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Abstract: 

Equation of motion of a free particle in a space of constant curvature applies to many fields, such as the fixed reduction of 

the second member of the Burgers classes, the study of fusion of pellets, equations of Yang-Baxter, the concept of 

univalent functions as well as spheres of gaseous stability to mention but a few. In this study, the authors want to examine 

the linearization of the said equation using both point and non-point transformation methods. As captured in the title, the 

methods under examination here are the differential forms (DF) and the generalized Sundman transformations (GST), 

which are point and non-point transformation methods respectively. The comparative analysis of the solutions obtained 

via the two linearizability methods is also taken into account. 

Keywords: differential equations, Differential Forms, Equation of Motion, free particle, generalized Sundman 

transformation, linearization, point and non-point transformation, second order, space of constant curvature 

1. Introduction 

The equation of motion of a free particle in a space of constant curvature is a differential equation of second order. It finds 

applications in many areas as stated earlier. Such areas include spheres of gaseous stability, equations of Yang-Baxter, the 

study of fusion of pellets, the concept of univalent functions, and the static reduction of the second member of the Burgers 

classes, see (Nakpim & Meleshko, 2010) and (Karasu & Leach, 2009). 

The equation 

       𝑦′′ + 3𝑦𝑦′ + 𝑦3 = 0,                                       (1) 

was mentioned in (Mahomed, 2007)  in line with the invertible symmetry group transformation, and the point 

transformation  

           𝑋 =
1

𝑦
, 𝑌 = 𝑥 +

1

𝑦
                                         (2) 

was presented. The equation possesses the 𝑠𝑙(3 ℝ) algebra of Lie point symmetries (Karasu & Leach, 2009). In other 

words, equation (1) admits the maximum eight-dimensional Lie algebra. 

The method of differential forms which was first investigated by  (Harrison, 2002), was used earlier in (Orverem, 

Tyokyaa & Balami, 2017) and applied in (Orverem, Azuaba & Balami, 2017) to investigate the possibility of linearizing 

equation (1). The GST method was first established in (Duarte, Moreira & Santos, 1994) and later, in (Mustafa, Al-Dweik 

& Mara'beh, 2013) where only the Laguerre form was investigated. Equation (1) was also stated in (Nakpim & Meleshko, 

2010) with a view of linearization through the generalized Sundman transformations (GST), but its solution was not 

obtained. This research is novel because the complete solution of equation (1) is obtained with the aid of the two methods 

under consideration DF and GST. 

Note that (Nakpim & Meleshko, 2010)  presented the complete form of linearization through the  GST. This method was 

also used by (Orverem, Haruna, Abdulhamid & Adamu, 2021) to linearized the essential Emden differential equation as 

the complete solution was obtained.   

In this present work, the authors apply the differential forms and the Sundman transformations methods in linearizing this 
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equation of motion of a free particle in a space of constant curvature tagged as equation (1) above. Additionally, the 

comparison of the results of equation (1) from the two methods is also considered.  

2. Linearization of Equation (1) via the Differential Forms 

The starting point is a second-order ordinary differential equation 

          𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′)                                         (3)  

We assume a point transformation given by the variables 

    𝑋 = 𝐹(𝑥, 𝑦), 𝑌 = 𝐺(𝑥, 𝑦),                              (4)  

with a requirement that, 

                              
𝑑2𝑌

𝑑𝑋2 = 0.                                           (5) 

Using equation (4), we construct   

𝑑𝑌

𝑑𝑋
=

𝐺𝑥 + 𝐺𝑦𝑦′

𝐹𝑥 + 𝐹𝑦𝑦′
 

where 𝐹𝑥 + 𝐹𝑦𝑦′ ≠ 0 and the subscripts 𝑥 and 𝑦 denote partial differentiation. The second derivative equation may 

be written in terms of a differential 𝑑 (
𝑑𝑌

𝑑𝑋
) = 0 as 

            (𝐹𝑥 + 𝐹𝑦𝑦′)(𝑑𝐺𝑥 + 𝑦′𝑑𝐺𝑦 + 𝐺𝑦𝑑𝑦′) − (𝐺𝑥 + 𝐺𝑦𝑦′)(𝑑𝐹𝑥 + 𝑦′𝑑𝐹𝑦 + 𝐹𝑦𝑑𝑦′) = 0.          (6) 

One can expand equation (6) and present it by collecting the like terms separately, as  

𝐹𝑥𝑑𝐺𝑥 − 𝐺𝑥𝑑𝐹𝑥, 

(𝐹𝑥𝑑𝐺𝑦 − 𝐺𝑥𝑑𝐹𝑦)𝑦′, 

(𝐹𝑥𝐺𝑦 − 𝐺𝑥𝐹𝑦)𝑑𝑦′, 

(𝐹𝑦𝑑𝐺𝑥 − 𝐺𝑦𝑑𝐹𝑥)𝑦′, 

(𝐹𝑦𝑑𝐺𝑦 − 𝐺𝑦𝑑𝐹𝑦)𝑦′2, 

(𝐹𝑦𝐺𝑦 − 𝐺𝑦𝐹𝑦)𝑦′𝑑𝑦′ = 0. 

