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Abstract

Let M be a smooth manifold and let Z(M) be the module of first order differential operators on M. In this work, we give
a link between Jacobi manifolds and Contact manifolds. We also generalize the notion of contactomorphism on M and
thus, we characterize the Contact diffeomorphisms.
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1. Introduction
1.1 Jacobi Manifolds

The notion of Jacobi manifolds has been introduced by A. Lichnerowicz (Lichnerowicz, 1978). These manifolds are a
generalization of the notion of locally conformally symplectic manifolds and of contact manifolds (which can be used
in the representation of energy in thermodynamics). A Jacobi structure on a manifold M is a pair (A, E) where A is a
contravariant skew-symmetric 2-tensor and FE is a vector field on M such that

[A,A]=2EAA, OgA=[E,A] =0 (1
with A the Grassmann wedge product and 6 the Lie derivative with respect to the vector field E. The bracket defined in
(1) is the Schouten-Nijenhuis bracket on multivectors (Koszul, 1985).

Using the classical Darboux’s theorem, around every point of M there exist canonical coordinates (xp,...,x2,) and a local
smooth function f on M such that

n "9 d
= = - — -f R
Eee i= 1(9xi OXnti OXpyi O hA=e & Ixui " xi- .

Defining a Jacobi structure on (A, E) is equivalent to defining an internal composition law {-,-} on (M) such that for
all f,g €€ (M)

{fiey =Aldf.dg)+f-E(g) —g-E(f) 3)
where d is the exterior differentiation operator (Okassa, 2007). The bracket {-,-} is skew-symmetric and satisfies the
Jacobi identity if and only if (1) is fulfilled. Furthermore, one has the locality condition

supp{f.g} C supp(f) Nsupp(g). “4)

A natural generalization of Poisson bracket is Jacobi bracket. The only difference is that we only replace the Leibniz rule
by

forall f,g,h,1 € €= (M), where 1 is the unit of €~ (M).

Proposition 1. The Jacobi bracket {-,-} defines a Lie algebra structure on € (M), if and only if (1) is satisfied.

The vector field E is the hamiltonian vector field associated with the constant function 1. We have E (f) = {1, f}, whence
the Jacobi identity for (1, f, g) yields

E({f.g}) =1{E(f),e} +{f E(g)}

which equivalent to Oz A = 0. If the vector field E vanishes, we recover the Poisson bracket.

Remark 2. (Lichnerowicz, 1977) Let (A,E) be a Jacobi structure on a manifold M and consider a product manifold
M x R, the bivector A given by A=e' (A—|— % /\E), where t is the usual coordinate on R. Then, A defines a Poisson

structure on M x R. The manifold M x R with the structure Ais called the poissonization of the Jacobi manifold (M, A,E).

Note that a smooth manifold M is a Jacobi manifold when the algebra of numerical functions of class € on M, 6> (M)
admits a Jacobi algebra structure (Okassa, 2007).
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1.2 Contact Manifolds

By a contact manifold in this paper, we mean a € manifold M?"*! together with a 1-form  such that o A (da)" 0. In
particular, o A (da)" is a volume element on M>"*!, so that a contact manifold is orientable. Also (da)" has rank 27 on
the Grassmann algebra AT;M at each point p € M, and thus we have a 1-dimensional subspace,

{X e T,M/da(X,T,M) = 0}

on which & # 0 and which is complementary to the subspace defined by o0 = 0.
Therefore choosing R, in this subspace normalized by o(R,) = 1, we have a global vector field R satisfying a(R) = 1
and da(R,X) = 0. In this case, the €~ (M)-module of vector fields X(M) admits a inner sum direct decomposition

X(M)=Kera®%€~(M)-R,

where, R is called Reeb vector field of the contact structure oc. We deduce that g = 0 and Ogda = 0.
One denotes by Z the contact distribution defined by the space
Dy ={X €T,M/0(X) =0} = ker(a).
Roughly speaking, the meaning of the contact condition, ot A (dat)" # 0, is that the contact subbundle is as far from being
integrable as possible.
By a smooth manifold, we will mean a paracompact connected finite dimensional 4> manifold without boundary.
Here one lists a few examples of contact manifolds and Reeb vector field.
n
(i) The pair (R2"+1, o =dz+ Y x;dy;) is a contact manifold with Reeb vector field a% Indeed, if R = aa% + bi% + c*iaiy,
i=1 ' ' i ‘
n n
then 1 = &t(R) = a—biyi. Also 0=da(R, 7-) = ¥ (dxiAdyi)(R, 3-) gives ¢; = 0. Similarly, 0 = da(R, £-) = ¥ (dx; A\
! i=1 ! ! i=1
dy;)(R, aiy,-) gives b; =0. Thusa=1and R= a%-
(ii) Consider R? with the contact form & = sin(y)dx + cos(y)dz. Then the Reeb vector field is R = sin(y) % + cos(y)a%.
Given two contact manifolds (M, @) and (M’, &), let h : M — M’ be a smooth map, that is, differentiable.
The map 4 is called a morphism of contact manifolds, so long as h*a’ = o (Gatsé, 2016).

