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Abstract

We propose two different notations for cones generated by a set and for convex cones generated by a set, usually denoted
by a same notation. We make some remarks on the Bouligand tangent cone and on the Clarke tangent cone for star-shaped
sets and for locally convex sets. We give some applications of these remarks to a differentiable optimization problem with
an abstract constraint.
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1. Introduction

In the first part of this paper, i. e. in Section 2, we recall some basic definitions concerning the various types of combina-
tions of vectors of a set S ⊂ Rn; we point out that in the current literature it is often used the same notation to denote the
conic hull of S and the convex conic hull of S , i. e. cone(S ),which may generate some confusions and misunderstandings.
We propose two different notations and make some remarks concerning some particular cases. In the second part of this
paper, i. e. in Section 3, we make some remarks on the Bouligand tangent cone (or contingent cone) to S at x0 ∈ S and
on the Clarke tangent cone to S at x0 ∈ S , when the related set S is convex or locally convex at x0 ∈ S or star-shaped at
x0 ∈ S . In Section 4 we give some applications of the previous remarks to a differentiable optimization problem with an
abstract constraint.

2. Conic Hulls and Convex Conic Hulls

We recall that a set K ⊂ Rn is a cone with vertex at the origin if

x ∈ K =⇒ λx ∈ K, ∀λ > 0.

Many authors, however, do include the vertex in the cone by letting λ = 0 in the definition. It may be useful to accept
both definitions, in order to have more flexibility in the various cases and problems encountered in treating this topic. It is
well-known that a cone K ⊂ Rn is convex if and only if

x, y ∈ K =⇒ x + y ∈ K.

Let x1, x2, ..., xk be vectors of Rn. We recall that a linear combination of the vectors x1, x2, ..., xk is any expression of the
form

k∑
i=1

αixi (1)

where each αi ∈ R.

When
∑k

i=1 αi = 1, the linear combination (1) is called affine combination of the vectors x1, x2, ..., xk.

When it holds that each αi = 0, the linear combination (1) is called convex conic combination or nonnegative combination
of the vectors x1, x2, ..., xk.

When in (1) it holds that each αi = 0 and
∑k

i=1 αi = 1, then the linear combination (1) is called a convex combination of
the vectors x1, x2, ..., xk.

• The collection of all linear combinations of vectors of S is said to be the linear space generated by S or linear span
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of S or also linear hull of S and it is denoted by

lin(S ) or span(S ) :

lin(S ) =

 k∑
i=1

αixi : each xi ∈ S , each αi ∈ R, k ∈ N
 .

It can be proved that lin(S ) is the smallest linear space of Rn containing S .

• The collection of all affine combinations of the vectors of S is called affine hull of S and it is denoted by

a f f (S ) :

a f f (S ) =

 k∑
i=1

αixi : each xi ∈ S , each αi ∈ R,
k∑

i=1

αi = 1, k ∈ N
 .

It can be proved that a f f (S ) is the smallest affine subspace of Rn containing S .

• The collection of all convex conic combinations of the vectors of S is called convex conic hull of S or convex cone
generated by S or convex cone spanned by S and it is denoted, in the present paper, by

cone(S ) :

cone(S ) =

 k∑
i=1

αixi, each xi ∈ S , each αi = 0, k ∈ N
 .

Some authors (e. g. Bazaraa and Shetty (1976)) require that the coefficients αi, i = 1, ..., k, are not all zero, i. e.∑k
i=1 αi > 0. It can be proved that cone(S ) is the smallest convex cone of Rn containing S (i. e. the intersection of all

convex cones in Rn containing S ).

• The collection of all convex combinations of the vectors of S is called the convex hull of S and it is denoted by

conv(S ) or co(S ) :

conv(S ) =

 k∑
i=1

αixi, each xi ∈ S , each αi = 0,
k∑

i=1

αi = 1, k ∈ N
 .

It can be proved that conv(S ) is the smallest convex set of Rn containing S (i. e. the intersection of all convex sets in Rn

containing S ).

We note that if S is any nonempty subset of Rn, we have

S ⊂ conv(S ) ⊂ a f f (S ) ⊂ lin(S );
S ⊂ conv(S ) ⊂ cone(S ) ⊂ lin(S ).