Hence, one can write the above as 

       𝑇𝑑𝑦′ + 𝜌𝑦′2 + (𝜆 + 𝛿)𝑦′ + 𝜎 = 0,                            (7) 

where  

                    𝑇 = 𝐹𝑥𝐺𝑦 − 𝐹𝑦𝐺𝑥,                                    (8) 

and have the 1-forms  

                    
𝜌 = 𝐹𝑦𝑑𝐺𝑦 − 𝐺𝑦𝑑𝐹𝑦, 𝜆 = 𝐹𝑦𝑑𝐺𝑥 − 𝐺𝑦𝑑𝐹𝑥 ,

𝜎 = 𝐹𝑥𝑑𝐺𝑥 − 𝐺𝑥𝑑𝐹𝑥 , 𝛿 = 𝐹𝑥𝑑𝐺𝑦 − 𝐺𝑥𝑑𝐹𝑦.
 }                       (9) 

We can rewrite equation (7) as  

                          𝑑𝑦′ = 𝛼 + 𝛽𝑦′ + 𝛾𝑦′2,                               (10) 

where  

                            𝛼 =
−𝜎

𝑇
, 𝛽 =

−(𝜆+𝛿)

𝑇
, 𝛾 =

−𝜌

𝑇
.                          (11) 

Integrability of equation (10) demands that 𝑑𝑑𝑦′ = 0, so that 

         𝑑𝛼 + (𝛼 + 𝛽𝑦′ + 𝛾𝑦′2) ∧ 𝛽 + 𝑦′𝑑𝛽 + 2𝑦′(𝛼 + 𝛽𝑦′ + 𝛾𝑦′2) ∧ 𝛾 + 𝑦′2𝑑𝛾 = 0.          (12) 

The 𝑦′3 term in equation (12) vanishes because 𝛾 ∧ 𝛾 = 0, we expand and equate the coefficients of the other powers of 

𝑦′ to zero to have 

               𝑑𝛼 = 𝛽 ∧ 𝛼, 𝑑𝛽 = 2𝛾 ∧ 𝛼, 𝑑𝑟 = 𝛾 ∧ 𝛽.                              (13) 

We revisit equations (9), expand the differential, and obtain 
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𝜌 = 𝐹𝑦(𝐺𝑥𝑦𝑑𝑥 + 𝐺𝑦𝑦𝑑𝑦) − 𝐺𝑦(𝐹𝑥𝑦𝑑𝑥 + 𝐹𝑦𝑦𝑑𝑦), 

𝜆 = 𝐹𝑦(𝐺𝑥𝑥𝑑𝑥 + 𝐺𝑥𝑦𝑑𝑦 − 𝐺𝑦(𝐹𝑥𝑥𝑑𝑥 + 𝐹𝑥𝑦𝑑𝑦), 

𝜎 = 𝐹𝑥(𝐺𝑥𝑥𝑑𝑥 + 𝐺𝑥𝑦𝑑𝑦) − 𝐺𝑥(𝐹𝑥𝑥𝑑𝑥 + 𝐹𝑥𝑦𝑑𝑦), 

𝛿 = 𝐹𝑥(𝐺𝑥𝑦𝑑𝑥 + 𝐺𝑦𝑦𝑑𝑦) − 𝐺𝑥(𝐹𝑥𝑦𝑑𝑥 + 𝐹𝑦𝑦𝑑𝑦), 

which can simply be presented as 

      𝜌 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, 𝜆 = 𝐶𝑑𝑥 + 𝐴𝑑𝑦, 𝜎 = 𝐷𝑑𝑥 + 𝐸𝑑𝑦, 𝛿 = 𝐸𝑑𝑥 + 𝐻𝑑𝑦,                    (14) 

where 

𝐴 = 𝐹𝑦𝐺𝑥𝑦 − 𝐺𝑦𝐹𝑥𝑦, 𝐵 = 𝐹𝑦𝐺𝑦𝑦 − 𝐺𝑦𝐹𝑦𝑦, 𝐶 = 𝐹𝑦𝐺𝑥𝑥 − 𝐺𝑦𝐹𝑥𝑥, 

𝐷 = 𝐹𝑥𝐺𝑥𝑥 − 𝐺𝑥𝐹𝑥𝑥, 𝐸 = 𝐹𝑥𝐺𝑥𝑦 − 𝐺𝑥𝐹𝑥𝑦, 𝐻 = 𝐹𝑥𝐺𝑦𝑦 − 𝐺𝑥𝐹𝑦𝑦.    

