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Abstract 

In this paper, Label Setting Algorithm and Dynamic Programming Algorithm had been critically examined in 

determining the shortest path from one source to a destination. Shortest path problems are for finding a path with 

minimum cost from one or more origin (s) to one or more destination(s) through a connected network. A network of ten 

(10) cities (nodes) was employed as a numerical example to compare the performance of the two algorithms. Both 

algorithms arrived at the optimal distance of 11 km, which corresponds to the paths 1 → 4 → 5 → 8 → 10,1 → 3 → 5 →
8 → 10 , 1 → 2 → 6 → 9 → 10  and 1 → 4 → 6 → 9 → 10 . Thus, the problem has multiple shortest paths. The 

computational results evince the outperformance of Dynamic Programming Algorithm, in terms of time efficiency, over 

the Label Setting Algorithm. Therefore, to save time, it is recommended to apply Dynamic Programming Algorithm to 

shortest paths and other applicable problems over the Label-Setting Algorithm. 

Keywords: Label-Setting Algorithm, Dynamic Programming Algorithm, Shortest Path Problems, Dijkstra’s algorithm, 

time efficiency 

1. Introduction 

A network is a collection of entities connected by some relationship, which can be represented as a graph. The Shortest 

Path Problems (SPP) are concerned with finding a path with minimum distance from one or more origins to one or more 

destinations through a network (Yongtaek & Sungmo, 2010; Paraveen & Neha, 2013).  

Classical examples of Shortest Path Network Problems are Travelling Salesman Problem (TSP), Knapsack Problem (KP) 

and Capacitated Vehicle Routing Problem (CVRP). With the increasing application of Shortest Path Network Problems in 

human life, researchers in algorithms for solving shortest path network problems have been compelled to look outside the 

traditional algorithms such as Label Setting and Label Correcting, which have some deficits to novel algorithm such as 

Dynamic Programming. 

This paper therefore makes a comparative analysis between Label Setting Algorithm and Dynamic Programming 

Algorithm using a network of ten (10) nodes network problems. 

2. Method 

The Method section describes in detail how the study was conducted, including conceptual and operational definitions of 

the variables used in the study, Different types of studies will rely on different methodologies; however, a complete 

description of the methods used enables the reader to evaluate the appropriateness of your methods and the reliability and 

the validity of your results, It also permits experienced investigators to replicate the study, If your manuscript is an update 

of an ongoing or earlier study and the method has been published in detail elsewhere, you may refer the reader to that 

source and simply give a brief synopsis of the method in this section. 

2.1 Basic Features of the Problem 

The problem at hand is a network or graph problem. The aim is to find all edges with minimum distance from the source 

to destination nodes. 

2.2 Shortest Path Algorithms 

This section looks at the Label-Setting (LS) and Dynamic Programming Algorithms for solving shortest path problems 

and the various ways that they are implemented. An algorithm is a systematic computational step used to solve a 

problem (Cormen et al., 2005). 
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2.2.1 Label-Setting Algorithm 

This Label-Setting Algorithm was named after the famous Dutch computer scientist and mathematician, Dijktsra, whose 

1959 algorithm became the foundation of this type of algorithm. The algorithm is known as Dijkstra’s algorithm. 

According to Schrijver (2010), similar algorithm had been proposed independently by Leyzorek et al. (1957), Dantzig 

(1958), and Whiting and Hillier (1960).  

Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with 

non-negative edge path costs, producing a shortest path tree (Vaibhvi & Chitra, 2014). This algorithm is often used in 

routing problems and as a subroutine in other graph algorithms (Paraveen & Neha, 2013). For a given source vertex (node) 

in the graph, the algorithm finds the path with lowest cost (i.e. the shortest path) between that vertex and every other 

vertex.  

At any intermediate step, the algorithm divides the nodes of the network under consideration into two groups: those which 

it designates as permanently labelled (or permanent), and those that it designates as temporarily labelled (or temporal). 

The distance labelled permanent to any permanent node represents the shortest from the source node to the current node 

(Ukwosah et al., 2018).  