Moreover:

a) S is a linear subspace of Rn if and only if S = lin(S );

b) S is an affine set of Rn if and only if S = a f f (S );

c) S is a convex cone of Rn with vertex at 0 ∈ S if and only if S = cone(S );

d) S is a convex set of Rn if and only if S = conv(S ).

The notation “cone(S )” is widely used, however some authors use other notations: for example Jeter (1986) uses the
notation coni(S ), whereas Dhara and Dutta (2012) use the notation cone co(S ), to denote the convex cone generated by
S . Some authors call the convex cone generated (or spanned) by S , the positive hull of S .

We remark that cone(S ) need not be a closed set, even if S is compact. However, it can be proved that cone(S ) is closed
(and convex) in special cases, such as when S is finite. We speak in this case of finite cone or finitely generated cone, i. e.
the closed and convex cone generated by a finite set C =

{
a1, a2, ..., am

}
of vectors in Rn :

cone(C) =

x ∈ Rn : x =

m∑
i=1

αiai, αi = 0, i = 1, ...,m

 .
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The vectors a1, a2, ..., am of Rn are said to be the generators of cone(C). If ai ≡ Ai, i-th row of a matrix A of order (m, n),
then

cone(a1, a2, ..., am) =
{
x ∈ Rn : µA = x, µ = 0

}
.

The proof that a finitely generated cone is closed is basic in proving the well-known Farkas’ lemma, by means of a
separation theorem between convex sets, even if several authors give this property for granted and skip the related proof.
Some authors use, for the case of a finite number of generators, instead of the notation

cone(a1, a2, ..., am),

the notation
pos(a1, a2, ..., am)

and, if a1, a2, ..., am are the m rows of a matrix A of order (m, n), also the notation

(Rm
+ )A.

It is well-known that a cone described by
K =

{
x ∈ Rn : Bx 5 0

}
,

where B is a matrix of order (m, n), is called a polyhedral (convex) cone. The Minkowski-Weyl Theorem states that a
cone is polyhedral if and only if it is finitely generated. See, e. g., Bertsekas (1999), Florenzano and Le Van (2001),
Hiriart-Urruty and Lemarechal (1993), Rockafellar (1970).

In the literature it is often introduced the conic hull of S ⊂ Rn or radial hull of S as the smallest cone of Rn (not
necessarily convex!) which contains S . Unfortunately this cone is almost always denoted by cone(S ), which can generate
some confusions and misunderstandings. As this cone is given by the union of all rays starting from the origin and passing
through the element x ∈ S , we propose the notation ray(S ) :

ray(S ) =
{
y : y = λx, x ∈ S , λ = 0

}
.

Some authors require λ > 0 and some authors use the notation R+(S ).

Furthermore, some authors speak, for the present case, of cone generated (or spanned) by S , however this can be mislead-
ing, as in the definition of cone(S ) the term “convex” is often omitted. Note that the nonempty set S ⊂ Rn is a cone if and
only if ray(S ) = S .

The basic relation between cone(S ) and ray(S ) is given by the following result.

Theorem 1. If S ⊂ Rn is a nonempty convex set, then

cone(S ) = ray(S ).

See, e. g., Bazaraa and Shetty (1976).

Moreover, it holds, with S ⊂ Rn :
cone(S ) = ray(conv(S )) = conv(ray(S )).

It is sometimes also useful to consider cones and convex cones generated by a set S ⊂ Rn, with reference to a point x0 ∈ S
(or also with reference to a point x0 ∈ cl(S ) or also x0 ∈ Rn). Let x0 ∈ S , with S nonempty set of Rn. Then ray(S , x0) is
the smallest cone of Rn which contains S − x0 and cone(S , x0) is the smallest convex cone of Rn which contains S − x0, i.
e., with x0 ∈ S ,

ray(S , x0) = ray(S − x0) =
{
y : λ(x − x0), x ∈ S , λ = 0

}
;

cone(S , x0) = cone(S − x0).