Given a contact diffeomorphism /, h~! is also contact, and # is called a contactomorphism, where by definition of the
pullback of a 1-form o

(7" ) (x) (u) = e (h(x))(dh(x)u)
for x element of M and for any u element of T, M.

The main goal of this paper is to show that the contact manifolds are the Jacobi manifolds. We also will give the general-
ization of the notion of contactomorphism and will characterize the contact diffeomorphisms.

In what follows, M denotes a paracompact and connected smooth manifold, € (M) the algebra of numerical functions
of class € on M, 7 (M) the € (M)-module of first order differential operators on € (M) and 6 (Okassa, 2008) the
cohomology operator associated with the identically map

id: (M) — 2(M).

The term "differential operator" will mean "first order differential operator".

2. Link Between Jacobi Manifolds and Contact Manifolds
Let Q! (M)g be the € (M)-module of differential forms of degree 1 on M which vanish on R. Then the map

kero — Q' (M)g, X — ixda
is an isomorphism of € (M )-modules. Moreover, for any function f € (M), we obtain the following properties:

@) Gf.Ra = df7
(i) O7rdar =0,
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(iii) 6k (fa) =R(f) a+df,
(iv) Ord (fa) = (dR(f)) N+ R(f)-dav.
The differential form d f — R(f) - & vanishes on R and we have easily

[R,kera] C kera.

One notes Xy the unique vector field on M belonging to ker & such that
ix,do = df —R(f)- a.
We notice that
(i) R € ker(ix,dat).
(ii) If f =0, then Xy = 0.
(iii) If f =1, then Xy = R.
A differential operator on M is a R-linear map
Q06" (M) — €~(M)
such that
o(f-8)=0(f)-g+f-o(8)—r-g o)
for any f,g € € (M). We verify that the map
0 = R(f)+X; — f-R: €= (M) — 6=(M)
is a differential operator on M. We set

{f.8} =or(g),

we deduce the following results.

Theorem 3. Forall f,g and h in €~ (M), we get

(i) (X5, Xe] = X101+ Xr(e) =8 Xr(r) +Xr(8) R
(ii) {f.g-h}t={f.8}-h+g-{f.ht—g-h-{f 1}
(iii) [R,®f] = Qr(s)-

(iv) R{f.g} ={R(f),8} +{f,R(8)}.

(V) @7, Pel = @i g1

Proof. (1) We check that
i[XfJfg]—X{ 181~ Xr(g) T8 Xr(y) —X;(g)-RAOL = 0.

(ii) The proof of this assertion is obvious.
(iil) For any f € € (M), we get

Rl = [RR(f)+X;—fR]
[R7R f)] + [R7Xf} - [va'R}
= R(R(f))+Xg(s) —R(f) R
= Pr-

—~

—~
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(iv) Since

R (X1(8)) = X7 (R(2)) + X (R(f)),

we deduce that

R{fag}:{R(f)vg}+{f7R(g)}'
(v) We calculate
[(pf’(pg] = [R(f)+Xf_f'R7R(g)+Xg_g'R}
= X;(R(g))—f-R(R(g)) —X; (R(f)) +&-R(R(f))
J’_[Xf’Xg} _Xf(g)'R+g' [R7Xf]+f' [R,Xg]
+Xg(f)-R+(f-R(g) —g-R(f))-R
= R{f.g}+Xpq—{f.8} R
= Qe
That ends the proof.

Proposition 4. The map
CE(M) X C (M) — €= (M), (f,8) — {f.&},

defines a real Lie algebra structure on the contact manifold M.

Proof. We write

{fv{g7h}}+{g7{h7f}}+{h7{f7g}} = {f,{gﬁ}}—{g,{f,h}}—{{f,th}
Pl (M)] = @[ @f (h)] — @15y ()

= (o5, 9] = 91r.5)) ()

= 0.