2.2.2 Mathematical Formulation of the Problem Based on the Label-Setting Algorithms 

Let 𝑑𝑖 be the shortest distance from source node 1 to node 𝑖 and define 𝑑𝑖𝑗 ≥ 0 as the length of arc(𝑖, 𝑗). Then the 

algorithm defines the label for an immediately succeeding node j as [𝑑, 𝑖] = [𝑑𝑖 + 𝑑𝑖𝑗 , 𝑖]. The label for starting node is 

[0, -], signifying that the node has no predecessor.  

Below are the steps of this algorithm: 

Step 1: The source node (node 1) is assigned with the permanent label [0, -]; set i = 1. 

Step 2: (i) Compute the temporary label[𝑑𝑖 + 𝑑𝑖𝑗 , 𝑖]for each node j that is reachable by node 𝑖, provided j is not 

permanently labelled. If node j is already labelled with[𝑑𝑗 , 𝑘] through another node k and if 𝑑𝑖 + 𝑑𝑖𝑗 < 𝑑𝑗, then 

replace[𝑑𝑗 , 𝑘] with [𝑑𝑖 + 𝑑𝑖𝑗 , 𝑖].  

(ii) Stop, if all the nodes are permanently labelled. Otherwise, select the label[𝑑𝑟 , 𝑠] having the shortest distance (𝑑𝑟) 

among all the temporary labels (break ties arbitrarily). Set𝑖 = 𝑟 and repeat step 2. 

2.3 Dynamic Programming 

The concept of Dynamic Programming was first conceived by Richard Bellman in 1940s and was recognized by the 

Institute of Electrical and Electronic Engineers (IEEE) as analysis and engineering topic in 1953 (Smith et al., 1997; 

Hillier & Lieberman, 2005).  

Bellman, described Dynamic Programming as the process of solving problems where one needs to find the best decision, 

one after another (Adda et al., 2003). It works on the principle of finding an overall solution by operating on an 

intermediate point that lies between where we are now and where we want to go. The procedure is recursive in that the 

next intermediate point is a function of the point already visited. The principle of Bellman optimality states that ‘an 

optimal policy (set of decisions) has the property that whatever the initial state and decision are, the remaining decisions 

must constitute an optimal policy with regard to the state resulting from the first decision’ (Smith et al., 1997). 

2.3.1 Mathematical Formulation of the Problem Based on Dynamic Programing Algorithm  

A problem can be solved by the method of Dynamic Programming if it has the following properties: 

a) The problem can be decomposed into a sequence of decisions made at various stages. 

b)  Each stage has a number of possible states. 

c)  A decision takes one from a state at one stage to some state at the next stage. 

d) The best sequence of decision also known as policy at any stage is independent of the decisions made at prior 

stages. 

e) There is a well-defined cost for traversing from state across stages. Moreover, there is a recursive relationship 

for choosing the best decision. The shortest routes will be determined between every two stages for a given 

network using the Dynamic Programming Algorithm. 

Step 0. Step 0. Definition of variables 

 Let 𝑑𝑖𝑗 denote the distance from node 𝑖 to node 𝑗. 

 Let 𝑖 be the node it is at the stage 𝑛 and 𝑗 the nodes reachable by node 𝑖. 

Let 𝑥𝑛𝑖be the state variable. 
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 Let 𝑓𝑛(𝑥𝑛,𝑖) denote the minimum distance of the objective function from node 𝑥𝑛,𝑖  to the final destination 10.  

Step 1: The structure of an optimal solution. 

 The first step of Dynamic Programming is to characterize the structure of an optimal solution. 

 Let divide the problem into five stages as follows; 

 

Figure 1. Schematic representation of the problem as a five-stage dynamic programming problem 

Stage 1: Consists of city 1. 

The return function is 

𝑓1(𝑥1) = immediate distance (stage1) + minimum future  distance (stage2). 

Stage 2: Consists of cities 2, 3 and 4. 

The return function is 

𝑓2(𝑥2) = immediate distance (stage2) + minimum future  distance (stage3) 

Stage 3: Consists of cities 5,6 and 7. 

The return function is 

𝑓3(𝑥3) = immediate distance (stage3) + minimum future  distance (stage4) 

Stage 4: Consists of cities 8 and 9. 

