA? B (2ep — 3e;)?cA?

in3
2 256 St 2x

¥3(0) + y3(x) = (@1 + 2e0 €08 2x)y2(x) + a2y1(x) + azyo(x) = [

e2eA?

0 .
256 768 |” 768 ST

E%SAZ N areA? _ai1(2e - 3e))eA? N aregeA? i
768 32 256 768

[60(38] —2e0)eA?  ajepcA?
+ - ns5x

s (38)

a3 —

We can take
A’ peA? , @2~ 3e))sA?  ajepeA? (3¢5 —8qo + 6)eA”

768 32 256 768 4096 ’
and the solution of Eq. (38) is found to be

(39)

a3 =

(20 — 3¢;1)2eA? azsA2
y3(x) = [ 756
+i [aleosAz _eo(3er - 260)8A2
24 768 256

] (sin 3x + sin x)
2 A2

36864

(sin 7x + sin x), 40)

] (sin5x —sinx) +

where the three terms of sin x are appeared to render y3(xr/2) = 0. The amplitude A is solved from the following amplitude
equation:

AZ

3¢% — 84 + 6 240
o= °40* O pyp 240 =3 o = te-1=0, (41)

4096 128
which can be obtained by using the Newton iteration method in Eq. (12) very fast.

The analytic solution up to third-order is obtained from Eq. (23) with p = 1 and m = 3:

A2 -2
y(x) =sinx + 83—2(sinx + sin 3x) + %(smx + sin 3x) + 768 (sinx —sin 5x)
1 [ (2ey — 3e)*eA? A?
+§[( €0 25661) & ags ](s1nx+sm3x)
1 A2 3e; — 2e0)cA> egeA?
32 [a‘;‘é‘; _ @B 25660)8 ](sme— sin x) + 36864(Sinx+ sin 7x). (42)

We compare it with different ¢ to that computed by the RK4 applied to Eq. (7) within an interval x € [0, 7]. The values of
qo are listed in the table. We also list A obtained from Eq. (41) in Table 1. We can observe that even for large values of ¢
and A the presented method is very accurate.

Table 1. Comparing the maximum error (ME) for the analytic eigenfunction of Duffing equation with different & obtained
by the present method and the RK4, and listing A

P 1 1.2 1.4 1.6 2 2.5
qo | 3.04 3.04 3.1 3.15 3.15 3.5

A 0 0.4695158 | 0.6121567 | 0.6987549 | 0.8016252 | 0.8722130
ME | 1.59x 1077 | 8.64x107° [ 1.27x107* [ 2.67x107* | 1.36 x 1072 | 1.92 x 1072

4. An Unconventional Periodic Problem

We consider an unconventional periodic problem of Duffing equation:

Vo(t) + w(t) — Bw () = 0, (43)
w(0) = w(H) =0, (44)

where H = T/2 is one half of an unknown period T of the free Duffing oscillator with the zero initial displacement.

In order to determine 7, we give an extra condition:

w(H/2) = A, (45)
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which is a given displacement at one quarter of the period H/2 = T /4 with A a nonzero constant. Because w(0) = 0 and
Ww(0) is not given, Eqgs. (43)-(45) constitute an unconventional periodic problem of the Duffing equation, of which we want
to determine the period T and the corresponding periodic solution.

Let 5
xi= g = % V() = w(). (46)
Eqgs. (43)-(45) become
V' (x) + e[v(x) — BV’ (x)] = 0, 47)
v(0) =0, v(n/2) = A, v(r) = 0. (48)
Now, letting
. @ _v(r/2)
)= = =y = == = 1 (49)
Egs. (47) and (48) are recast to
Y (%) + ely(x) = BA’Y’ (0)] = 0, (50)
y(0) =0, y(/2) =1, y(m) = 0. (S1)

