The Rank of \mathcal{U}_V-Generated Modules

Fitriani1, Indah Emilia Wijayanti2, Budi Surodjo2 & Ahmad Faisol1

1Department of Mathematics, Universitas Lampung, Lampung, Indonesia
2Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia

Correspondence: Fitriani, Department of Mathematics, Universitas Lampung, Lampung, Indonesia
E-mail: fitriani.1984@fmipa.unila.ac.id

Received: June 30, 2021 Accepted: July 23, 2021 Online Published: July 27, 2021

doi:10.5539/jmr.v13n4p81 URL: https://doi.org/10.5539/jmr.v13n4p81

Abstract

Let \mathcal{U} be a nonempty set of R-modules and V be a submodule of $\oplus_{\lambda} U_\lambda$, $U_\lambda \in \mathcal{U}$ for all $\lambda \in \Lambda$. A \mathcal{U}_V generated module is a generalization of \mathcal{U}-generated module by using the concept of V-coexact sequence. We say that an R-module N is generated by \mathcal{U}_V if there is an epimorphism from V to N. In this paper, we introduce the definition of rank of \mathcal{U}_V-generated modules. Furthermore, we investigate some properties of rank of \mathcal{U}_V-generated modules.

Keywords: \mathcal{U}-generated module, \mathcal{U}_V-generated module, rank

1. Introduction

Let R be a ring and let $f: A \rightarrow B \xrightarrow{g} C$ be an exact sequence of R-modules, i.e. $\text{Im } f = \ker g = \ker g(0)$. This exact sequence can be generalized to a quasi-exact sequence by replacing the submodule 0 with any submodule $U \subseteq C$ (Davvaz and Parnian-Garamaleky, 1999). In this case, the sequence is called U-exact (in B). As a dual of a U-exact sequence, V-coexact sequence (V a submodule of A) is defined as follows. A sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is V-coexact if $f(V) = \ker g$ (Davvaz and Parnian-Garamaleky, 1999). The quasi-exact sequences can be used to generalize the Schanuel Lemma (Anvariyeh dan Davvaz, 2005). Furthermore, this sequence is used to generalize some notions in homological algebra (Davvaz and Shabani-Solt, 2002). In 2002, the U-split sequence is introduced, and the connection between this sequence and projective modules (Anvariyeh and Davvaz, 2002).

Motivated by the generalization of the exact sequence to U-exact sequence and V-coexact sequence, a sub exact sequence is introduced (Fitriani et al., 2016). Furthermore, a sub-exact sequence is used to establish the X-sub-linearly independent module as a generalization of linearly independent module relative to a family of R-modules (Fitriani et al., 2017).

Let \mathcal{U} be a family of R-modules. Then, as a dual of an X-sub-linearly independent module, a \mathcal{U}_V-generated module is introduced as the generalization of a \mathcal{U}-generated module (Fitriani et al., 2018a). Furthermore, a basis and free module relative to a family of R-module is established by using the concept of X-sub-linearly independent module, and a \mathcal{U}_V-generated module (Fitriani et al., 2018b). The motivation of the definition of \mathcal{U}_V-generated module is from a generator class of modules (Anderson and Fuller, 1992).

The rank of a finitely generated module M is defined as the number of minimal generators of M (Adkins and Weintraub, 1992). In this paper, we introduce the definition of the rank of \mathcal{U}_V-generated modules, and we investigate some properties of the rank of \mathcal{U}_V-generated modules.

2. Results

Let \mathcal{U} be a non-empty set of R-modules and R-module M be a finitely \mathcal{U}_V-generated module. Hence, there is an epimorphism from V to M, where V is a submodule of $\{U_\lambda\}_\Lambda$. The set $\{U_\lambda\}_\Lambda$ is \mathcal{U}_V-generator for N. Furthermore, the set $\{U_\lambda\}_\Lambda$ is minimal \mathcal{U}_V-generator for M if $\Lambda = \min \{\Lambda | V \in \mathcal{U}_V\}$, $V \subseteq \oplus_{\Lambda} U_\lambda$. We define rank of \mathcal{U}_V-generated modules as follows:

Definition 1 Let \mathcal{U} be a non-empty set of R-modules and M be a finitely \mathcal{U}_V-generated R-module, for some submodule V of $\oplus_{\Lambda} U_\lambda$ with modules $U_\lambda \in \mathcal{U}_V$ for all $\lambda \in \Lambda$. The rank of M relative to \mathcal{U}_V is denoted by $\text{rank}(M)_{\mathcal{U}_V}$, is the minimal cardinality of Λ, where Λ is the index of minimal \mathcal{U}_V-generators of M.