These cones are also called, respectively, the cone generated by S at x0 (or from x0) and the convex cone generated by S
at x0 (or from x0). The cone generated by S at x0 is called by Palata (1989) the projection cone of S at x0. This cone may
be viewed as a (very) rough approximation of the set S in a neighborhood of x0 ∈ S . In the next section we shall consider
two more “refined” local cone approximations of the set S at x0 ∈ S .
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3. Tangent Cones to Convex Sets, Locally Convex Sets and Star-Shaped Sets

There are several local cone approximations of a set S ⊂ Rn at x0 ∈ S , which better than ray(S , x0) “represent” the
structure of S around the point x0 ∈ S . For a survey, see, e. g., Aubin and Frankowska (1990), Bazaraa and Shetty (1976),
Giorgi and Guerraggio (1992, 2002), Palata (1989).

Definition 1. A sequence
{
xk

}
⊂ Rn�

{
x0

}
, with xk −→ x0 is called tangentially convergent in the direction y ∈ Rn to the

point x0 if

lim
k−→+∞

xk − x0∥∥∥xk − x0
∥∥∥ = y

and we write xk y
−→ x0.

Obviously any convergent sequence xk −→ x0 (with xk , x0 for all k) contains at least a tangentially convergent sub-
sequence. The set of all directions y for which there exists a feasible sequence

{
xk

}
⊂ S , with S ⊂ Rn, tangentially

convergent to x0 ∈ S , form a cone which is a local cone approximation at x0 of the set S .

Definition 2. Let S ⊂ Rn and x0 ∈ S ; the cone

T (S , x0) =

{
λy ∈ Rn : ∃

{
xk

}
⊂ S , xk y

−→ x0, λ = 0
}

is called Bouligand tangent cone or contingent cone to the set S at the point x0. If x0 is an isolated point of S , we set
T (S , x0) = {0} .

Other equivalent characterizations of T (S , x0) are the following ones:

T (S , x0) =


y ∈ Rn : ∃

{
xk

}
⊂ S , lim

k−→+∞
xk = x0, ∃ {λk} ⊂ R+

such that y = lim
k−→+∞

λk(xk − x0)

 ;

T (S , x0) =
{
y ∈ Rn : ∃

{
yk

}
−→ y, ∃ {tk} −→ 0, such that x0 + tkyk ∈ S

}
;

T (S , x0) =
{
y ∈ Rn : ∀N(y), ∀λ > 0, ∃t ∈ (0, λ), ∃ȳ ∈ N(y) such that x0 + tȳ ∈ S

}
.

Note that T (S , x0) is indeed a cone, closed, but not necessarily convex, with 0 ∈ T (S , x0). We note also that:

i) T (S , x0) depends only from the structure of S in a neighborhood of x0, that is

T (S , x0) = T (S ∩ U(x0), x0)

where U(x0) is any neighborhood of x0 (the notion of “Bouligand tangent cone” is therefore an “infinitesimal notion”).

ii) If x0 ∈ int(S ), then T (S , x0) = Rn.

iii) T (S , x0) = T (S̄ , x0), where S̄ = cl(S ).

iv) T (S 1, x0) ⊂ T (S 2, x0), if x0 ∈ S 1 ⊂ S 2.

Moreover, we note that
T (S , x0) ⊂ cl(ray(S − x0)),

however if S is a nonempty convex set, we have the following basic result.

Theorem 2. Let S ⊂ Rn be a nonempty convex set and let be x0 ∈ S , then

T (S , x0) = cl(cone(S − x0)) = cl(ray(S − x0)).

Therefore, if S is a convex set, T (S , x0) is a closed convex cone.

Definition 3. Let S ⊂ Rn be a nonempty set and let x0 ∈ S . Then S is said to be star-shaped at x0 (or star-convex at x0

or radially convex at x0) if
λx0 + (1 − λ)x ∈ S , ∀x ∈ S , ∀λ ∈ [0, 1] .
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Some authors require x0 ∈ cl(S ) and λx0 + (1 − λ)x ∈ S , ∀x ∈ S , ∀λ ∈ (0, 1). It is evident that a convex set is star-shaped
at every point x0 ∈ S and conversely. We note, moreover, that the closure of a star-shaped set at x0 ∈ S is a star-shaped
set at x0, but the interior of a star-shaped set at x0 is not necessarily a star-shaped set. It can be proved the following result
(see, e. g., Bazaraa and Shetty (1976)).

