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Abstract

Let U be a nonempty set of R-modules and V be a submodule of ⊕ΛUλ, Uλ ∈ U for all λ ∈ Λ. A UV generated
module is a generalization ofU-generated module by using the concept of V-coexact sequence. We say that an R-module
N is generated by UV if there is an epimorphism from V to N. In this paper, we introduce the definition of rank of
UV -generated modules. Furthermore, we investigate some properties of rank ofUV -generated modules.
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1. Introduction

Let R be a ring and let A
f
−→ B

g
−→ C be an exact sequence of R-modules, i.e. Im f = Ker g(= g−1(0)). This exact

sequence can be generalized to a quasi-exact sequence by replacing the submodule 0 with any submodule U ⊆ C (Davvaz
and Parnian-Garamaleky, 1999). In this case, the sequence is called U-exact (in B). As a dual of a U-exact sequence,

V-coexact sequence (V a submodule of A) is defined as follows. A sequence A
f
−→ B

g
−→ C is V-coexact if f (V) = Ker g

(Davvaz and Parnian-Garamaleky, 1999). The quasi-exact sequences can be used to generalize the Schanuel Lemma
(Anvariyeh dan Davvaz, 2005). Furthermore, this sequence is used to generalize some notions in homological algebra
(Davvaz and Shabani-Solt, 2002). In 2002, the U-split sequence is introduced, and the connection between this sequence
and projective modules (Anvariyeh and Davvaz, 2002).

Motivated by the generalization of the exact sequence to U-exact sequence and V-coexact sequence, a sub exact sequence
is introduced (Fitriani et al., 2016). Furthermore, a sub-exact sequence is used to establish the X-sub-linearly independent
module as a generalization of linearly independent module relative to a family of R-modules (Fitriani et al., 2017).

Let U be a family of R-modules. Then, as a dual of an X-sub-linearly independent module, a UV -generated module is
introduced as the generalization of a U-generated module (Fitriani et al., 2018a). Furthermore, a basis and free module
relative to a family of R-module is established by using the concept of X-sub-linearly independent module, and a UV -
generated module (Fitriani et al., 2018b). The motivation of the definition of UV -generated module is from a generator
class of modules (Anderson and Fuller, 1992).

The rank of a finitely generated module M is defined as the number of minimal generators of M (Adkins and Weintraub,
1992). In this paper, we introduce the definition of the rank ofUV -generated modules, and we investigate some properties
of the rank ofUV -generated modules.

2. Results

Let U be a non-empty set of R-modules and R-module M be a finitely UV -generated module. Hence, there is an epi-
morphism from V to M, where V is a submodule of {Uλ}Λ. The set {Uλ}Λ is UV -generator for N. Furthermore, the set
{Uλ}Λ is minimalUV -generator for M if Λ = min{ΛV |M isUV -generated, V ⊆ ⊕ΛV Uλ}. We define rank ofUV -generated
modules as follows:

Definition 1 Let U be a non-empty set of R-modules and M be a finitely UV -generated R-module, for some submodule
V of ⊕ΛUλ with modules Uλ ∈ U, for all λ ∈ Λ. The rank of M relative toU, we denote it by rank(M)U , is the minimal
cardinality of Λ, where Λ is the index of minimalUV -generators of M.

Let U = {Uλ}Λ be a non-empty set of R-modules and R-module M is finitely UV -generated. Then there exists a finite
index set E ⊆ Λ such that M is UV -generated and V ⊆ ⊕EUe, for all e ∈ E. We have {Ue}e∈E is UV -generator for M. If
E is a minimalUV -generator for M which has the minimal cardinality, i.e. E = min{ΛV |M isUVgenerated, V ⊆ ⊕ΛV Uλ},
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then
rank(M)U = |{Ue}E |.

Then, we give some examples of the rank of module generated byUV , whereU is a family of R-modules.

Example 1 Let U = {Zp|p prime} be a family of Z-modules and M be an abelian group of order q2, where q prime. We
assume that M is aUV generated module. If q prime and M is group of order q2, then M � Zq2 or M � Zq × Zq.
If M � Zq2 , then M is not UV generated module. So, we have M � Zq × Zq and hence the number of minimal UV -
generators (V = Zq × Zq) of M is 2. Therefore, rank(M)U = 2.