Let $\mathcal{U} = \{U_\lambda\}_\Lambda$ be a non-empty set of R-modules and R-module M is finitely \mathcal{U}_V-generated. Then there exists a finite index set $E \subseteq \Lambda$ such that M is \mathcal{U}_V-generated and $V \subseteq \oplus_{E} U_\lambda$, for all $e \in E$. We have $\{U_\lambda\}_{\lambda \in E}$ is \mathcal{U}_V-generator for M. If E is a minimal \mathcal{U}_V-generator for M which has the minimal cardinality, i.e. $E = \min \{\Lambda | V \in \mathcal{U}_V\}$, $V \subseteq \oplus_{\Lambda} U_\lambda$,
then

\[\text{rank}(M)_{\mathcal{U}} = |[U_i]_E|. \]

Then, we give some examples of the rank of module generated by \(\mathcal{U}_V \), where \(\mathcal{U} \) is a family of \(R \)-modules.

Example 1 Let \(\mathcal{U} = \{ Z_p | p \text{ prime} \} \) be a family of \(Z \)-modules and \(M \) be an abelian group of order \(q^2 \), where \(q \) prime. We assume that \(M \) is an \(\mathcal{U}_V \) generated module. If \(q \) prime and \(M \) is group of order \(q^2 \), then \(M \cong \mathbb{Z}_{q^2} \) or \(M \cong \mathbb{Z}_q \times \mathbb{Z}_q \).

If \(M \cong \mathbb{Z}_{q^2} \), then \(M \) is not \(\mathcal{U}_V \) generated module. So, we have \(M \cong \mathbb{Z}_q \times \mathbb{Z}_q \) and hence the number of minimal \(\mathcal{U}_V \)-generators (\(V = \mathbb{Z}_q \times \mathbb{Z}_q \)) of \(M \) is 2. Therefore, \(\text{rank}(M)_{\mathcal{U}} = 2 \).

Example 2 Let \(\mathcal{U} = \{ Z_{p^n} | p \text{ prime}, n \in \mathbb{N} \} \) be a family of \(Z \)-modules and \(M \) be an abelian group of order \(q^2 \), where \(q \) prime. If \(M \cong Z_{q^2} \), then \(\text{rank}(M)_{\mathcal{U}} = 1 \) (where \(V = Z_{q^2} \)). If \(M \cong Z_q \times Z_q \), then \(\text{rank}(M)_{\mathcal{U}} = 2 \) (where \(V = Z_q \times Z_q \)).

Example 3 Let \(\mathcal{U} = \{ Z_{p^n} | p \text{ prime}, n \in \mathbb{N} \} \) be a family of \(Z \)-modules and \(M \) be an abelian group of order 8. If \(M \) is an abelian group of order 8, then \(M \) is isomorphic to exactly one of the following groups: \(Z_8, Z_4 \times Z_2, \) or \(Z_2 \times Z_2 \times Z_2 \). We have the following conditions:

1. If \(M \cong Z_8 \), then \(\text{rank}(M)_{\mathcal{U}} = 1 \) (where \(V = Z_8 \)).
2. If \(M \cong Z_4 \times Z_2 \), then \(\text{rank}(M)_{\mathcal{U}} = 2 \) (where \(V = Z_8 \times Z_2 \)).
3. If \(M \cong Z_2 \times Z_2 \times Z_2 \), then \(\text{rank}(M)_{\mathcal{U}} = 3 \) (where \(V = Z_2 \times Z_2 \times Z_2 \)).

We recall that \(\mu((0)) = 0 \) and if \(R \) is PID, then any \(R \)-submodule \(M \) of \(R \) is an ideal, so \(\mu(M) = 1 \) (Adkins and Weintraub, 1992). For \(\mathcal{U}_V \)-generated modules, we have the following properties:

Remark 1 Let \(\mathcal{U} \) be a family of \(R \)-modules.

