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Abstract 

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple 

groups, we show that any finite non-abelian simple group can be generated by two Sylow 𝑝1- and 𝑝2-subgroups, where 

𝑝1 and 𝑝2 are two different primes. We also show that for a given different prime numbers 𝑝 and 𝑞, any finite group can 

be generated by a Sylow 𝑝-subgroup and a 𝑞-subgroup.  
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1. Introduction 

Finite groups often arise when considering the symmetry of mathematical or physical objects, when those objects admit 

just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups 

and permutation groups (Praeger & Schneider, 2018). During the twentieth century, mathematicians investigated some 

aspects of the theory of finite groups in great depth. One major area of study has been the classification of groups 

(Solomon, 2001). At the beginning of the 1980s, the development of the theory of finite groups culminated in the 

classification of the finite simple groups, an impressive and convincing demonstration of the strength of its methods and 

results (Kurzweil & Stellmacher, 2004).  

The classification of finite simple groups, (Gorenstein, Richard & Solomon, 2018), i.e. groups with no nontrivial normal 

subgroup, was completed in 2004. As a consequence, the complete classification of finite simple groups was achieved, 

meaning that all those simple groups from which all finite groups can be built are now known (Aschbacher, 2004). 

Via its importance, the concept of the generation of a finite simple group and a finite group has widespread attention along 

time, where generation of finite groups by suitable subsets has many applications to groups and their representations. For 

example, due to the motivation to study irreducible projective representations of the sporadic simple groups, in (Martino, 

Pellegrini & Zalesski, 2014) it was established a useful connection between the generation of groups by conjugate 

elements and the existence of elements representable by almost cyclic matrices. It is known that finite non-abelian simple 

groups are 2-generated (Steinberg, 1962). In (Aschbacher & Guralnick, 1984) authors showed that any sporadic simple 

group can be generated by an involution and another suitable element, recall that a sporadic group is one of the 26 

exceptional groups found in the classification of finite simple groups (Wilson, 1998). In (King, 2017) it was shown that 

every finite non-abelian simple group is generated by an involution and an element of prime order. In (Burness, Liebeck, 

& Shalev, 2013) authors showed that any maximal subgroup of a non-abelian finite simple group is 4-generated or less 

and that this bound is best possible. In 2007, Slattery in his paper (Slattery, 2007) described computational methods to 

enumerate, construct and identify finite groups of square-free order. Also, in (Breuer, Guralnick, & Kantor, 2008) authors 

conjectured that any finite group is 
3

2
−generated if and only if every proper quotient is cyclic. In (Burness, Guralnick, & 

Harper, 2021) it was reduced this conjecture to almost simple groups. Recently, in (Dietrich & Low, 2021) the authors, 

generalized Slattery’s result to the class of finite groups that have cyclic Sylow subgroups and provide an implementation 

for the computer algebra system GAP (see https://www.gap-system.org/).   

In this paper, in order to the finite simple groups, we show that any finite non-abelian simple group can be generated by 

two Sylow 𝑝1- and 𝑝2-subgroups, where 𝑝1 and 𝑝2 are two different primes. Also, we show that for a given different 

primes 𝑝 and 𝑞, every finite group can be generated by a 𝑝-subgroup and a 𝑞-subgroup.  

The paper is consists of an introduction and two fundamental sections. In Section 2, we study some generations of finite 

simple groups, we prove three lemmas, from which we conclude the fundamental theorem about the generation of finite 

simple groups by different Sylow subgroups. In Section 3, we set other fundamental results of the paper, concerning the 

generation of finite groups by some subgroups. 
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2. Generations of Simple Groups 

For the fundamental result in this section (see Theorem 1, below), we need some auxiliary lemmas. Therefore firstly we 

will set three lemmas, with their proof.  

Lemma 1. Let 𝑆 = 𝐴𝑙𝑡𝑛, 𝑛 ≥ 5. If 𝑡 ≤ 𝑛 is prime, then 𝑆 can be generated by a  Sylow 2-subgroup and a Sylow 

𝑡-subgroup. 