Example 2 Let U = {Zpn |p prime, n ∈ N} be a family of Z-modules and M be an abelian group of order q2, where q
prime. If M � Zq2 , then rank(M)U = 1 (where V = Zq2 ). If M � Zq × Zq, then rank(M)U = 2 (where V = Zq × Zq).

Example 3 Let U = {Zpn |p prime, n ∈ N} be a family of Z-modules and M be an abelian group of order 8. If M is an
abelian group of order 8, then M is isomorphic to exactly one of the following groups: Z8, Z4 × Z2, or Z2 × Z2 × Z2. We
have the following conditions:

1. If M � Z8, then rank(M)U = 1 (where V = Z23 ).

2. If M � Z4 × Z2, then rank(M)U = 2 (where V = Z22 × Z2).

3. If M � Z2 × Z2 × Z2, then rank(M)U = 3 (where V = Z2 × Z2 × Z2).

We recall that µ({0}) = 0 and if R is PID, then any R-submodule M of R is an ideal, so µ(M) = 1 (Adkins and Weintraub,
1992). ForUV -generated modules, we have the following properties:

Remark 1 LetU be a family of R-modules.

1. rank(0)U = 1;

2. rank(W)U = 1, for any direct summand W of U ∈ U.

3. IfU a family of all complemented R-modules, then rank(W)U = 1, for any submodule W of V, V ∈ U.

4. IfU a family of all free R-modules, then rank(P)U = 1, for any projective R-module P.

If R-module N isUV -generated, then N
′

isUV -generated, for every homomorphic image N
′

of N (Fitriani et al., 2018a).
Therefore, we have the following proposition.

Proposition 1 LetU be a non-empty set of R-modules, V be a submodule of ⊕ΛUλ with modules Uλ ∈ U, for all λ ∈ Λ

and R-module M is a finitely UV -generated module. Then, rank(N)U ≤ rank(M)U , for every homomorphic image N of
M.

Proof. Let M be a finitely UV -generated module, and N be a homomorphic image of M. Hence, N is an UV -generated
module (Fitriani et al., 2018a). In other words, every UV -generator of M is UV -generator of N and hence rank(N)U ≤
rank(M)U .

In general, a submodule of anUV -generated module need not be anUV -generated. For example, if we takeU = {Q}, then
Z-module Q is anUQ-generated module. However, since we can not define an epimorphism from Q to Z, Z-module Z is
not an UQ-generated module. Nevertheless, in case M is semisimple, we have the following corollary is a consequence
of Proposition 1.

Corollary 1 Let U be a non-empty set of R-modules and R-module M be a finitely UV -generated module. If M is
semisimple, then rank(N)U ≤ rank(M)U , for every submodule N of M.

Proof. Since every submodule of semisimple module is a direct summand, submodule N of M is a homomorphic image
of M. By Proposition , we have rank(N)U ≤ rank(M)U .

Proposition 2 Let U be a non-empty set of R-modules, V1,V2 be submodules of ⊕ΛUλ with modules Uλ ∈ U, for all
λ ∈ Λ. If R-module M1 and M2 are finitelyUV1 -generated andUV1 -generated, respectively. Then,

rank(M1 ⊕ M2)U ≤ rank(M1)U + rank(M2)U .
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Proof. Let {Ua}A and {Ub}B be minimal UV -generators for N1 and N2, respectively. If M1 is UV1 -generated and M2 is
UV1 -generated, then M1 ⊕ M2 is UV1⊕V2 -generated. Therefore, we have {Ua}A ∪ {Ub}B is UV1⊕V2 -generator of M1 ⊕ M2.
Hence, rank(M1 ⊕ M2)U ≤ rank(M1)U + rank(M2)U .

Now, we give the properties of pullback and pushout ofUV -generated modules.

Proposition 3 Let U be a non-empty set of R-modules, V1,V2 be submodules of ⊕ΛUλ, Uλ ∈ U, for every λ ∈ Λ. If
R-modules N1 and N2 areUV1 -generated andUV2 -generated, respectively, g1 : X → N1 and g2 : X → N2 be morphisms
ofUV1⊕V2 -generated modules, and Q be a pushout of a pair of morphisms (g1, g2). Then

rank(Q)U ≤ rank(N1)U + rank(N2)U .