Now, 

                    𝛼 =
−(𝐷𝑑𝑥+𝐸𝑑𝑦)

𝑇
, 𝛽 =

−(𝐶𝑑𝑥+𝐸𝑑𝑥+𝐴𝑑𝑦+𝐻𝑑𝑦)

𝑇
, 𝛾 =

−(𝐴𝑑𝑥+𝐵𝑑𝑦)

𝑇
.                   (15) 

Putting 𝛼, 𝛽, and 𝛾 into equation (10) and dividing by 𝑑𝑥 to convert the differential forms to functions, we have 

                                 𝑦′′ + 𝑓0 + 𝑓1𝑦′ + 𝑓2𝑦′2 + 𝑓3𝑦′3 = 0,                              (16) 

where the 𝑓𝑘 are given by  

         𝑓0 =
𝐷

𝑇
, 𝑓1 =

(𝐶+2𝐸)

𝑇
, 𝑓2 =

(𝐻+2𝐴)

𝑇
, 𝑓3 =

𝐵

𝑇
.                             (17) 

Thus, it is necessary through the differential forms’ procedure that equation (3) should be cubic in the first derivative 

obtained as equation (16). 

Now, we define 𝐾 and 𝐿 as  

                               𝐾 =
𝐸

𝑇
, 𝐿 =

𝐴

𝑇
,                                        (18) 

and replace 𝐷, 𝐶, 𝐻 and 𝐵 in the 1-forms in equation (15) in favour of the 𝑓𝑘, 𝐾 and 𝐿, obtaining  

           𝛼 = −𝑓0𝑑𝑥 − 𝐾𝑑𝑦, 𝛽 = (𝐾 − 𝑓1)𝑑𝑥 + (𝐿 − 𝑓2)𝑑𝑦, 𝛾 = −𝐿𝑑𝑥 − 𝑓3𝑑𝑦.                (19) 

We also note that 

         
𝑑𝑇

𝑇
= (3𝐾 − 𝑓1)𝑑𝑥 + (𝑓2 − 3𝐿)𝑑𝑦                              (20) 

We see that the 1-forms 𝛼, 𝛽, 𝛾 in equation (19) and 
𝑑𝑇

𝑇
 in equation (20) are now expressed in terms of these four 

known functions 𝐾 and 𝐿. The first three of these 1-forms can now be substituted into equation (13) on the various 

functions. If we do that, the first equation for 𝑑𝛼, gives the equation  

                          𝑓0𝑦 − 𝐾𝑥 = −𝐾(𝐾 − 𝑓1) + 𝑓0(𝐿 − 𝑓2)                            (21) 

which is nonlinear in K. The other equations give the results: 

                       −𝐾𝑦 + 𝑓1𝑦 + 𝐿𝑥 − 𝑓2𝑥 = 2𝐾𝐿 − 𝑓0𝑓3                              (22) 

and  

                        𝐿𝑦 − 𝑓3𝑥 = −𝐿(𝐿 − 𝑓2) + 𝑓3(𝐾 − 𝑓1)                              (23) 

which are also nonlinear. However, we can simplify the situation by defining new variables:  

                          𝑇 =
1

𝑊3 , 𝐸 =
𝑈

𝑊4 , 𝐴 =
𝑉

𝑊4,                               (24) 

so that from equation (18) 

                             𝐾 =
𝑈

𝑊
, 𝐿 =

𝑉

𝑊
,                                      (25) 
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and from equation (20) 

                           3
𝑑𝑊

𝑊
= (𝑓1 − 3𝐾)𝑑𝑥 + (3𝐿 − 𝑓2)𝑑𝑦.                              (26) 

The 𝑑𝑊equation (26) gives expressions for 𝑊𝑥 and 𝑊𝑦. The equation (21) after substitution for 𝑊𝑥, gives an expression 