Proof. When 𝑛 ≤ 8 the result is clear. Suppose that 𝑛 > 8 and is an odd number. Let 𝑅 be a Sylow 2-subgroup of 𝑆. 
The orbits of 𝑅 have distinct sizes and there are less than log2 𝑛 orbits. Let us choose a 𝑡-element 𝑥, such that 𝑥 has a 

cycle of length 𝑡𝑎 ≥ √𝑛  for 𝑡 odd and at least 𝑛 2⁄  if 𝑡 = 2. In both cases, the size of the orbit is greater than the 

number of orbits of 𝑅. Thus, we can choose a conjugate of 𝑥 so that an orbit of 𝑥 intersects every orbit of 𝑅. 𝐽 ≔
〈𝑅, 𝑥〉 is transitive. Since 𝑛 is odd and 𝑅 ≤ 𝐽, we find that 𝐽 is primitive. Since 𝑛 > 8, the only primitive subgroup of 

𝐴𝑙𝑡𝑛 containing an element moving 4 points is 𝐴𝑙𝑡𝑛 (Wielandt, 1964), and therefore we reached the result.  

Now, suppose that 𝑛 > 9 is an even number. From the previous case, i.e. when 𝑛 is odd, we find that 𝐴𝑙𝑡𝑛−1 = 〈𝑅0, 𝑇〉 
for some 𝑡-subgroup 𝑇 and Sylow 2-subgroup 𝑅0. Let 𝑅 be a Sylow 2-subgroup of 𝑆 properly containing 𝑅0. Then 

〈𝑅, 𝑇〉 properly contains 〈𝑅0, 𝑇〉 = 𝐴𝑙𝑡𝑛−1, whence 〈𝑅, 𝑇〉 = 𝑆. Thus we reached the proof of the Lemma 1. 

Lemma 2. Let 𝑆 be a sporadic simple group and let 𝑃 be a Sylow 2-subgroup of  𝑆. If 1 ≠ 𝑥 ∈ 𝑆, then 𝑆 = 〈𝑃, 𝑥𝑔〉 for 

some 𝑔 ∈ 𝑆. 

Proof. Let 𝑆 be a sporadic simple group, fix a Sylow 2-subgroup 𝑝 of 𝑆, and let 𝑥 be a nonidentity 

element in 𝑆. We use known information about maximal subgroups of 𝑆 to show that 𝑥𝑠 is not a subset of 

the union of those maximal subgroups in 𝑆 that contain  . Let 𝑀 be a maximal subgroup of 𝑆 with the 

property 𝑃 ≤ 𝑀 . The number of 𝑆 -conjugates of 𝑀  that contain 𝑃  is equal to |𝑁𝑆(𝑃)| |𝑁𝑀(𝑃)|⁄ ≤
[𝑁𝑆(𝑃): 𝑃], thus these subgroups can contain at most [𝑁𝑆(𝑃): 𝑃]|𝑥𝑆 ∩ 𝑀| elements from the class 𝑥𝑆. Thus the 

number of elements in 𝑥𝑆  that generate a proper subgroup of 𝑆  together with 𝑃  is bounded from above by 

[𝑁𝑆(𝑃): 𝑃]Σ𝑀|𝑥𝑆 ∩ 𝑀|, where the sum is taken over representatives 𝑀 of conjugacy classes of maximal 

subgroups of the odd index in 𝑆. Let 1𝑀
𝑆  denote the permutation character of 𝑆 on the cosets of  . We have 

|𝑥𝑆 ∩ 𝑀| = |𝑥𝑆|1𝑀
𝑆 (𝑥) 1𝑀

𝑆 (1)⁄ . Hence we are done when we show that 

[𝑁𝑆(𝑃): 𝑃]Σ𝑀 1𝑀
𝑆 (𝑥) 1𝑀

𝑆 (1)⁄ < 1                                                          (1) 

holds. The numbers [𝑁𝑆(𝑃): 𝑃] can be read off from (Wilson, 1998). The Monster group is known to contain exactly five 

classes of  maximal subgroups of odd index, of the structures 21+24. 𝐶𝑜1,   210+16. 𝑂10
+ (2),   22+11+22. (𝑀24 ×