Hense the assertion is proved.

Give the foregoing, it is concluded that a contact manifold is a Jacobi manifold.
3. Contactomorphism

If 2(M) is the set of differential operators on M and

®: D(M) x D(M) — €=(M)

is a nondegenerate skew-symmetric 2-form on M, then the pair (M, ®) is a contact manifold (fore more details, see Okassa,

2011). Let
o:2(M) — €~(M)
be the 1-form on M such that

i Ojg=(m) = 0.

Proposition 5. (Okassa, 2008) If @ is a nondegenerate skew-symmetric 2-form such that 8@ = 0, then ® = 8 (i, ®).

Proof. For all ¢ and v in 2(M), we have

0 = (s0)(1,0,y)
(¢, y) —o[(i1o)(y)] + ¥[(L10)(@)] + (i10) ¢, ¥]
= [0-6(i10)](e,y).

We deduce that @ = 6(i; @).
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Proposition 6. (Gatsé, 2019) Suppose that f is a diffeomorphism on M. Let @ be a differential operator of € (M). Then
the map

feo=(f")opof i E"(N) — E~(N)
is a differential operator of €= (N).

Proposition 7. When ¢ is a differential operator, when f is a diffeomorphism then for any g element of € (M), we obtain

¢(gof) =[(fi)(g)]of

Proof. Let x be an element of M, we write

[p(goNI(x) = e[/ (&)
[feo(2)] [ (%))
[(£-@)()] o f1(x)-

Thus ¢(go f) = [(f.9)(g)] o f. =
Proposition 8. If f is a diffeomorphism and let & be a multilinear p-form on N then for all Wi, v, ..., ¥, € Z(M),

(8 (W, v, W) = B (fW1, iV, s fiWp)] o f.

Proof. For x element of M, we obtain

(f*é)(wlalll% 71I/]7)( )
= (/" E)@)(vi(x), ¥2(x), .., yp(x))
= S/

FOIwr, fvn, o fwp) (f(5))]
= [é(f Wlaf*lVZv 7f*llfp)]( ( ))
= ([E(fvr, fivn, ., feyp)] 0 f) (),

then

(f*é)(wlv W27"‘?1I/]7) = [é(f*‘l’laf*llf%af*wp)] Of'
That ends the proof. O

Theorem 9. When f is a diffeomorphism then & and f* commute.

Proof. We have
[S(f*é)} (ll/la Y2,y Wp,y lI,]7Jr1)

p+1

= Z( D (£ E) (Wi ¥, e, Wiy oo, W, W1 )]

+Z I+J f é lllhllfj]aWlaWZ)"'7@7"'7@a"'aWpaW[J+l)

i<j
p+1

Y D W:)[i(fw/hf*llfz,~-~,f*ll7h~--7f*‘l’p+1)]] °f

i=1

+

Z<_1)l+]§([f*lljl7f*lljj] 7f*ll/17"'7f*(l}l'7"'7f*@a"'7f*wp7f*wp+l)] Of‘

i<j
On the other hand, we get

[ (BE (W1, W2, oo Wi, Wp1)
[(65)(](‘*‘/,17f*w27"'af*WP+])] Of

p+1

Z (71)l+1(f*llll) [é(f*llﬁaf*wz’"'7f*ll7ia"'7f*ll/]7+1)]

of

Y (DS, LW foW oo Wy iV o Wit ) | © -
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That ends the proof. O

Proposition 10. If f is a contactomorphism i.e. f*iy®x ) = i1@/x(n) then f*i10 =i ®.

Proof. Suppose that f is a contactomorphism then for any vector field X on M, we obtain
[(ho)(f:X)]o f = (h)(X).

Forany ¢ € 2(M), ¢ = ¢(1)+ X, and
(ho)(fip) = (Lo)(f.X)

(o) (X)]of~!
= [(1o)(@)]of™,

then [(i1 @) (fi@)] o f = ({1®) (@) so i1 =i ®. ]

Theorem 11. The map f is a contactomorphism if and only if {*® = @.

Proof. Suppose that f is a contactomorphism, for all ¢,y € 2(M), we have
o(f:. f¥) = [8(i10)(f:9,f:¥)]

I
<
2
B
P
s
!
P
=
S
-
2
|
B
=
S
g
=

(ho)(W)]of ' —y(ho)(p)lof " —(i1o)[@,y]of!