Theorem 3. Let Let S ⊂ Rn be a nonempty set and let be x0 ∈ S . Suppose that S is star-shaped at x0. Then

T (S , x0) = cl(ray(S , x0)).

If we introduce the notion of (negative) polar cone S ∗ of the nonempty set S ⊂ Rn :

S ∗ =
{
y ∈ Rn : yx 5 0, ∀x ∈ S

}
,

then it is not difficult to prove that if S is convex at x0 ∈ S (in particular if S is a convex set), then y ∈ (T (S , x0))∗ if and
only if y(x − x0) 5 0, ∀x ∈ S . This fact will be used further to develop some considerations on optimality criteria for
set-constrained minimization problems.

We have already remarked that in general T (S , x0) is not a convex cone. Guignard (1969) has introduced the following
notion, in order to overcome this “defect”, without assuming convexity of S . The closed convex hull of T (S , x0) is called
the pseudotangent cone to S at x0 and is denoted P(S , x0) :

P(S , x0) = cl(conv(T (S , x0))).

In studying the sufficiency of first-order optimality conditions Guignard (1969) has introduced the concept of pseudocon-
vexity of a set S ⊂ Rn at a point x0 ∈ S .

Definition 4. A nonempty set S ⊂ Rn is said to be pseudoconvex at x0 ∈ S if

S − x0 ⊂ P(S , x0).

It is easy to see that when S is star-shaped at x0, then S is pseudoconvex at x0 and that if S is convex, then S is pseudo-
convex at x0 for all x0 ∈ S . Guignard (1969) remarks that the union of several convex sets, the intersection of which is
not empty, is pseudonvex at any point of this intersection. This is another example of a pseudoconvex set which is not
necessarily convex.

Another definition that sometimes is encountered in the literature is the following one.

Definition 5. Let be given the nonempty set S ⊂ Rn and let be x0 ∈ S . Then S is said to be locally convex at x0 if there
exists a neighborhood V(x0) such that the set S ∩ V(x0) is convex.

We recall that the first-order local cone approximations depend only on the structure of the set S near x0. Hence, if
S ∩ V(x0) is a convex set, i. e. if S is locally convex at x0, then T (S , x0) is convex too and it will hold

T (S , x0) = cl(cone(S ∩ V(x0)), x0).

It must be remarked that the cone in the right-hand side of this last equality is in general smaller than cl(cone(S − x0)).
Simple examples can be created.

We have seen that one of the drawbacks of the Bouligand tangent cone is that it is not convex in general. To overcome this
fact, Clarke (see, e. g., Clarke (1975, 1983)) has introduced a cone which is always closed and convex. This cone can be
represented in various ways, e. g., by means of sequences (see, e. g., Giorgi and Guerraggio (1992, 2002), Hiriart-Urruty
(1979)).

Definition 6. Let be given the nonempty set S ⊂ Rn and let be x0 ∈ S . The cone

TC(S , x0) =

 y ∈ Rn : ∀tk −→ 0+, ∀xk −→ x0, with
{
xk

}
⊂ S ,

∃yk −→ y, such that xk + tkyk ∈ S


is called Clarke tangent cone to S at x0.
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Theorem 4. For any nonempty set S ⊂ Rn the Clarke tangent cone is closed and convex. Moreover,

TC(S , x0) ⊂ T (S , x0).

If S is a convex set, we have

TC(S , x0) = T (S , x0) = cl(cone(S , x0)) = cl(ray(S , x0)).

Remark 1. The two cones TC(S , x0) and T (S , x0) are equal (and convex!) also in the case S is a locally convex set at
x0 ∈ S . We have in this case

TC(S , x0) = T (S , x0) = cl(cone(S ∩ V(x0), x0)).

In general, when TC(S , x0) = T (S , x0), we say that S is Clarke regular at x0 : see, e. g., Rockafellar and Wets (2009).