The return function is 

𝑓4(𝑥4) = immediate distance (stage4) + minimum future  distance (stage5) 

Stage 5: Consists of city 10. 

This is the final stage. Therefore 𝑓5(𝑥5) = 0. 

Step 2: A recursive Solution 

Let 𝑓𝑛(𝑥𝑛,𝑖) denote the minimum distance of the objective function from node 𝑥𝑛,𝑖  to the final destination 10.  

Let 𝑓𝑛(𝑥𝑛,𝑖) denote the optimal value of the objective function from any city 𝑥𝑛,𝑖 to the final destination 10. Hence, 

the optimum is 𝑓1(𝑥1), the minimum of the sum of the distance from 1 to 10.  

Thus, 𝑓𝑛(𝑥𝑛,𝑖) = 𝑚𝑖𝑛{𝑑𝑖𝑗 + 𝑓𝑛(𝑥𝑛+1,𝑗) subject to 𝑑𝑖𝑗 ≥ 0 and an integer. 

(i) For stage 1:𝑛 = 1, 𝑥1 = 1 

We minimize the distance from stage 1(1) to stage 5(10).  

𝑓1(𝑥1,𝑖) = 𝑚𝑖𝑛{𝑑𝑖𝑗 + 𝑓2(𝑥2,𝑗) 

(ii) For stage 2: 𝑛 = 2  

We minimize the distance from stage 2(2, 5, and 6) to stage 5(10). 

𝑓2(𝑥2,𝑖) = 𝑚𝑖𝑛{𝑑𝑖𝑗 + 𝑓3(𝑥3,𝑗) 

(iii) For stage 3: 𝑛 = 3 

We minimize the distance from stage 3(5, 6, and 7) to stage 5(10). 

𝑓3(𝑥3,𝑖) = 𝑚𝑖𝑛{𝑑𝑖𝑗 + 𝑓4(𝑥4,𝑗) 

(iv) For stage 4: 𝑛 = 4 

We minimize the distance from stage 4(8, 9) to stage 5(10). 

𝑓4(𝑥4,𝑖) = 𝑚𝑖𝑛{𝑑𝑖𝑗 + 𝑓5(𝑥5,𝑗). 

(v) For stage 5: 𝑛 = 5,𝑥5. 

 Since the ultimate destination (state 𝑥5) is reached at the end of stage 5, 𝑓5(𝑥5) = 0. 
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Step 3: Computing the stage-wise optimal distance 

This is the final step in the complete process of the Dynamic Programming Algorithm. The details of this step will be 

outlined in section 3 to obtain the optimal distances at the various stages. 

3. Results 

In this section we present a ten-node network of 20 edges or acrs. In this paper, the nodes represent ten cities and the edges 

feature their interconnections indicated the respective distances connecting them (See Figures 1 and 2). First, the 

Dijkstra’s algorithm will be implemented and then, the Dynamic Programming Algorithm to inform a comprehensive 

comparison. Each arc (𝑖, 𝑗) is associated with the distance 𝑑𝑖𝑗 in km. 

3.1 Implementation of the Dijkstra’s Algorithm 

The Dijkstra’s algorithm is implemented using Figure 2. Each arc (𝑖, 𝑗) is associated with the distance 𝑑𝑖𝑗 in km. The 

main aim is to determine the shortest path from the source city 1 (node 1) to the destination city 10 (node 10). Figure 2 

was adopted from Hillier and Lieberman (2005), which describes a journey from a starting point, Missouri (node 1) to a 

destination, California (node 10). 

 
Figure 2. A network of ten cities featuring the distances linking them 

For Dijkstra’s algorithm, we start with iteration 0. The tables below provide the summary of results. 

In the iterations, Column one denotes the nodes; column two, the labels; and column three, the status of the nodes. 

Iteration 0: Node 1 is assigned the permanent label [0, -]: 

Iteration 1: Nodes 2, 3, and 4 are reachable by node 1 

Node Label Status 

1 [0, −] Permanent  

2 [0 + 2, 1]  =  [2, 1] Temporary  

3 [0 + 4, 1]  =  [4, 1] Temporary  

4 [0 + 3, 1]  =  [3, 1] Temporary  

The least distance among the temporary labels [2, 1], [4, 1] and [3, 1] is 2, which corresponds with node 2 i.e., [𝑑2]. Thus, 

the status of node 2 is changed to permanent. 