I

S S
s 8
NN
: o

=

[o(fio, fiw)]lof = @

Thus f*0 = ®.
Conversely let f*® = . For ¢ = 1, we have f.¢ = 1. For @, y elements of Z(M), o (f.¢, f.w) = @(@,y)o f~!, then

(D(],f*l[/) = w(lle)ofil
(10)(fy) = (ho)(y)of .

In particular if y =Y, we have
(@) (f.Y)]o f = (@) (Y),
then f*il(l)/x(M) = il(i)/x(M>.

That ends the proof. O

Let 2if fo (M) be the group of € (M)-diffeomorphisms of M, which preserve @. This group is the automorphism group
of the contact geometry of (M, ®). It acts transitively on the contact manifold (provided that is connected). Hence the
contact manifold (M, ®) can be viewed as a homogeneous space of Zif f,(M).

Theorem 12. Let (M, ®) and (M',®@') be two smooth contact manifolds equipped with contact structures @ and @'
respectively. Let Y: M — M’ be a bijective map such that for any map f: M — M,yfy™' € Diffo (M) iff f €
Diffo(M). Then y is a € (M)-diffeomorphism and yv* &' = o.

Proof. We use the Taken’s theorem (see Takens, 1979) and the same arguments as in (Banyaga, 1986). O

Theorem 13. Suppose a group isomorphism T : if fo(M) — Dif fo (M') is also a homeomorphism when 2if (M)
and Dif f (M) are endowed with the point-open topology. Then there exists a €= (M)-diffeomorphism v : M — M’
such that ©(f) = yfy~ !, for any f € Diffo(M) and y*0' = w.

Proof. Note that, these groups are y-transitive. There exists a homeomorphism y: M — M’ such that ©(f) = yfy~', for
any f € 9if fo(M). Useing the above theorem, we have v* o' = @. O

Corollary 14. When an automorphism of the group of contact diffeomorphisms Dif fo(M) of contact manifold (M, ®) is
also a homeomorphism for the point-open topology, then it is an inner automorphism.
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4. A Characterization of Contact Diffeomorphisms

Let
id: 2(M) — 9(M)
be the identically map of 2(M). One notes d = d,, the cohomology operator associated with the representation id. Let
©:2M)x 2(M) — €= (M)
be a nondegenerate skew-symmetric 2-form on M.

Proposition 15. When
fiM—M
satisfies f*@ = o, then for every function u € €= (M), we have

f*(Pu = Quof-

References

Banyaga, A. (1986). On Isomorphic classical diffeomorphism group. I, Proc. Am. Math. Soc., 98(1), 113-118.
https://doi.org/10.1090/S0002-9939-1986-0848887-5

Gatsé, S. C. (2016). Hamiltonian Vector Field on Locally Conformally Symplectic Manifold. International Mathematical
Forum, 11(19), 933-941. http://dx.doi.org/10.12988/imf.2016.6666

Gatsé, S. C. (2019). Some Properties of first order differential operators, Advances in Pure Mathematics, 9(11), 934-943.
https://doi.org/10.4236/apm.2019.911046

Koszul, J. L. (1985). Crochet de Schouten-Nijenhuis et cohomologie. Astérisque, 137(257-271), 4-3.

Lichnerowicz, A. (1977). Les variétés de Poisson et leurs algebres de Lie associées. J. Differential Geometry, 12, 253-300.
https://doi.org/10.4310/jdg/1214433987

Lichnerowicz, A. (1978). Les variétés de Jacobi et leurs algebres de Lie associées. J. Math. pures et appl., 57(4), 453-488.

Okassa, E. (2007). Algebres de Jacobi et algebres de Lie-Rinehart-Jacobi. J. Pure Appl. Algebra, 208, 1071-1089.
http://dx.doi.org/10.1016/j.jpaa.2006.05.013

Okassa, E. (2008). On Lie-Rinehart-Jacobi algebras. J. Algebra Appl., 7, 749-772.
http://dx.doi.org/10.1142/s0219498808003107

Okassa, E. (2011). Symplectic Lie-Rinehart-Jacobi algebras and contact manifolds. Canad. Math. Bull., 54(4), 716-725.
https://doi:10.4153/CMB-2011-033-6

Takens, F. (1979). Characterization of a differentiable structure by its group of diffeomorphisms. Bol. Soc. Brasil. Math.,
10(1), 17-25. https://doi.org/10.1007/BF02588337

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

91