Making a linearization of Eq. (50) around y(x) = sin x, we come to Eq. (18) again, but with

o qoBeA® _6]0,3&42 _ (1—qo)BeA? BeA?
A=¢ > , €)= 7 , ey = ) =ey+ 1 52)
At the same time, | and @, in Egs. (29) and (34) are changed to
_ (2q0 — 3)BeA? _ B3 -2gqy)peAt (53)
o= 4 2= 128
Inserting p = 1 into Eq. (24) with m = 2 and with the aid of Eqgs. (52) and (53), it follows that
Qao=3FA° 5 A4y (54)
128 4 -
2
L _Cq-3pat o 3par-4 o NPT dath 55)
0 128 YT T4 v 2a, '
Then, the period T is determined by
—,[b% —4(10 —bo
T=2aVe=2r\| —M8M, (56)
2610
which is obtained from T = 2H, H? = n’¢ in Eq. (46), and ¢ in Eq. (55). The second-order solution is given by
2t A3 2t 6t
w(t) = A sin % + ﬁ§2 (sin % + sin %)
3e; -2 A3 2t 6t A3 2t 107t
+% (sin % + sin %) + 807ﬁ688 (sin % —sin Tﬂ . 67

As shown in Figure 3, the solution in Eq. (57) is close to the one obtained by using the RK4 to integrate Eq. (43) with
B =-0.2 and A = 2, where the error is smaller than 1.75 X 1074,

The accuracy of T in Eq. (56) is compared to the exact one:

/2
To =432 f 4 , (58)
0 \/2 — BA%(1 + sin® 6)

whose applicable range is SA% < 1. For Eq. (56), the applicable range is SA? < 4/3. Upon fixing A = 1 and ¢y = 3, we
compare T obtained from Egs. (56) and (58) in Table 2. For the analytic solutions in Eq. (57) with different value of 3, we
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Figure 3. For the unconventional periodic problem of Duffing equation, comparing exact solution w(f) obtained by the
Runge-Kutta method (RK4) and the solution obtained by the present method

compare them with that computed by the RK4 within one period T. Again, we can appreciate the high-accuracy of the
presented method.

Table 2. Comparing the maximum error (ME) for the analytic solutions of Duffing oscillator with different 3, obtained by
the present method and the RK4, and comparing the periods

B -0.8 -0.5 -0.2 0.1 0.2 0.5

ME 8.77x 1073 [ 261 x 107> | 2.61x 107 | 6.59x 1077 | 7.73x 107® | 1.23x 1073
Exact T | 4.981972 5.366659 5.861179 6.533840 6.815901 8.008619
Eq. (56) | 4.981998 5.366667 5.861180 6.533840 6.815903 8.008901

5. Conclusions

To simplify the homotopy perturbation method, we have proposed a new analytic method based on a linearization tech-
nique being executed on the nonlinear Duffing equation and then applied He’s homotopy perturbation method to solve
two nonlinear problems of Duffing equations in space and in time. The first problem is the bifurcation of Duffing equation
in space, where a critical parameter £ = 1 initiates the bifurcation to the existence of non-trivial solutions. The second
problem is an unconventional periodic problem of Duffing equation in time. By using the derived equations we can deter-
mine the period and analytic periodic solutions very accurately. The presented linearized homotopy perturbation method
is easily carried out with merely k linear terms appeared in the right side for each kth order linear differential equation.
Comparing to the original He’s homotopy perturbation method, the linearized homotopy perturbation method can save
much algebraic computations.

Although we were restricted ourselves to the two nonlinear problems of the Duffing equations in space and in time, the
presented linearized homotopy methods are easily extended to other nonlinear problems governed by other nonlinear
second-order differential equations. For example, the bifurcation problem of other nonlinear strut in an one-dimensional
space can be treated by the presented method, and the unconventional periodic problem of nonlinear second-order differ-
ential equations can be studied by the presented linearized homotopy methods, whose results may be more accurate than
that using the conventional conditions with initial displacement and velocity and with other analytic methods.
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