                  𝑈𝑥 = 𝑊𝑓0𝑦 −
2

3
𝑈𝑓1 − 𝑉𝑓0 + 𝑊𝑓0𝑓2                            (27) 

which is linear in 𝑈, 𝑉and 𝑊. The equation (23) gives an expression 

                   𝑉𝑦 = 𝑊𝑓3𝑥 +
2

3
𝑉𝑓2 + 𝑈𝑓3 − 𝑊𝑓1𝑓3                            (28) 

which is also linear. The equation (22) gives a linear expression 

      𝑉𝑥 − 𝑈𝑦 =
𝑈

3
𝑓2 +

𝑉

3
𝑓1 − 𝑊𝑓1𝑦 + 𝑊𝑓2𝑥 − 2𝑓0𝑓3𝑊.                      (29) 

The integrability condition on equation (26) gives a linear expression  

          𝑉𝑥 + 𝑈𝑦 =
𝑈

3
𝑓2 +

𝑉

3
𝑓1 +

𝑊

3
𝑓2𝑥 +

𝑊

3
𝑓1𝑦.                             (30) 

Equations (29) and (30) can be solved for 𝑉𝑥 and 𝑈𝑦. Thus we have expressions for all derivatives of 𝑈, 𝑉, and 𝑊, all of 

which are linear and homogeneous in the same variables. That is  

      𝑑𝑈 =
1

3
(−2𝑈𝑓1 − 3𝑉𝑓0 + 𝑊(3𝑓0𝑦 + 3𝑓0𝑓2)) 𝑑𝑥 +

1

3
(−𝑈𝑓2 + 𝑊(2𝑓1𝑦 − 𝑓2𝑥 + 3𝑓0𝑓3)) 𝑑𝑦,       (31) 

            𝑑𝑉 =
1

3
(𝑉𝑓1 + 𝑊(2𝑓2𝑥 − 𝑓1𝑦 − 3𝑓0𝑓3)) 𝑑𝑥 +

1

3
(3𝑈𝑓3 + 2𝑉𝑓2 + 𝑊(3𝑓3𝑥 − 3𝑓1𝑓3))𝑑𝑦,      (32) 

                        𝑑𝑊 =
1

3
(−3𝑈 + 𝑊𝑓1)𝑑𝑥 +

1

3
(3𝑉 − 𝑊𝑓2)𝑑𝑦.                       (33) 

We summarize all these relations in a fine matrix equation  

             𝑑𝑟 = 𝑀𝑟,                                       (34) 

where  

𝑟 = (
𝑈
𝑉
𝑊

) and 𝑀 = 𝑃𝑑𝑥 + 𝑄𝑑𝑦, 

𝑃 = (
1

3
) (

−2𝑓1 −3𝑓0 3𝑓0𝑦 + 3𝑓0𝑓2

0 𝑓1 2𝑓2𝑥 − 𝑓1𝑦 − 3𝑓0𝑓3

−3 0 𝑓1

) 

𝑄 = (
1

3
) (

−𝑓2 0 2𝑓1𝑦 − 𝑓2𝑥 + 3𝑓0𝑓3

3𝑓3 2𝑓2 3𝑓3𝑥 − 3𝑓1𝑓3

0 3 −𝑓2

). 

For integrability of equation (34), 𝑑𝑑𝑟 = 0 giving 

                    𝑑𝑀 = 𝑀 ∧ 𝑀                                   (35) 

which is not zero since 𝑀 is a matrix. Substitution for 𝑀 in terms of 𝑃 and 𝑄 gives the condition  

            𝑄𝑥 − 𝑃𝑦 + 𝑄𝑃 − 𝑃𝑄 = 0.                                  (36) 

This matrix condition in equation (36) reduces to the following conditions: 

        𝑓0𝑦𝑦 + 𝑓0(𝑓2𝑦 − 2𝑓3𝑥) + 𝑓2𝑓0𝑦 − 𝑓3𝑓0𝑥 + (
1

3
) (𝑓2𝑥𝑥 − 2𝑓1𝑥𝑦 + 𝑓1𝑓2𝑥 − 2𝑓1𝑓1𝑦) = 0,        (37) 
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and 

       𝑓3𝑥𝑥 + 𝑓3(2𝑓0𝑦 − 𝑓1𝑥) + 𝑓0𝑓3𝑦 − 𝑓1𝑓3𝑥 + (
1

3
) (𝑓1𝑦𝑦 − 2𝑓2𝑥𝑦 + 2𝑓2𝑓2𝑥 − 𝑓2𝑓1𝑦) = 0.        (38) 

To summarize, we note that the original differential equation is cubic in 𝑦′presented in equation (16) with the coefficients 

satisfying equations (37) and (38). 

