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Abstract

We consider the constrained optimization problem defined by:

f (x∗) = min
x∈X

f (x) (1)

where the function f : RRRn −→ RRR is convex on a closed bounded convex set X.

To solve problem (1), most methods transform this problem into a problem without constraints, either by introducing
Lagrange multipliers or a projection method. The purpose of this paper is to give a new method to solve some constrained
optimization problems, based on the definition of a descent direction and a step while remaining in the X convex domain.
A convergence theorem is proven. The paper ends with some numerical examples.

Keywords: nonlinear optimization, modified Newton’s method

1. Introduction

In applied mathematics such as in many scientific fields, we are often led to solve nonlinear optimization problems with
constraints. Several authors have studied the solution of nonlinear optimization problems with constraints, such as (Dennis
& Schnabel, 1983; Ortega & Rheinboldt, 1970; Laurent, 1972; Culioli, 1994; Rhanizar, 2002; Rhanizar, 2020). Among
the methods used to solve the problem (1) by transforming it to an unconstrained problem, we can cite the projection
methods defined by :

xk+1 = PX(xk − αk∇ f (xk))

with

||x − PX(x)|| = min
y∈X
||x − y||

This method is only applicable if one can easily compute the projection PX , for example if X =
∏m

i=1[ai, bi] is a block of
RRRn. But if X is defined by constrained inequalities, it is not easy in general to use this method.

We also find the external penalization method which introduces a function:

ψ : RRRn −→ RRR having the following properties:
ψ is continuous and convex
ψ(x) ≥ 0 ∀x ∈ RRRn

ψ(x) = 0 ⇐⇒ x ∈ X

The method considers ∀ε > 0 a function fε : RRRn −→ RRR defined by:

fε(x) = f (x) +
1
ε
ψ(x)

The method consists in minimizing fε(x) on RRRn with ε tending to 0.

This method is applicable if it is easy to build a function ψ with its properties.
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We also find the method SQP (Sequential Quadratic Programming). By introducing the Lagrangian, this method consists
in solving series of quadratic problems given by:

mind∈Xk

1
2

dT∇2
xxL(xk, λk)d + ∇ f (xk)T.d

By adding the Lagrange multipliers, the number of variables increases.

In the present paper we present an optimization method with constraints without reducing the problem to the case without
constraints. In (Rhanizar, 2020), we have developed an optimization method with constraints defined by:

xk+1 = xk + αkdk

dk = yk − xk

(∇ f (xk), yk) = miny∈X(∇ f (xk), y)
αk ∈]0, 1[

This method has a geometric convergence and the sequence (xk) checks:

||xk − x∗|| ≤ Cqk, C > 0 and q ∈]0, 1[

In general, gradient methods have slow convergence. This is due to the fact that the admissible directions used are obtained
from first-order approximations of the function to be optimized. Hence the idea of obtaining admissible directions from
second order approximations. This idea has been widely developed for the unconstrained problems. In this paper, we
propose to develop a second order method applied to constrained optimization problems. Let us now give some notations
to be used throughout this article:(
., .

)
denotes the usual scalar product

(
x, y

)
=

∑n
i=1 xiyi for x and y two vectors of RRRn.

We shall also use the Euclidean vector norm ||x|| =
(∑n

i=1 x2
i

) 1
2

.

The induced matrix norm ||A|| = max||x||=1||Ax||.

∇ f (x) =

(
∂ f
∂xi

(x)
)

1≤i≤n
: the gradient of the function f .

∇2 f (x) =

(
∂2 f
∂2 xi x j

(x)
)

1≤i≤n
1≤ j≤n

: the Hessian matrix.

The remainder of the paper is organized as follows: The introduction is presented in section 1. In section 2, we describe
how to choose the direction of descent and a new algorithm that solves problem (1). Section 3 is devoted to results of
convergence of the new method. We then study the speed of convergence in section 4. In section 5, some numerical
examples are elaborated. The conclusions are given in section 6.

2. Searching for a Direction of Descent

Instead of using a first order approximation of the function to be optimized, we will determine the admissible directions
from second order approximations. Hence the idea of defining the directions dk as follows:

For each approximation xk we define:

dk = yk − xk with yk the solution of the following problem :

min
y∈X

1
2

(
∇2 f (xk)(y − xk), y − xk

)
+

(
∇ f (xk), y − xk

)
(4)

and we define xk+1 = xk + αkdk with 0 < αk ≤ 1

For each k, we consider the function gk defined by:

gk(y) =
1
2

(
∇2 f (xk)(y − xk), y − xk

)
+

(
∇ f (xk), y − xk

)
∀y ∈ X (5)

Using the fact that y is a minimum, we get gk(yk) ≤ gk(xk) = 0, so:(
∇ f (xk), dk