Remark 2. If S ⊂ Rn is star-shaped at x0 ∈ S , it is no longer true that TC(S , x0) = T (S , x0), as asserted in Palata
(1989) and in Giorgi and Guerraggio (1992). When S is star-shaped at x0, we can assert, for example (see Bazaraa and
Shetty (1976)), that the Bouligand tangent cone is equal to the Kuhn-Tucker tangent cone (called also cone of attainable
directions), but not, as in Giorgi and Guerraggio (1994), that the Bouligand tangent cone is convex. If S is locally convex
at x0, then the convexity of T (S , x0) follows, as previously explained. We take the opportunity to point out an oversight
appearing in Hiriart-Urruty (1979) and in a footnote of R. Cambini (2002). These authors assume S ⊂ Rn to be locally
convex at x0 ∈ S , but write the equality

TC(S , x0) = T (S , x0) = cl(cone(S , x0))

instead of
TC(S , x0) = T (S , x0) = cl(cone(S ∩ V(x0), x0)).

Summing up:

• If S ⊂ Rn is star-shaped at x0 ∈ S , then S is pseudoconvex at x0.

• If S ⊂ Rn is convex, then S is locally convex at any x0 ∈ S .

• If S ⊂ Rn is locally convex at x0 ∈ S , then T (S , x0) = TC(S , x0) (and therefore T (S , x0) is a convex set).

4. Applications to Optimization Problems

Let us consider the following minimization problem with an abstract constraint:

(P) : min f (x), x ∈ S ,

where S ⊂ Rn is a nonempty set and f (x) is differentiable at a point x0 ∈ S .

With regard to problem (P) the following result, due to Gould and Tolle (1971), Guignard (1969), Varaiya(1967) is of
basic importance.

Theorem 5. If x0 ∈ S is a local solution of (P), then

−∇ f (x0) ∈ (T (S , x0))∗ (2)

i. e.
∇ f (x0)y = 0, ∀y ∈ T (S , x0).

The result obtained by Guignard (1969):
−∇ f (x0) ∈ (P(S , x0))∗

is not sharper than the thesis of Theorem 5, because for any cone C ⊂ Rn, it holds C∗ = (cl(conv(C)))∗.

If S is a nonempty convex set, relation (2) of Theorem 5 can be written as

∇ f (x0)(x − x0) = 0, ∀x ∈ S . (3)
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On the grounds of what previously remarked on star-shaped sets, if S is star-shaped at x0 ∈ S and x0 is a local solution
of (P), then (3) holds.

If (3) holds and f (x) is pseudoconvex at x0 ∈ S with respect to S , i. e. (see Mangasarian (1969)

∇ f (x0)(x − x0) = 0 =⇒ f (x) = f (x0), ∀x ∈ S ,

then (3) becomes also a sufficient condition for the global optimality of x0 for (P).

It is easy to prove that the class of differentiable convex functions at x0 ∈ S with respect to S , is strictly contained in the
class of pseudoconvex functions at x0 ∈ S with respect to S . Unfortunately, there are no inclusion relationships between
quasi-convexity, semistrict quasiconvexity and pseudoconvexity at a point x0 ∈ S with respect to S (see Cambini and
Martein (2009)). However, if f (x) is continuous on the open set S ⊂ Rn, and f (x) is differentiable and quasiconvex at
x0 ∈ S with respect to S , with ∇ f (x0) , 0, then f (x) is pseudoconvex at x0 with respect to S .

We remark that Guignard (1969) has proved that relation (2) is sufficient for the global optimality of x0 ∈ S for (P) if
f (x) is pseudoconvex at x0 with respect to S and S is pseudoconvex at x0. We note also that in absence of generalized
convexity assumptions on f (x), a stronger form of (2) is a sufficient optimality condition for x0 ∈ S to be a local strict
minimizer for (P). The following result is due to Hestenes (1966, 1975).

Theorem 6. If for x0 ∈ S it holds
∇ f (x0)y > 0, ∀y ∈ T (S , x0)� {0} , (4)

then x0 is a strict local minimizer for (P). More precisely, there exist a positive number α and a neighborhood N(x0) of x0

such that
f (x) − f (x0) = α

∥∥∥x − x0
∥∥∥ , ∀x ∈ N(x0) ∩ S . (5)

It must be noted that condition (4) requires for its application that T (S , x0) is a pointed cone, i. e. a cone which does not
contain any line through the origin. Relation (5) in other words says that x0 is a strict local minimizer of order 1 or strong
local minimizer or sharp local minimizer (see, e. g., Still and Streng (1996), Polyak (1987)).