Now, we shall construct the point transformations properly. We will need 𝑈, 𝑉 and 𝑊 therefore we need to solve 

equations (34). Once the equations are solved, we produce 𝐾 and 𝐿 from equation (25). To find the 𝐹(𝑥, 𝑦) and 𝐺(𝑥, 𝑦) 

which we are seeking, we revisit equations (9) and solve for 𝑑𝐹𝑥, 𝑑𝐹𝑦, 𝑑𝐺𝑥 and 𝑑𝐺𝑥. Solution for 𝑑𝐹𝑥 and 𝑑𝐹𝑦 gives  

𝑑𝐹𝑥 =
(𝐹𝑦𝜎 − 𝐹𝑥𝜆)

𝑇
, 𝑑𝐹𝑦 =

(𝐹𝑦𝛿 − 𝐹𝑥𝜌)

𝑇
. 

Solution for 𝑑𝐺𝑥 and 𝑑𝐺𝑦, shows that they satisfy the same equation, so we will write only equations for the derivatives 

of 𝐹. We note that  

𝛿 + 𝜆 = −𝑇𝛽 and 𝛿 − 𝜆 = 𝑑𝑇, 

so, we can solve these equations for 𝛿 and 𝜆. We can also substitute for 𝜎 and 𝜌 in terms of 𝛼  and 𝛾. We finally get 

𝑑𝐹𝑥 = −𝐹𝑦𝛼 + 𝐹𝑥

(𝛽 +
𝑑𝑇
𝑇

)

2
, 𝑑𝐹𝑦 = 𝐹𝑥𝛾 + 𝐹𝑦

(−𝛽 +
𝑑𝑇
𝑇

)

2
.
 

We substitute for 𝛼, 𝛽, 𝛾 and 𝑑𝑇
𝑇⁄  from equations (19) and (20) respectively in terms of the expressions obtained 

above, to with 𝑓𝑘, 𝐾 and 𝐿. 

We now have two equations that can be expressed in matrix form as 

                             𝑑𝑅 = 𝑍𝑅, 𝑑𝑆 = 𝑍𝑆                                      (39) 

where  

𝑍 = (
(2𝐾 − 𝑓1)𝑑𝑥 − 𝐿𝑑𝑦 𝑓0𝑑𝑥 + 𝐾𝑑𝑦

−𝐿𝑑𝑥 − 𝑓3𝑑𝑦 𝐾𝑑𝑥 + (𝑓2 − 2𝐿)𝑑𝑦
),  𝑅 = (

𝐹𝑥

𝐹𝑦
) and  𝑆 = (

𝐺𝑥

𝐺𝑦
). 

This linear equation set can be solved for 𝑅. There will be two independent solutions, which can be taken as 𝑅 and 𝑆 as 

seen in equation (39). Integrability is guaranteed by setting 𝑑𝑑𝑅 = 0. 

Finally, we can solve  

                      𝑑𝐹 = (𝑑𝑥 𝑑𝑦)𝑅, 𝑑𝐺 = (𝑑𝑥 𝑑𝑦)𝑆,                              (40) 

and the two independent solutions can be taken as 𝐹 and 𝐺. 

Now, we see that equation (1) is in the form of equation (16) and its coefficients, 𝑓0 = 𝑦3, 𝑓1 = 3𝑦, 𝑓2 = 𝑓3 = 0 satisfy 

the conditions (37) and (38) above. 

Construction of the 3 × 3 matrix gives 

𝑀 = (
−2𝑦𝑑𝑥 −𝑦3𝑑𝑥 3𝑦2𝑑𝑥 + 2𝑑𝑦

0 𝑦𝑑𝑥 −𝑑𝑥
−𝑑𝑥 𝑑𝑦 𝑦𝑑𝑥

), 

so that 

𝑑𝑟 = (
−2𝑦𝑈𝑑𝑥 − 𝑦3𝑉𝑑𝑥 + 𝑊(3𝑦2𝑑𝑥 + 2𝑑𝑦)

𝑦𝑉𝑑𝑥 − 𝑊𝑑𝑥
−𝑈𝑑𝑥 + 𝑉𝑑𝑦 + 𝑦𝑊𝑑𝑥

) 

and  𝑟 = (
𝑈
𝑉
𝑊

). Putting 𝑈 = 0, 𝑑𝑈 = 0, so that 

𝑑𝑉 = (𝑉𝑦 − 𝑊)𝑑𝑥, 𝑑𝑊 = 𝑊𝑦𝑑𝑥 + 𝑉𝑑𝑦. 
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We now see that 𝑊𝑥 = 𝑊𝑦 and 𝑊𝑦 = 𝑉 which on integration, we have that 𝑊 = 𝑒𝑥𝑦+𝑎(𝑦), for some function 𝑎(𝑦). 
Also, 𝑉 = 𝑒𝑎(𝑦)+𝑥𝑦(𝑥 + 𝑎′(𝑦)), and considering the special solution 𝑎(𝑦) = 1, we have that 

𝑈 = 0, 𝑉 = 𝑥𝑒𝑥𝑦+1, 𝑊 = 𝑒𝑥𝑦+1. 