Proof. Pushout Q of a pair of morphisms (g1, g2) is a factor module of N1 ⊕ N2 (Wisbauer, 1991). Therefore, Q is an
UV1⊕V2 -generated module. By Proposition 1 and Proposition 2, we have rank(Q)U ≤ rank(N1)U + rank(N2)U .

Proposition 4. Let U be a non-empty set of R-modules, V1,V2 be submodules of ⊕ΛUλ, Uλ ∈ U, for every λ ∈ Λ. If
R-modules N1 and N2 are UV1 -generated and UV2 -generated, respectively, N1 ⊕ N2 be a semisimple module, and P be
a pullback of a pair of morphisms ( f1, f2), where f1 : N1 → N and f2 : N2 → N are morphisms of UV1⊕V2 -generated
modules. Then

rank(P)U ≤ rank(N1)U + rank(N2)U .

Proof. Pullback P of a pair of morphisms (g1, g2) is a submodule of N1 ⊕ N2 (Wisbauer, 1991). Since N1 ⊕ N2 is a
semisimple module, P is a direct summand of N1 ⊕ N2 and hence P is a homomorphic image of N1 ⊕ N2. By Proposition
1 and Proposition 2, we have rank(P)U ≤ rank(N1)U + rank(N2)U .

It is possible that an R-module M is aUV1 -generated and aUV2 -generated module. In the following proposition, we will
show the connection between V1 and V2 by using Five Lemma (Wisbauer, 1991).

Proposition 5 Let U be a non-empty set of R-modules, V1,V2 be submodules of ⊕ΛUλ, Uλ ∈ U, for every λ ∈ Λ. If
R-modules M is UV1 -generated and UV2 -generated, i.e there are epimorphisms p1 : V1 → M and p2 : V2 → M. Let V1
be a V2-projective module, i.e there is morphism p : V1 → V2 such that p2 ◦ p = p1. If we define α = p|Ker p1 and we
assume that α(Ker p1) ⊆ Ker p2, then we have:

1. If α is monomorphism, then V1 is isomorphic to a submodule of V2;

2. If α is epimorphism, then V2 is aUV1 -generated module.

Proof. If R-modules M isUV1 -generated andUV2 -generated, then there are epimorphisms p1 : V1 → M and p2 : V2 → M.
Since V1 is V2-projective, there is morphism p : V1 → V2 such that p2 ◦ p = p1.
We define α = p|Ker p1 and we assume that α(Ker p1) ⊆ Ker p2. Hence, we have the following commutative diagram
with exact rows:

0 −−−−−−→ Ker p1
i1

−−−−−−→ V1
p1

−−−−−−→ M −−−−−−→ 0yα yp
∥∥∥∥

0 −−−−−−→ Ker p2
i2

−−−−−−→ V2
p2

−−−−−−→ M −−−−−−→ 0
By Five Lemma, if α is a monomorphism, then p is a monomorphism. So, V1 is isomorphic to a submodule of V2. If α is
an epimorphism, then p is an epimorphism, and hence V2 is aUV1 -generated module.

3. Conclusions

Let U = {Uλ}Λ be a non-empty set of R-modules and R-module M is finitely UV -generated. Then there exists a finite
index set E ⊆ Λ such that M is UV -generated and V ⊆ ⊕EUe, for all e ∈ E. We have {Ue}e∈E is UV -generator for
M. If E is a minimal UV -generator for M which has the minimal cardinality, then rank(M)U = |{Ue}E |. Furthermore,
rank(N)U ≤ rank(M)U , for every homomorphic image N of M.

If R-module M1 and M2 are finitelyUV1 -generated andUV1 -generated, respectively. Then, rank(M1⊕M2)U ≤ rank(M1)U+

rank(M2)U . This implies if R-modules N1 and N2 are UV1 -generated and UV2 -generated, respectively, g1 : X → N1 and
g2 : X → N2 be morphisms of UV1⊕V2 -generated modules, and Q be a pushout of a pair of morphisms (g1, g2). Then
rank(Q)U ≤ rank(N1)U + rank(N2)U . Besides that, if R-modules N1 and N2 are UV1 -generated and UV2 -generated, res-
pectively, N1 ⊕ N2 be a semisimple module, and P be a pullback of a pair of morphisms ( f1, f2), where f1 : N1 → N and
f2 : N2 → N are morphisms ofUV1⊕V2 -generated modules. Then rank(P)U ≤ rank(N1)U + rank(N2)U .
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