Another relationship between (P) and the Bouligand tangent cone to S at x0 ∈ S is given in the following result (see, e.
g., Giorgi (1985), Martein (1985)).

Theorem 7. If x0 ∈ S is a local solution of (P), then x0 is also solution of the problem

min
x∈T (S ,x0)

{
f (x0) + ∇ f (x0)(x − x0)

}
.

The optimality conditions expressed by the previous results involve vectors belonging to the Bouligand tangent cone
T (S , x0). In general, however, there is no relationship between the optimality of x0 ∈ S for (P) and for the problem

(P1) : min f (x), x ∈ T (S , x0) ∩ S .

For example, consider the problem 
min
x∈S

f (x, y) = y

S =
{
(x, y) ∈ R2 : x3 + y = 0

}
.

Here (P) has no solution, whereas x0 = (0, 0) is a local minimizar for (P1).

If we consider the problem 
min
x∈S

f (x, y) = y − x2

S =
{
(x, y) ∈ R2 : x2 − y 5 0

}
,

the point x0 = (0, 0) is a local minimizer for (P), whereas the problem (P1) has no solution.

The author thanks an anonymous referee for some useful suggestions.
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set constraint; in S. Komlosi, T. Rapcsàk and S. Schaible (Eds.), Generalized Convexity, Springer Verlag, Berlin,
171-185. https://doi.org/10.1007/978-3-642-46802-5 15

Giorgi, G., & Guerraggio, A. (2002). Characterizations, comparisons, algebraic and topological properties of tangent
cones, Journal of Statistics & Management Systems, 5, 275-294. https://doi.org/10.1080/09720510.2002.10701060

Gould, F. J., & Tolle, J. W. (1971). A necessary and sufficient qualification for constrained optimization. SIAM J. Appl.
Math., 20, 164-172. https://doi.org/10.1137/0120021

Guignard, M. (1969). Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space.
SIAM J. on Control, 7, 232-241. https://doi.org/10.1137/0307016

Hestenes, M. R. (1966). Calculus of Variations and Optimal Control Theory. J. Wiley, New York.

Hestenes, M. R. (1975). Optimization Theory. The Finite Dimensional Case. J. Wiley, New York.

Hiriart-Urruty, J.-B. (1979). Tangent cones, generalized gradients and mathematical programming in Banach spaces,
Mathematics of Operations Research, 4, 79-97. https://doi.org/10.1287/moor.4.1.79

Hiriart-Urruty, J.-B., & Lemarechal, C. (1993). Convex Analysis and Minimization Algorithms. Vol. I and Vol. II,
Springer-Verlag, Berlin, Heidelberg, New York. https://doi.org/10.1007/978-3-662-02796-7

Jeter, M. W. (1986). Mathematical Programming. An Introduction, Marcel Dekker, Inc., New York.

Mangasarian, O. L. (1969). Nonlinear Programming. McGraw-Hill, New York.

Martein, L. (1985). Regularity conditions for constrained extremum problems, J. Optim. Theory Appl., 47, 219-233.
https://doi.org/10.1007/BF00940770

Palata, J. (1989). A survey of conical approximations used in optimization. Optimization, 20, 147-161.
https://doi.org/10.1080/02331938908843424

Polyak, B. T. (1987). Introduction to Optimization (Translations Series in Mathematics and Engineering). Optimization
Software, Inc., Publications Division, New York.

Rockafellar, R. T. (1970). Convex Analysis, Princeton Univ. Press, Princeton. https://doi.org/10.1515/9781400873173

Rockafellar, R. T., & Wets, R. J.-B. (2009). Variational Analysis (Corrected 3rd printing). Springer Verlag, Berlin.

Still, G., & Streng, M. (1996). Optimality conditions in smooth nonlinear programming. J. Optim. Theory Appl., 90,

20



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 3; 2021

483-515. https://doi.org/10.1007/BF02189792

Varaiya, P. P. (1967). Nonlinear programming in Banach spaces, SIAM J. Appl. Math., 15, 284-293.
https://doi.org/10.1137/0115028

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

21