Iteration 2: Nodes 5, 6 and 7 are reachable by node 2 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Temporary  

4 [3, 1] Temporary  

5 [2 + 7, 2]  =  [9, 2] Temporary  

6 [2 +  2, 2]  =  [4, 2] Temporary  

7 [2 +  6, 2]  =  [8, 2] Temporary  

Among the temporary labels [4, 1], [3, 1], [9, 2], [4, 2], and [8, 2], the smallest distance is 3, and that corresponds with 
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node 4 i.e.,𝑑4. Thus, the status of node 4 is changed to permanent. 

Iteration 3: Nodes 5, 6 and 7 are reachable by node 4 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Temporary  

4 [3, 1] Permanent  

5 [3 +  4, 4]  =  [7, 4] Temporary  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Temporary  

7 [8, 2] or [3 +  5, 4]  =  [8, 4] Temporary  

Among the temporary labels [4, 1], [7, 4], [4, 2], [4, 4], [8, 4]and [8, 2], the smaller distance is 4, and that corresponds with 

node 3 and node 6 (break ties arbitrarily) i.e., [𝑑3]. Thus, the status of node 3 is changed to permanent. 

Iteration 4: Nodes 5, 6 and 7 are reachable by node 3 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent  

4 [3, 1] Permanent  

5 [7, 4] or [3 + 4, 3]  =  [7, 3] Temporary  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Temporary  

7 [8, 2] or [8, 4] 𝑜𝑟 [4 +  4, 3]  =  [8, 3] Temporary  

Among the temporary labels [7, 4], [7, 3], [4, 2], [4, 4], [8, 2], [8, 3] and [8, 4], the smallest distance is 4, and that 

corresponds with node 6 i.e., [𝑑6]. Thus, the status of node 6 is changed to permanent. 

Iteration 5: Nodes 8 and 9 are reachable by node 6. 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent   

4 [3, 1] Permanent  

5 [7, 4] or [3 + 4, 3]  =  [7, 3] Temporary  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Permanent   

7 [8, 2] or [8, 4] or [4 +  4, 3]  =  [8, 3] Temporary  

8 [4 +  6, 6]  =  [10, 6] Temporary  

9 [4 +  3, 6]  =  [7, 6] Temporary   

Among the temporary labels [7, 4], [7, 3], [8, 2], [8, 3], [8, 4], [10, 6] and [7, 6], the smallest distance is 7, which 

corresponds with node 5 and node 9 i.e., [𝑑5]. Thus, the status of node 5 is changed to permanent. 

Iteration 6: Nodes 8 and 9 are reachable by node 5. 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent   

4 [3, 1] Permanent  

5 [7, 4] or [3 + 4, 3]  =  [7, 3] Permanent  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Permanent   

7 [8, 2] or [8, 4] or [4 +  4, 3]  =  [8, 3] Temporary  

8 [7 +  1, 5]  =  [8, 5] Temporary  

9 [4 +  3, 6]  =  [7, 6] Temporary   
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Among the temporary labels [8, 2], [8, 3], [8, 4], [8, 5] and [7, 6], the smallest distance is 7, and that corresponds with node 

9 i.e., [𝑑9]. Thus, the status of node 9 is changed to permanent. 

Iteration 7: Node 10 is reachable by node 9. 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent   

4 [3, 1] Permanent  

5 [7, 4] 𝑜𝑟 [3 + 4, 3]  =  [7, 3] Permanent  

6 [4, 2] 𝑜𝑟 [3 +  1, 4]  =  [4, 4] Permanent   

7 [8, 2] 𝑜𝑟 [8, 4] 𝑜𝑟 [4 +  4, 3]  =  [8, 3] Temporary  

8 [7 +  1, 5]  =  [8, 5] Temporary  

9 [4 +  3, 6]  =  [7, 6] Permanent  

10 [4 +  7, 9]  =  [11, 9] Temporary  

Among the temporary labels [8, 2], [8, 3], [8, 4], [8, 5] and [11, 9], the smallest distance is 8, and that corresponds with 

node 7 and node 8 i.e., [𝑑7]. Thus, the status of node 7 is changed to permanent. 