1. \(\text{rank}(0)_{\mathcal{U}} = 1 \);
2. \(\text{rank}(W)_{\mathcal{U}} = 1 \), for any direct summand \(W \) of \(U \) in \(\mathcal{U} \);
3. If \(\mathcal{U} \) is a family of complemented \(R \)-modules, then \(\text{rank}(W)_{\mathcal{U}} = 1 \), for any submodule \(W \) of \(V \) in \(\mathcal{U} \);
4. If \(\mathcal{U} \) is a family of all free \(R \)-modules, then \(\text{rank}(P)_{\mathcal{U}} = 1 \), for any projective \(R \)-module \(P \).

If \(R \)-module \(N \) is \(\mathcal{U}_V \)-generated, then \(N' \) is \(\mathcal{U}_V \)-generated, for every homomorphic image \(N' \) of \(N \) (Fritiani et al., 2018a).

Therefore, we have the following proposition.

Proposition 1 Let \(\mathcal{U} \) be a non-empty set of \(R \)-modules, \(V \) be a submodule of \(\oplus_{\lambda} U_{\lambda} \) with modules \(U_{\lambda} \in \mathcal{U} \), for all \(\lambda \in \Lambda \) and \(R \)-module \(M \) is a finitely \(\mathcal{U}_V \)-generated module. Then, \(\text{rank}(N)_{\mathcal{U}} \leq \text{rank}(M)_{\mathcal{U}} \), for every homomorphic image \(N \) of \(M \).

Proof. Let \(M \) be a finitely \(\mathcal{U}_V \)-generated module, and \(N \) be a homomorphic image of \(M \). Hence, \(N \) is an \(\mathcal{U}_V \)-generated module (Fritiani et al., 2018a). In other words, every \(U_V \)-generator of \(M \) is \(U_V \)-generator of \(N \) and hence \(\text{rank}(N)_{\mathcal{U}} \leq \text{rank}(M)_{\mathcal{U}} \).

In general, a submodule of an \(\mathcal{U}_V \)-generated module need not be an \(\mathcal{U}_V \)-generated. For example, if we take \(\mathcal{U} = \{ \mathbb{Q} \} \), then \(\mathbb{Z} \)-module \(\mathbb{Q} \) is an \(\mathcal{U}_V \)-generated module. However, since we can not define an epimorphism from \(\mathbb{Q} \) to \(\mathbb{Z} \), \(\mathbb{Z} \)-module \(\mathbb{Z} \) is not an \(\mathcal{U}_V \)-generated module. Nevertheless, in case \(M \) is semisimple, we have the following corollary is a consequence of Proposition 1.

Corollary 1 Let \(\mathcal{U} \) be a non-empty set of \(R \)-modules and \(R \)-module \(M \) be a finitely \(\mathcal{U}_V \)-generated module. If \(M \) is semisimple, then \(\text{rank}(N)_{\mathcal{U}} \leq \text{rank}(M)_{\mathcal{U}} \), for every submodule \(N \) of \(M \).

Proof. Since every submodule of semisimple module is a direct summand, submodule \(N \) of \(M \) is a homomorphic image of \(M \). By Proposition 1, we have \(\text{rank}(N)_{\mathcal{U}} \leq \text{rank}(M)_{\mathcal{U}} \).

Proposition 2 Let \(\mathcal{U} \) be a non-empty set of \(R \)-modules, \(V_1, V_2 \) be submodules of \(\oplus_{\lambda} U_{\lambda} \) with modules \(U_{\lambda} \in \mathcal{U} \), for all \(\lambda \in \Lambda \). If \(R \)-module \(M_1 \) and \(M_2 \) are finitely \(\mathcal{U}_{V_1} \)-generated and \(\mathcal{U}_{V_2} \)-generated, respectively. Then,

\[\text{rank}(M_1 \oplus M_2)_{\mathcal{U}} \leq \text{rank}(M_1)_{\mathcal{U}} + \text{rank}(M_2)_{\mathcal{U}}. \]
Proof. Let \{U_{a}\}_{a} and \{U_{b}\}_{b} be minimal \(U_{V}\)-generators for \(N_{1}\) and \(N_{2}\), respectively. If \(M_{1}\) is \(U_{V_{1}}\)-generated and \(M_{2}\) is \(U_{V_{2}}\)-generated, then \(M_{1} \oplus M_{2}\) is \(U_{V_{1} \oplus V_{2}}\)-generated. Therefore, we have \(\{U_{a}\}_{a} \cup \{U_{b}\}_{b}\) is \(U_{V_{1} \oplus V_{2}}\)-generator of \(M_{1} \oplus M_{2}\). Hence, \(\text{rank}(M_{1} \oplus M_{2})_{U} \leq \text{rank}(M_{1})_{U} + \text{rank}(M_{2})_{U}\).