From equation (25), one sees that 𝐾 = 0 and 𝐿 = 𝑥. 

We also notice that 𝑍 = (
−3𝑦𝑑𝑥 − 𝑥𝑑𝑦 𝑦3𝑑𝑥

−𝑥𝑑𝑥 −2𝑥𝑑𝑦
). Setting 𝑅 = (

𝑏
𝑐

), we see that  

𝑑𝑅 = (
−𝑏(3𝑦𝑑𝑥 + 𝑥𝑑𝑦) + 𝑐𝑦3𝑑𝑥

−𝑏𝑥𝑑𝑥 − 2𝑐𝑥𝑑𝑦
), 

so that 

                 𝑑𝑏 = (−3𝑏𝑦 + 𝑐𝑦3)𝑑𝑥 − 𝑏𝑥𝑑𝑦,                                  (41) 

and    

                                  𝑑𝑐 = −𝑏𝑥𝑑𝑥 − 2𝑐𝑥𝑑𝑦.                                     (42) 

One sees from equation (41) that 𝑏𝑦 = −𝑏𝑥, so that  

                                   𝑏 = 𝑘𝑒−𝑥𝑦,                                          (43) 

where 𝑘 is a constant. Differentiation of equation (43) with respect to 𝑦 gives 

                                    𝑏𝑦 = −𝑘𝑥𝑒−𝑥𝑦.                                        (44) 

We notice from equation (42) that, 𝑐𝑥 = −𝑏𝑥, and on substitution of 𝑏 from equation (43), we see that 

                                  𝑐𝑥 = −𝑘𝑥𝑒−𝑥𝑦,                                        (45) 

which indicates that 𝑏𝑦 = 𝑐𝑥. 

One can integrate equation (45) using the integration by parts to obtain 

                               𝑐 = 𝑘𝑥𝑦−1𝑒−𝑥𝑦 + 𝑘𝑦−2𝑒−𝑥𝑦 + 𝑔(𝑦).                            (46) 

On differentiation of equation (46) with respect to 𝑦, one sees that 

                              𝑐𝑦 =
−𝑘𝑥𝑒−𝑥𝑦

𝑦2
(𝑥𝑦 + 1) −

𝑘𝑒−𝑥𝑦

𝑦3
(𝑥𝑦 + 2) + 𝑔′(𝑦).                      (47) 

We also note from equation (42) that 

              𝑐𝑦 = −2𝑐𝑥.                                        (48) 

Equating equations (47) and (48) and simplifying, we have 

𝑔′ + 2𝑥𝑔 = 2𝑘𝑦−3𝑒−𝑥𝑦 − 𝑘𝑥2𝑦−1𝑒−𝑥𝑦,                          (49) 

which can be solved with the use of integrating factor. Solving equation (49) and further simplification, one arrives at  

𝑔 = −𝑘𝑦−2𝑒−𝑥𝑦 − 𝑘𝑥𝑦−1𝑒−𝑥𝑦 + 𝑚𝑒−2𝑥𝑦,                            (50) 

where 𝑚 is another constant. 

On substation of equation (50) into equation (46), equation (46) reduces to 

                                      𝑐 = 𝑚𝑒−2𝑥𝑦.                                         (51) 

Summarily,  

𝑏 = 𝐹𝑥 = 𝑘𝑒−𝑥𝑦 and 𝑐 = 𝐹𝑦 = 𝑚𝑒−2𝑥𝑦. 

Taking 𝐹𝑦 = 𝑚𝑒−2𝑥𝑦, one can integrate with respect to 𝑦 and obtain 
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                   𝐹 =
−𝑚𝑒−2𝑥𝑦

2𝑥
+ ℎ(𝑥).                                    (52) 

Now, differentiating equation (52) with respect to 𝑥 we see that  

                              𝐹𝑥 =
𝑚𝑦𝑒−2𝑥𝑦

𝑥
+

𝑚

2𝑥2 𝑒−2𝑥𝑦 + ℎ′(𝑥).                              (53) 

Now, equations (51) and (53) are similar. Therefore, one can simplify this situation to see that 

                   ℎ′(𝑥) = 𝑘𝑒−𝑥𝑦 −  𝑚𝑥−1𝑦𝑒−2𝑥𝑦 −
𝑚

2𝑥2 𝑒−2𝑥𝑦.                        (54) 

We truncate the last term of equation (54) since it is also the coefficient of the constant 𝑚, and integrate the result by parts 

to have 

ℎ(𝑥) =
−𝑘

𝑦
𝑒−𝑥𝑦 − 𝑚𝑦𝑙𝑛𝑥𝑒−2𝑥𝑦. 