𝑆3),    25+10+20. (𝑆3 × 𝐿5(2)) and [239]. (𝐿3(2) × 3𝑆6), also the corresponding permutation characters are known, see 

(Breuer, 2021). Since upper bound (1) is smaller than 1, for each  𝑥 and 𝑆, we finished the proof. 

Lemma 3. Let 𝑆 be a finite simply connected quasisimple group of Lie type in characteristic 𝑝. Let 𝑃 be a Sylow 

𝑝-subgroup of 𝐺. If 𝑥 ∈ 𝑆 is a noncentral element of 𝑆, then 𝑆 = 〈𝑃, 𝑥𝑔〉 for  some 𝑔 ∈ 𝑆. 

Proof. By Tits's lemma (Seitz, 1973), we find that any maximal subgroup containing 𝑃 is a parabolic subgroup and 

there is precisely one parabolic subgroup containing 𝑃 in each conjugacy class of maximal parabolic subgroups. If 𝑆 has 

twisted rank 1, then the Borel subgroup is the unique maximal subgroup containing 𝑇 and so clearly no non-central 

conjugacy class is contained in the Borel subgroup, whence the result  holds. So we may assume that the rank is at least 

2. First, suppose that 𝑆 is a classical group. If 𝑆 = 𝑆𝐿2(𝑞), then choose a basis for the natural module 𝑣1, … , 𝑣𝑛 and 

assume that 𝑇 stabilizes the flag associated with this ordered basis. Since 𝑆 acts 2-transitively on 1-dimensional spaces, 

given any non-central element 𝑥 ∈ 𝑆, we can choose 𝑔 ∈ 𝑆 so that 𝑔−1𝑥𝑔𝑣1 is not in the span of 𝑣1, … , 𝑣𝑛−1 and so 𝑥𝑔 

is not in any parabolic subgroup containing 𝑇. Now suppose 𝑆 is any other classical group with natural module 𝑉. Since 

we are assuming that 𝑆 has twisted rank at least 2, dim 𝑉 ≥ 4. First, suppose that 𝑆 is not an even-dimensional spin 

group in dimension at least 8. Fix 𝑇 a Sylow 𝑝-subgroup. Then the maximal parabolic subgroups correspond to totally 

singular spaces of distinct dimensions. Let 𝑣1 be a nonzero element of the 1-dimensional  fixed space of 𝑇. If n is the 

rank of 𝑆, then there is an ordered linearly independent set 𝑣1, … , 𝑣𝑛 so that any maximal parabolic subgroup containing 

𝑇 is the stabilizer of the totally singular space 𝑉𝑖 = 〈𝑣1, … , 𝑣𝑖〉. Let 𝑥 be a non-central element of 𝑆. Suppose that 

𝑥𝑣1 = 𝑤. If 𝑤 and 𝑣1  are linearly dependent, then just choose 𝑔 ∈ 𝑆 so that 𝑥𝑔 maps 𝑣1 to element not in 𝑉𝑛. If 𝑤 

is not in 𝑉𝑛 , then already 𝑥 is not in any of the parabolic subgroups containing 𝑇. The last case is if 〈𝑣1, 𝑤〉 is a 