Iteration 8: Nodes 8 and 9 are reachable by node 7. 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent   

4 [3, 1] Permanent  

5 [7, 4] or [3 + 4, 3]  =  [7, 3] Permanent  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Permanent   

7 [8, 2] 𝑜𝑟 [8, 4] 𝑜𝑟 [4 +  4, 3]  =  [8, 3] permanent  

8 [7 +  1, 5]  =  [8, 5] Temporary  

9 [4 +  3, 6]  =  [7, 6] Permanent  

10 [4 +  7, 9]  =  [11, 9] Temporary  

Among the temporary labels [8, 5] and [11, 9], the smallest distance is 8, and that corresponds with node 8 i.e., [𝑑8]. Thus, 

the status of node 8 is changed to permanent. 

Iteration 9: Node 10 is reachable by node 8. 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent   

4 [3, 1] Permanent  

5 [7, 4] or [3 + 4, 3]  =  [7, 3] Permanent  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Permanent   

7 [8, 2] or [8, 4] or [4 +  4, 3]  =  [8, 3] permanent  

8 [7 +  1, 5]  =  [8, 5] Permanent   

9 [4 +  3, 6]  =  [7, 6] Permanent  

10 [11, 9] or [3 +  8, 8]  =  [11, 8] Temporary  

Among the temporary labels [11, 9] and [11, 8], the smallest distance is 11, which corresponds with node 10 i.e., [𝑑10]. 
Thus, the status of node 10 is changed to permanent. 
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Iteration 10: The final table, node 10 status is also changed to permanent 

Node Label  Status  

1 [0, −] Permanent  

2 [2, 1] Permanent   

3 [4, 1] Permanent   

4 [3, 1] Permanent  

5 [7, 4] or [3 + 4, 3]  =  [7, 3] Permanent  

6 [4, 2] or [3 +  1, 4]  =  [4, 4] Permanent   

7 [8, 2] or [8, 4] or [4 +  4, 3]  =  [8, 3] permanent  

8 [7 +  1, 5]  =  [8, 5] Permanent   

9 [4 +  3, 6]  =  [7, 6] Permanent  

10 [11, 9] or [3 +  8, 8]  =  [11, 8] Permanent  

 

3.2 Implementation of Dynamic Algorithm 

In section 3.2, the Dynamic Programming algorithm is also implemented. The shortest routes will be determined between 

every two stages for the network, shown in Figure 1 using the Dynamic Programming Algorithm. Figure 3 gives the 

division of the Figure 2 into five stages. 

 
Figure 3. A five-stage division of figure 2 

The main aim is to determine the minimum distance from node 1 to node 10. 

To illustrate the Step 3, the computation of the stage-wise optimal distances (which was deferred above), we do as 

follows: 

(i) Computations for stage 5 (node 10): 𝑛 = 5.  

Since node 10 is the final stage, there is distance after node 10, then 𝑓5(𝑥5,10) = 0. 

(ii) Computations for stage 4 (nodes 8, 9): 𝑛 = 4. When there (is) one more stage to go (𝑛 = 4) 

𝑓4(𝑥4,8) = 𝑑8,10 + 𝑓5(𝑥5,10) = 3 + 0 = 3 

𝑓4(𝑥4,9) = 𝑑9,10 + 𝑓5(𝑥510) = 4 + 0 = 4 

(iii) Computation for stage 3 (nodes 5, 6, 7): 𝑛 = 3. When there are two more stages go (𝑛 = 3). 