)
≤ −

1
2

(
∇2 f (xk)dk, dk

)
≤ 0 (6)
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For the direction dk = yk − xk, we have two cases to consider:

First case: suppose dk = 0, so yk = xk and gk(yk) = 0, thus from (4), we have:

0 ≤
1
2

(
∇2 f (xk)(y − xk), y − xk

)
+

(
∇ f (xk) , y − xk

)
, ∀y ∈ X

On the other hand:
f (y) − f (xk) ≈

(
∇ f (xk) , y − xk

)
+

1
2

(
∇2 f (xk)(y − xk), y − xk

)
≥ 0

and thereafter:

f (y) ≥ f (xk) ∀y ∈ X

therefore xk is the solution to the problem (1) .

Second case: If dk , 0

Using relation (6) and the hypothesis ∇2 f (xk) is positive definite,we have (∇ f (xk) , dk) < 0

which gives dk is a direction of descent, which implies that f (xk+1) − f (xk) < 0

But this condition is not sufficient for convergence (Rondepierre, 2017). This is why we are going to impose :

f (xk+1) − f (xk) ≤
1
2
αkgk(yk) (7)

With αk ∈]0, 1].

So we have the following algorithm:

Algorithm

1. Choose x0 ∈ X, ε ∈]0, 1[, α0 ∈]0, 1[ and k := 0

2. At step k
2.1. Compute ∇ f (xk)
2.2. Compute yk ∈ X by (4)
2.3. Set dk = yk − xk

3. If |(∇ f (xk) , dk)| ≤ ε, then:
3.2. Set x∗ = xk,
3.3. Stop

end If
4. Compute xk + αkdk

5. If f (xk + αkdk) − f (xk) ≤ 1
2αkgk(yk)

5.1. xk+1 = xk + αkdk

5.2. Set k := k + 1 and go to 2
end If
6. αk = 1

2αk and go to 4.

3. Convergence Study

The following theorem shows the possible choice of αk verifying (7) and the convergence of the sequence (gk(yk)k to the
solution 0.

Theorem 1 Let f be of class C2 on X convex bounded, and suppose that there exists m > 0 and M > 0, such that:

m||y||2 ≤
(
∇2 f (x)y, y

)
≤ M||y||2 ∀x, y ∈ X (8)

Then:

1. xk ∈ X ∀k ≥ 0
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2. Condition f (xk + αkdk) − f (xk) ≤ 1
2αk

(
∇ f (xk) , dk

)
is satisfied for 0 < αk ≤

−gk(yk)
(M−m)||yk−xk)||2

3. f (xk) is a convergent sequence

4. gk(yk) −→ 0 when k −→ +∞

Proof.

1) x0 ∈ X, we suppose xk ∈ X. We have yk ∈ X and αk ∈]0.1] , then xk+1 = xk + αk(yk − xk) ∈ X

2) By applying Taylor formula to f , we have:

f (xk+1) − f (xk) =

(
∇ f (xk), xk+1 − xk

)
+

1
2

(
∇2 f (tk)(xk+1 − xk), xk+1 − xk

)
with tk = xk + s(xk+1 − xk) and 0 < s < 1.

Using the relation (7) , the convexity of gk, and gk(xk) = 0, we have:

f (xk+1) − f (xk) = gk(xk+1) −
1
2

(
∇2 f (xk)(xk+1 − xk), xk+1 − xk

)
+

1
2

(
∇2 f (tk)(xk+1 − xk), xk+1 − xk

)

= gk((1 − αk)xk + αkyk) −
1
2

(
∇2 f (xk)(xk+1 − xk), xk+1 − xk

)
+

1
2

(
∇2 f (tk)(xk+1 − xk), xk+1 − xk

)
≤ αkgk(yk) −

1
2

(
∇2 f (xk)(xk+1 − xk), xk+1 − xk

)
+

1
2

(
∇2 f (tk)(xk+1 − xk), xk+1 − xk

)
(9)

By the relation (9) and the assumption (8) we get:

f (xk+1 − f (xk) ≤ αkgk(yk) +
1
2
α2

k(M − m)||yk − xk ||
2

For the (7) condition to be verified, it is sufficient that:

αkgk(yk) +
1
2
α2

k(M − m)||yk − xk ||
2 ≤

1
2
αkgk(yk)

so αk verifies:

αk ≤
−gk(yk)

(M − m)||yk − xk)||2

We can choose αk = α02−i with i as the first clue that verifies:

2−iα0 ≤
−gk(yk)

(M − m)||yk − xk)||2

It’s always possible indeed:
−gk(yk)

(M − m)||yk − xk)||2
> 0

and 2−nα0 −→ 0 when n −→ +∞.