2-dimensional totally singular subspace of 𝑉𝑛. Then there exists 𝑔 ∈ 𝑆 fixing 𝑣1 and mapping 𝑤 to any singular vector 

in 𝑣1
⊥ and since 𝑣1

⊥ is not contained in 𝑉𝑛 (since dim 𝑉 ≥ 4), the result holds in this case. Next, suppose that 𝑆 is an 

even-dimensional spin group of rank 𝑛. In the case, when we have an orthogonal module of dimension 2𝑛, we choose a 

linearly independent set of basis vectors 𝑣1, … , 𝑣𝑛+1 so that the maximal parabolic subgroups containing 𝑇 are the 

stabilizer of the totally singular subspace 𝑉𝑖 = 〈𝑣1, … , 𝑣𝑖〉, 𝑖 = 1, … , 𝑛 − 2 of dimension 𝑖 and the two totally singular 

subspaces 〈𝑣1, … , 𝑣𝑛−1, 𝑣𝑛〉 and 〈𝑣1, … , 𝑣𝑛−1, 𝑣𝑛+1〉. Finally, let us suppose that 𝑆 is an exceptional group of twisted 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 13, No. 3; 2021 

61 

6 

rank 𝑛 . Let 𝑃1, … , 𝑃𝑛  be the distinct maximal parabolic subgroups containing 𝑇 . Let 𝐶 = 𝑥𝑆  for 𝑥  a non-central 

element  of 𝑆. It follows that (Lawther, Liebeck & Seitz, 2002) 

∑
|𝐶 ∩ 𝑃𝑖|

|𝐶|

𝑛

𝑖=1

< 1. 

Therefore 𝐶 ≠ ⋃ (𝐶⋂𝑃𝑖
𝑛
𝑖=1 ), and therefore we finished the proof. 

It remains to consider the special cases when 𝑆 is the simply connected group but 𝑆 𝑍(𝑆)⁄  is not simple. We can ignore 

the case when 𝑆 is a solvable group. This leaves the groups 𝑆𝑝4(2), 𝐺2(2), 3𝐺2(3), and 2𝐹4(2).The first three cases 

have socle 𝐴𝑙𝑡6, 𝑃𝑆𝑈3(3) and 𝑃𝑆𝐿2(8) and we have already proved the result for these groups. In the final case, the 

socle is the derived subgroup of index 2 but precisely the same previous argument (i.e. there are only two maximal 

subgroups containing a Sylow 2-subgroup which are parabolic subgroups intersected with the derived subgroup).  

From previous lemmas, we reach the proof of the following fundamental theorem in this section.  

Theorem 1. Let 𝑆 be a finite non-abelian simple group. Then there exists a prime 𝑝1 with divides |𝑆|, such that 𝑆 can be 

generated by a Sylow 𝑝1-subgroup and a Sylow 𝑝2-subgroup, where 𝑝2 any given prime divides |𝑆|. 

3. Generations of Finite Groups 

Recall that a subgroup 𝐻 of 𝐺 is called intravariant, if for any automorphism 𝜑 of 𝐺, 𝜑(𝐻) and 𝐻 are conjugate in 𝐺. 

The main result in this section will be presented in the following theorem. 

Theorem 2. Let 𝑝 and 𝑞 are different primes and 𝐺 a finite group. Then there exists a Sylow 𝑝-subgroup  𝑃 of 𝐺 and 

an intravariant 𝑞-subgroup 𝑅 such that 𝐺 = 〈𝑃, 𝑅〉. 

Proof: Let 𝑝 and 𝑞 be fixed primes, such that 𝑝 ≠ 𝑞, and let 𝐺 be a counterexample of minimal order. Firstly we will 

prove that: 𝑂𝑝(𝐺) = 1. Let us assume the converse and let 1 ≠ 𝐴 be a minimal characteristic subgroup of 𝐺 with 𝐴 an 

elementary abelian 𝑝-group. By the minimality, we find that 𝐺 𝐴⁄ = 〈𝑃 𝐴⁄ , 𝑅 𝐴⁄ 〉, where 𝑃 is a Sylow 𝑝-subgroup of 𝐺 

and 𝑅 is a subgroup of 𝐺 containing 𝐴 with 𝑅 𝐴⁄  an intravariant 𝑞-group of 𝐺 𝐴⁄ . Since gcd(|𝑅| |𝐴|⁄ , |𝐴|) = 1, it 

follows that 𝐻2(𝑅 𝐴⁄ , 𝐴) = 0, therefore 𝑅 = 𝐴𝑅1 with 𝑅1 a complement of 𝐴 in 𝑅. In particular, 𝑅1 is a 𝑞-subgroup. 