𝑓3(𝑥3,,5) = 𝑚𝑖𝑛 {
𝑑5,8 + 𝑓4(𝑥4,8) = 1 + 3 = 4

𝑑5,9 + 𝑓4(𝑥4,9) = 4 + 4 = 8
 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓3(𝑥3,5) = 4  
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𝑓3(𝑥3,6) = 𝑚𝑖𝑛 {
𝑑6,8 + 𝑓4(𝑥4,8) = 6 + 3 = 9

𝑑6,9 + 𝑓4(𝑥4,9) = 3 + 4 = 7
 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓3(𝑥3,6) = 7  

𝑓3(𝑥3,7) = 𝑚𝑖𝑛 {
𝑑7,8 + 𝑓4(𝑥4,8) = 3 + 3 = 6

𝑑7,9 + 𝑓4(𝑥4,9) = 3 + 4 = 7
 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓3(𝑥3,7) = 6  

(iv) Computation for stage 2 (nodes 2, 3, 4): 𝑛 = 2. The solution for the second stage (𝑛 = 3), where there are 

three stages to go. 

𝑓2(𝑥2,2) = 𝑚𝑖𝑛 {

𝑑2,5 + 𝑓3(𝑥3,5) = 7 + 4 = 11

𝑑2,6 + 𝑓3(𝑥3,6) = 4 + 7 = 11

𝑑2,,7 + 𝑓3(𝑥3,7) = 6 + 6 = 12

 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓2(𝑥2,,2) = 11  

𝑓2(𝑥2,3) = 𝑚𝑖𝑛 {

𝑑3,5 + 𝑓3(𝑥3,5) = 3 + 4 = 7

𝑑3,6 + 𝑓3(𝑥3,6) = 2 + 7 = 9

𝑑3,7 + 𝑓3(𝑥3,7) = 4 + 6 = 10

 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓2(𝑥2,3) = 7  

𝑓2(𝑥2,4) = 𝑚𝑖𝑛 {

𝑑4,5, + 𝑓3(𝑥3,5) = 4 + 4 = 8

𝑑4,6 + 𝑓3(𝑥3,6) = 1 + 7 = 8

𝑑4,7 + 𝑓3(𝑥3,7) = 6 + 6 = 12

 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓2(𝑥2,4) = 8  

(v) Computation for stage 1 (node 1): 𝑛 = 1. Moving to the first stage (𝑛 = 3 ), with all four stage(s) to go. 

𝑓1(𝑥1) = 𝑚𝑖𝑛 {

𝑑1,2 + 𝑓2(𝑥2,2) = 2 + 11 = 13

𝑑1,3 + 𝑓2(𝑥2,3) = 4 + 7 = 11

𝑑1,4 + 𝑓2(𝑥2,4) = 3 + 8 = 11

 

𝑟𝑒𝑠𝑢𝑙𝑡𝑓1(𝑥1) = 11  

Since the minimum distance is 11, 𝑓1(𝑥1) = 11which corresponds with 𝑑1,3 + 𝑓2(𝑥2,3)and 𝑑1,3 + 𝑓2(𝑥2,3).  Note 

that𝑥23means stage 2, node 3 and 𝑥24 means stage 2, node 4. 

The shortest path from node 1 to node 10 is therefore obtained by tracing the sequences:  

(i) 𝑥1, 𝑥2,4, 𝑥3,6, 𝑥4,9 and 𝑥5,10 as represented by the following order of flow: 1 → 4 → 6 → 9 → 10 

(ii) 𝑥1 → 𝑥2,4 → 𝑥3,5 → 𝑥4,8 → 𝑥5,10 which is indicated by the order of flow 1 → 4 → 5 → 8 → 10 with a total 

distance 11 km.  

(iii) 𝑥1, 𝑥2,3, 𝑥3,5, 𝑥4,8 and 𝑥5,10. This is represented in the following order: 1 → 3 → 5 → 8 → 10 with a total 

distance 11 km. 

4. Discussion 

We present in this section, the discussion of the results obtained from the Dijkstra’s algorithm and that of the Dynamic 

Programming algorithm. In view of the Dijkstra’s algorithm, we infer from Iteration 1 through to Iteration 10. The 

shortest path from node 1 to node 10 is therefore obtained by tracing the sequences below. 

(i) (10) → [11, 8] → (8) → [7, 5] → (5) → [7, 4] → (4) → [3, 1] → (1).  Thus, the required path is 

represented by the sequence 1 → 4 → 5 → 8 → 10 with total distance 11 km. 