Now, we give the properties of pullback and pushout of \(U_{V}\)-generated modules.

Proposition 3 Let \(\mathcal{U}\) be a non-empty set of \(R\)-modules, \(V_{1}, V_{2}\) be submodules of \(\oplus_{A} U_{A}, U_{A} \in \mathcal{U}\), for every \(\lambda \in \Lambda\). If \(R\)-modules \(N_{1}\) and \(N_{2}\) are \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, respectively, \(g_{1} : X \to N_{1}\) and \(g_{2} : X \to N_{2}\) be morphisms of \(U_{V_{1} \oplus V_{2}}\)-generated modules, and \(Q\) be a pushout of a pair of morphisms \((g_{1}, g_{2})\). Then

\[
\text{rank}(Q)_{U} \leq \text{rank}(N_{1})_{U} + \text{rank}(N_{2})_{U}.
\]

Proof. Pushout \(Q\) of a pair of morphisms \((g_{1}, g_{2})\) is a factor module of \(N_{1} \oplus N_{2}\) (Wisbauer, 1991). Therefore, \(Q\) is an \(U_{V_{1} \oplus V_{2}}\)-generated module. By Proposition 1 and Proposition 2, we have \(\text{rank}(Q)_{U} \leq \text{rank}(N_{1})_{U} + \text{rank}(N_{2})_{U}\).

Proposition 4. Let \(\mathcal{U}\) be a non-empty set of \(R\)-modules, \(V_{1}, V_{2}\) be submodules of \(\oplus_{A} U_{A}, U_{A} \in \mathcal{U}\), for every \(\lambda \in \Lambda\). If \(R\)-modules \(N_{1}\) and \(N_{2}\) are \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, respectively, \(N_{1} \oplus N_{2}\) be a semisimple module, and \(P\) be a pullback of a pair of morphisms \((f_{1}, f_{2})\), where \(f_{1} : N_{1} \to N\) and \(f_{2} : N_{2} \to N\) are morphisms of \(U_{V_{1} \oplus V_{2}}\)-generated modules. Then

\[
\text{rank}(P)_{U} \leq \text{rank}(N_{1})_{U} + \text{rank}(N_{2})_{U}.
\]

Proof. Pullback \(P\) of a pair of morphisms \((g_{1}, g_{2})\) is a submodule of \(N_{1} \oplus N_{2}\) (Wisbauer, 1991). Since \(N_{1} \oplus N_{2}\) is a semisimple module, \(P\) is a direct summand of \(N_{1} \oplus N_{2}\) and hence \(P\) is a homomorphic image of \(N_{1} \oplus N_{2}\). By Proposition 1 and Proposition 2, we have \(\text{rank}(P)_{U} \leq \text{rank}(N_{1})_{U} + \text{rank}(N_{2})_{U}\).

It is possible that an \(R\)-module \(M\) is a \(U_{V_{1}}\)-generated and a \(U_{V_{2}}\)-generated module. In the following proposition, we will show the connection between \(V_{1}\) and \(V_{2}\) by using Five Lemma (Wisbauer, 1991).

Proposition 5. Let \(\mathcal{U}\) be a non-empty set of \(R\)-modules, \(V_{1}, V_{2}\) be submodules of \(\oplus_{A} U_{A}, U_{A} \in \mathcal{U}\), for every \(\lambda \in \Lambda\). If \(R\)-modules \(M\) is \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, i.e. there are epimorphisms \(p_{1} : V_{1} \to M\) and \(p_{2} : V_{2} \to M\). Let \(V_{1}\) be a \(V_{2}\)-projective module, i.e. there is morphism \(p : V_{1} \to V_{2}\) such that \(p_{2} \circ p = p_{1}\). If we define \(\alpha = p|_{\text{Ker } p_{1}}\) and we assume that \(\alpha(\text{Ker } p_{1}) \subseteq \text{Ker } p_{2}\), then we have:

1. If \(\alpha\) is monomorphism, then \(V_{1}\) is isomorphic to a submodule of \(V_{2}\);

2. If \(\alpha\) is epimorphism, then \(V_{1}\) is a \(U_{V_{1}}\)-generated module.

Proof. If \(R\)-modules \(M\) is \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, then there are epimorphisms \(p_{1} : V_{1} \to M\) and \(p_{2} : V_{2} \to M\). Since \(V_{1}\) is \(V_{2}\)-projective, there is morphism \(p : V_{1} \to V_{2}\) such that \(p_{2} \circ p = p_{1}\). We define \(\alpha = p|_{\text{Ker } p_{1}}\), and we assume that \(\alpha(\text{Ker } p_{1}) \subseteq \text{Ker } p_{2}\). Hence, we have the following commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \text{Ker } p_{1} & \xrightarrow{i} & V_{1} & \xrightarrow{p_{1}} & M & \longrightarrow & 0 \\
& & \alpha & \downarrow p & \downarrow & & & \\
0 & \longrightarrow & \text{Ker } p_{2} & \xrightarrow{i} & V_{2} & \xrightarrow{p_{2}} & M & \longrightarrow & 0
\end{array}
\]

By Five Lemma, if \(\alpha\) is a monomorphism, then \(p\) is a monomorphism. So, \(V_{1}\) is isomorphic to a submodule of \(V_{2}\). If \(\alpha\) is an epimorphism, then \(p\) is an epimorphism, and hence \(V_{2}\) is a \(U_{V_{1}}\)-generated module.

3. Conclusions

Let \(\mathcal{U} = \{U_{\lambda}\}_{\lambda}\) be a non-empty set of \(R\)-modules and \(R\)-module \(M\) is finitely \(U_{V}\)-generated. Then there exists a finite index set \(E \subseteq \Lambda\) such that \(M\) is \(U_{V}\)-generated and \(V \subseteq \oplus_{e} U_{e}\), for all \(e \in E\). We have \(\{U_{\lambda}\}_{\lambda \in E}\) is \(U_{V}\)-generator for \(M\). If \(E\) is a minimal \(U_{V}\)-generator for \(M\) which has the minimal cardinality, then \(\text{rank}(M)_{U} = \|U_{\lambda}\|_{E}\). Furthermore, \(\text{rank}(N)_{U} \leq \text{rank}(M)_{U}\), for every homomorphic image \(N\) of \(M\).

If \(R\)-module \(M_{1}\) and \(M_{2}\) are finitely \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, respectively. Then, \(\text{rank}(M_{1} \oplus M_{2})_{U} \leq \text{rank}(M_{1})_{U} + \text{rank}(M_{2})_{U}\). This implies if \(R\)-modules \(N_{1}\) and \(N_{2}\) are \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, respectively, \(g_{1} : X \to N_{1}\) and \(g_{2} : X \to N_{2}\) be morphisms of \(U_{V_{1} \oplus V_{2}}\)-generated modules, and \(Q\) be a pushout of a pair of morphisms \((g_{1}, g_{2})\). Then \(\text{rank}(Q)_{U} \leq \text{rank}(N_{1})_{U} + \text{rank}(N_{2})_{U}\). Besides, that if \(R\)-modules \(N_{1}\) and \(N_{2}\) are \(U_{V_{1}}\)-generated and \(U_{V_{2}}\)-generated, respectively, \(N_{1} \oplus N_{2}\) be a semisimple module, and \(P\) be a pullback of a pair of morphisms \((f_{1}, f_{2})\), where \(f_{1} : N_{1} \to N\) and \(f_{2} : N_{2} \to N\) are morphisms of \(U_{V_{1} \oplus V_{2}}\)-generated modules. Then \(\text{rank}(P)_{U} \leq \text{rank}(N_{1})_{U} + \text{rank}(N_{2})_{U}\).
Acknowledgements

The authors want to thank the reviewers for their insightful suggestions and efforts towards improving our manuscript. Furthermore, the authors wish to thank the Research Institutions and Community Service of Universitas Lampung for this research support and funding under the Research Contract No: 1667/UN 26.21/PN/2021.

References

https://doi.org/10.1007/978-1-4612-0923-2

https://doi.org/10.1007/978-1-4612-4418-9

http://doi.org/10.4134/BKMS.2005.42.1.149

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).