Suppose 𝑎 is an automorphism of 𝐺. Then by conjugating by an element of 𝐺, we may assume that 𝑎(𝑅) = 𝑅. Thus, 

𝑎(𝑅1) is a complement of 𝐴 in 𝑅. Since 𝐻1(𝑅1, 𝐴) = 0, then all complements of 𝐴 in 𝑅 are conjugate via an element 

of 𝐴 and so 𝑎(𝑅1) is conjugate to 𝑅1, therefore 𝑅1 is intravariant and it clear that 𝐺 = 〈𝑃, 𝑅1〉.  

At the second we will prove that: 𝑂𝑞(𝐺) = 1. Let us assume the converse and let 𝐴 be a minimal characteristic subgroup 

of 𝐺 with a 𝑞-subgroup 𝐴. We have 𝐺 𝐴⁄ = 〈𝑄 𝐴⁄ , 𝑅 𝐴⁄ 〉, where 𝑄 𝐴⁄  is a Sylow 𝑝-subgroup of 𝐺 𝐴⁄  and 𝑅 𝐴⁄  is 

intravariant 𝑞-subgroup of 𝐺 𝐴⁄ . Because 𝐴 is characteristic then 𝑅 is intravariant and clearly a 𝑞-subgroup. It is clear 

that 𝑄 = 𝐴𝑃, where 𝑃 is a Sylow 𝑝-subgroup of 𝑄 and of 𝐺. Thus 𝐺 = 〈𝑃, 𝑅〉 and the result follows.  

Now, let 𝐴 be a minimal characteristic subgroup of 𝐺. By the previous arguments, we find that 𝐴 = 𝑆 × … × 𝑆, where 𝑆 

is a non-abelian simple group of order divisible by 𝑝. By Theorem 1, we find that 𝐴 = 〈𝑄, 𝑀〉, where 𝑄 is a Sylow 

𝑝-subgroup of 𝐴 and 𝑀 is a Sylow 𝑟-subgroup of 𝐴 for some 𝑟 ≠ 𝑝. Let 𝐻 = 𝑁𝐺(𝑀), then 𝐻 is a proper subgroup of 

𝐺 , thus 𝐻 = 〈𝐷, 𝑅〉 , where 𝐷  is a Sylow 𝑝-subgroup of 𝐻  and 𝑅  is an intravariant 𝑞 -subgroup of 𝐻 . Since 𝑅  

normalizes 𝑀, we  assume that 𝑅 ≥ 𝑀. 𝐻 is the normalizer of a Sylow subgroup of a characteristic subgroup of 𝐺 and 

so 𝐻 and 𝑅 are intravariant. Assume that 𝐷 contains a Sylow 𝑝-subgroup 𝑄1 of 𝐴. Then 𝑄1
𝑎 = 𝑄 for some 𝑎 ∈ 𝐴. 

Then 𝐷𝑎 ≥ 𝑄. We have the following fact 𝐺 = 𝐽: = 〈𝐷𝑎, 𝑅〉. Firstly we have 𝐽 ≥ 〈𝑄, 𝑀〉 = 𝐴. Since 𝑎 ∈ 𝐴 we see that 

𝐷𝐴 = 𝐷𝑎𝐴 and so 𝐽 ≥ 〈𝐴, 𝐷, 𝑅〉 ≥ 〈𝐴, 𝐻〉. By the Frattini argument, we find that 𝐺 = 𝐻𝐴, thus  𝐽 = 𝐺 as we need. 
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