(ii) (10) → [10, 8] → (8) → [7, 5] → (5) → [7, 3] → (3) → [3, 1] → (1). The required path is therefore, 

indicated by the sequence 1 → 3 → 5 → 8 → 10 with total distance 11 km. 

(iii) (10) → [11, 9] → (9) → [7, 6] → (6) → [4, 2] → (2) → [2, 1] → (1).  Again, it is obvious that the 
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required path is 1 → 2 → 6 → 9 → 10 with total distance 11 km. 

(iv) (10) → [11, 9] → (9) → [7, 6] → (6) → [4, 4] → (4) → [3, 1] → (1).  Therefore, the optimal path is 

exemplified by the sequence 1 → 4 → 6 → 9 → 10 with total distance 11 km. 

In summary, the optimal distance connecting the cities as obtained from the implemented Dijkstra’s algorithm is 11 km. 

As an alternative technique, the Dynamic Programming algorithm also yields an optimal or minimum distance of 11, as 

given by 𝑓1(𝑥1) = 11 which corresponds to  𝑑1,3 + 𝑓2(𝑥2,3) and 𝑑1,3 + 𝑓2(𝑥2,3). It is imperative to define the notation 

𝑥𝑖𝑗. The first index 𝑖, denotes the stage whiles the second j, denotes the node. For instance, 𝑥23 means stage 2, node 3 and 

𝑥24 means stage 2, node 4. As can be followed from the implementation of the Dynamic Programming algorithm, the 

shortest path from node 1 to node 10 is therefore obtained by tracing the following sequences:  

(i) 𝑥1, 𝑥2,4, 𝑥3,6, 𝑥4,9 and 𝑥5,10 as represented by the following order of flow: 1 → 4 → 6 → 9 → 10 giving rise to 

an optimal distance of 11 km. 

(ii) 𝑥1 → 𝑥2,4 → 𝑥3,5 → 𝑥4,8 → 𝑥5,10 which is indicated by the order of flow 1 → 4 → 5 → 8 → 10 with a total 

distance 11 km.  

(iii) 𝑥1, 𝑥2,3, 𝑥3,5, 𝑥4,8 and 𝑥5,10 . This is represented in the following order: 1 → 3 → 5 → 8 → 10  with a total 

distance 11 km. 

5. Conclusion 

In this paper, the performance of Dynamic Programming Algorithm is compared with that of the Label-Setting Algorithm. 

The two algorithms were implemented in solving the shortest path problem of a ten-city (node) connected by 20 edges 

representing varying distances in kilometers. 

The two algorithms obtained the sequences that proxy the shortest or optimal path to the problem to be 1 → 4 → 5 →
8 → 10,1 → 3 → 5 → 8 → 10, 1 → 2 → 6 → 9 → 10 and  1 → 4 → 6 → 9 → 10 with a total distance of 11 km. Thus, 

in reality, the problem typifies a Multiple Shortest Path Problem. The results have uncovered the fact that Dynamic 

Programming is equally as good as the Label-Setting or the Dijkstra’s algorithm, if and only if the problem is well 

formulated and the steps are thoroughly followed.  

Albeit the fact that Hillier and Lieberman (2005) cited an inherent flaw of Dynamic Programming method in respect of its 

impromptu nature and the fact that it is designed to fit a particular problem rather than a variety of applications, it involves 

fewer iterations leading to fewer computational steps, thereby making it time efficient in relation to the Dijkstra’s 

(Label-Setting) algorithm. The current trend in the development of algorithms focuses on algorithms that are exemplified 

by optimal efficiency (optimal performance) and computational or time efficiency. As evinced by the results, both the 

Dynamic algorithm and the Dijkstra’s algorithm perform equally in terms of optimal efficiency. However, on grounds of 

time efficiency, Dynamic Programming algorithm outperforms the Dijkstra’s algorithm. It is therefore recommended in 

this paper that Dynamic Programming should be applied in solving a shortest path and other applicable problems to save 

time. Also, further research needs to be done on other areas that Dynamic Programming Algorithm could be applied to 

solve problems since it provides quality results and saves time. 
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