Therefore, equation (52) becomes  

𝐹 + 𝑘𝑒−𝑥𝑦 (
1

𝑦
) +  𝑚𝑒−2𝑥𝑦 (

1

2𝑥
+ 𝑦𝑙𝑛𝑥) = 0.                            (55) 

Without loss of generality, we let 𝑒−𝑥𝑦 = 𝑒−2𝑥𝑦 = 𝑙𝑛𝑥 = 1, and interchanging the variables of constant 𝑚, we have  

                                 𝑋 =
1

𝑦
,    𝑌 =

1

𝑦
+ 𝑥                                        (56) 

as the linearizing point transformation. The result in equation (56) is in line with the one presented in (Mahomed, 2007) 

above. 

3. Linearization of Equation (1) via the GST Method 

The transformation that is defined to be 

                              𝑢(𝑡) = 𝐹(𝑥, 𝑦), 𝑑𝑡 = 𝐺(𝑥, 𝑦)𝑑𝑥, (𝐺𝐹𝑦) ≠ 0,                           (57) 

is referred to as the GST. It is essential to note that, equation (57) is a non-point transformation. 

Equation (3) must take the form  

                           𝑦′′ + 𝑓2𝑦′2 + 𝑓1𝑦′ + 𝑓0 = 0,                                (58) 

with the aid of equation (57) to be transformed into a linear ODE 

                         𝑢′′ + 𝛽𝑢′ + 𝛼𝑢 = 𝛾,                                    (59) 

for some functions 𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡). 

Taking the case 𝑓3 ≠ 0 and 𝑓5 ≠ 0 into account, we have the conditions that are sufficient for equation (58) to be 

linearizable via equation (57) to be: 

                                    𝑓0𝑥 =
2𝑓0(𝑓3−𝑓1𝑓3)

𝑓3
,                                   (60) 

           𝑓2𝑥𝑥𝑦 = −𝑓2𝑥𝑦𝑓1 − 𝑓3𝑥𝑦 − 2𝑓2𝑥
2 − 2𝑓2𝑥𝑓3 − 𝑓3𝑦𝑓1 + (𝑓3𝑦𝑓5)𝑓3

−1,               (61) 

𝑓2𝑥𝑥𝑥 = −𝑓3𝑥𝑥 − 𝑓1𝑥𝑓2𝑥 − 𝑓1𝑥𝑓3 + 𝑓2𝑥𝑓1
2 + 𝑓1

2𝑓3 − 2𝑓1𝑓5 + 𝑓3
−1𝑓5(𝑓3𝑥 + 𝑓5),            (62) 

and  

𝑓3𝑓5(6𝑓0𝑦𝑓2𝑥 + 2𝑓2𝑥𝑦𝑓0 + 4𝑓2𝑥𝑓0𝑓2 + 2𝑓3𝑦𝑓0 + 4𝑓0𝑓2𝑓3 + 𝑓1𝑓5) − 𝑓3
2(6𝑓2𝑥

2 𝑓0 + 12𝑓2𝑥𝑓1𝑓3 − 6𝑓0𝑦𝑓5 +

6𝑓0𝑓3
2) − 𝑓4𝑓5

2 − 2𝑓5
3 = 0,                                 (63) 
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where 𝑓3 = 𝑓1𝑦 − 2𝑓2𝑥,  𝑓4 = 2𝑓0𝑦𝑦 − 2𝑓1𝑥𝑦 + 2𝑓0𝑓2𝑦 − 𝑓1𝑦𝑓1 + 2𝑓0𝑦𝑓2 + 2𝑓2𝑥𝑥 and 𝑓5 = 𝑓2𝑥𝑥 + 𝑓2𝑥𝑓1 + 𝑓3𝑥 + 𝑓1𝑓3.  

We can find the functions 𝐹 and 𝐺 by solving the equations that follow:  

                           𝐹𝑥 = 0,                                           (64) 

                       𝐹𝑦𝑦 =
𝐹𝑦𝐺𝑦+𝑓2𝐹𝑦𝐺

𝐺
,                                      (65) 

                                  𝐺𝑥 =
𝐺(𝑓2𝑥𝑥+𝑓2𝑥𝑓1+𝑓3𝑥)

𝑓3
,                                    (66) 

                                        𝐺𝑦 =
𝐺𝑓3(𝑓2𝑥+𝑓3)

𝑓5
.                                       (67) 

The 𝛼, 𝛽 and 𝛾 from equation (59) are examined from the equations  

                    𝛼 =
𝐺(𝑓0𝑦+𝑓0𝑓2)−𝐺𝑦𝑓0

𝐺3 ,                                      (68) 

                             𝛽 =
𝐺𝑥+𝐺𝑓1

𝐺2 ,                                         (69) 

                                     𝛾 =
𝛼𝐹𝐺2−𝐹𝑦𝑓0

𝐺2 .                                        (70) 

Again, from equation (1), one sees that it is in the form of (58) with the coefficients 𝑓0 = 𝑦3, 𝑓1 = 3𝑦, 𝑓2 = 0. Hence, one 

has the expressions for 𝑓3, 𝑓4 and 𝑓5 as defined earlier to be 𝑓3 = 3, 𝑓4 = 3𝑦 and 𝑓5 = 9𝑦 respectively. 

Testing for the linearizability conditions as stated from equations (60) to (63), one sees that (1) satisfies all the conditions, 

and is hence linearizable by the GST method. Equations (64) through (67) gives 𝐹𝑥 = 0, 𝐹𝑦𝑦 =
𝐹𝑦

𝑦
, 𝐺𝑥 = 0 and 𝐺𝑦 =

𝐺

𝑦
 

respectively. One can take the simplest of the solutions 𝐹 = 𝑦2, 𝐺 = 𝑦 so that 𝑢 = 𝑦2, 𝑑𝑡 = 𝑦𝑑𝑥. 

Now, considering equations (68) to (70), one obtains 𝛼 = 2, 𝛽 = 3, and 𝛾 = 0 respectively. Therefore, equation (59) 

becomes 

                                  𝑢′′ + 3𝑢′ + 2𝑢 = 0.                                      (71) 

Equation (71) is now a linear differential equation with the general solution  

                               𝑢 = 𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡 ,                                       (72) 

where 𝑐1, 𝑐2 are arbitrary constants. From (57), we now have that 

                           𝑦 = (𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡)
1

2⁄ .                                    (73) 

But 
𝑑𝑡

𝑑𝑥
= 𝑦 that is  

                               𝑑𝑡 = (𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡)
1

2⁄ 𝑑𝑥,                                   (74) 

so that 𝑡 = 𝑥(𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡)
1

2⁄ = 𝜙(𝑥), and finally, 

                        𝑦 = (𝑐1𝑒−𝜙(𝑥) + 𝑐2𝑒−2𝜙(𝑥))
1

2⁄
.                                 (75) 

4. Discussion and Conclusion 

It is important to know the genesis (origin) of the differential equation stated in (1). Considering the ODE 

                         𝑦′′ + 𝜆1𝑦𝑘1 + 𝜆2𝑦𝑘2𝑦′ + 𝜆3𝑦𝑘3𝑦′2 = 0,                               (76) 

where 𝜆1, 𝜆2, 𝜆3 and 𝑘1, 𝑘2, 𝑘3 are constants. If 𝜆3 = 0, equation (76) becomes  

             𝑦′′ + 𝜆1𝑦𝑘1 + 𝜆2𝑦𝑘2𝑦′ = 0,                                    (77) 
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where 𝜆1 ≠ 0, 𝜆2 ≠ 0. If 𝜆1 = 1, 𝜆2 = 3, 𝑘1 = 3 and 𝑘2 = 1, (77) is reduced to  

                             𝑦′′ + 𝑦3 + 3𝑦𝑦′ = 0,                                      (78) 

which is similar to equation (1) stated earlier. 

Using the transformation 𝑌 = 𝑋𝑎 + 𝑏, where 𝑎 and 𝑏 are constants, we see from equation (56) that 𝑦 =
1−𝑎

𝑏−𝑥
 or simply 

put, 

                          𝑦 =
𝑐

𝑏−𝑥
 ,                                           (79) 

where 𝑐 = 1 − 𝑎. 

Comparing the two results in (56) and (75), one sees that the method of differential forms gives the linearizing point 

transformation (56) which on another transformation yields the solution (79), while the GST method readily yields the 

solution as seen in (75). Both of the solutions are correct in their respect, but the solution (75) is more convincingly, the 

general solution of the equation given in (1).  

Researchers can also look out for other approaches possible, suitable for the solution of this very important equation. This 

will help broaden the study of equation (1) considered in this research. 
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