3) We have:

f (xk+1) − f (xk) ≤
1
2
αkgk(yk) ≤ 0

Then: ( f (xk)) is a declining sequence, so it converges.

4) The condition on αk, gives:

2−i+1α0 >
−gk(yk)

(M − m)||yk − xk)||2
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Then:

2αk >
−gk(yk)

(M − m)||yk − xk)||2
(10)

So:
1
2
αkgk(yk) <

−(gk(yk))2

4(M − m)||yk − xk ||
2

But:
f (xk+1) − f (xk) ≤

1
2
αkgk(yk),

Then:

f (xk+1) − f (xk) ≤
−(gk(yk))2

4(M − m)||yk − xk ||
2

As a result:

0 ≤ (gk(yk))2 ≤ 4(M − m)||yk − xk ||
2( f (xk) − f (xk+1))

≤ 4(M − m)D2( f (xk) − f (xk+1))

with D = max(x,y)∈X2 ||x − y||, and using 3) of the theorem 1 we have:

gk(yk) −−−−−→
k→+∞

0.

4. Convergence Speed Assessment

The demonstration of the theorem that gives the speed of convergence of the sequence (xk)k requires the following lemma1
which is a result on Banach’s fixed point theorem for contractions.

Lemma 1 Let (xk)k be a sequence verifying the following hypothesis:

∀k ≥ 0 ∃ βk such as ||xk+1 − xk || ≤ βk ||xk − xk−1||

with βk −−−−−→
k→+∞

0

Then :

1. xk is a convergent sequence

2. ∃K > 0, ∃C > 0,∀k ≥ K : ||xk − x∗|| ≤ CβKβK+1...βk

with x∗ = lim
k → +∞

xk

Lemma 2 Under the same assumptions as in Theorem 1, we have:

||yk − xk || −−−−−→
n→+∞

0

Proof.

gk(yk) = miny∈Xgk(y) implies (∇gk(yk), yk − xk) ≤ 0
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Which gives:

(
∇ f (xk), yk − xk

)
+

(
∇2 f (xk)(yk − xk), yk − xk

)
≤ 0

So: (
∇ f (xk), yk − xk

)
≤ −

(
∇2 f (xk)(yk − xk), yk − xk

)
≤ 0

As a result:

(
∇ f (xk), yk − xk

)
+

1
2

(
∇2 f (xk)(yk − xk), yk − xk

)
≤ −

1
2

(
∇2 f (xk)(yk − xk), yk − xk

)
Using the relation (8) we have:

gk(yk) ≤ −
m
2
||yk − xk ||

2 (12)

Thereafter:
||yk − xk ||

2 ≤ −
2
m

gk(yk)

Using 4) of Theorem 1, we obtain:
||yk − xk || −−−−−→

n→+∞
0

Theorem 2 Under the same assumptions as in Theorem 1, we have:

1. ∃K > 0, ∀k ≥ K, we have xk+1 = yk

2. xk converges to a x∗ limit a super-linear way.

3. x∗ is the solution to problem (1).

Proof.

1. By the relation (9) and equality xk+1 − xk = αk(yk − xk),we have:

f (xk+1 − f (xk) ≤ αkgk(yk) +
1
2
α2

k ||∇
2 f (xk) − ∇2 f (tk)||||(yk − xk ||

2

To have the inegality (7) it is enough that the following conditio is verified

αkgk(yk) +
1
2
α2

k ||∇
2 f (xk) − ∇2 f (tk)||||(yk − xk ||

2 ≤
1
2
αkgk(yk)

so αk verifies:

αk ≤
−gk(yk)

||∇2 f (xk) − ∇2 f (tk)||||yk − xk)||2
(13)

On the other hand by the relation (12) we have:

m
2||∇2 f (xk) − ∇2 f (tk)||

≤
−gk(yk)

||∇2 f (xk) − ∇2 f (tk)||||yk − xk)||2
(14)

By the Lemma 2, we also have:

||tk − xk || = ||s(xk+1 − xk)|| ≤ ||yk − xk)|| −−−−−→
k→+∞

0.

Which implies:
||∇2 f (xk) − ∇2 f (tk)|| −−−−−→

k→+∞
0. (15)
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And: m
2||∇2 f (xk) − ∇2 f (tk)||

−−−−−→
k→+∞

+∞

And using (14) we also have:
−gk(yk)

||∇2 f (xk) − ∇2 f (tk)||||yk − xk)||2
−−−−−→
k→+∞

+∞.

So ∃K > 0 such as ∀k ≥ K we have :

1 ≤
−gk(yk)

||∇2 f (xk) − ∇2 f (tk)||||yk − xk)||2

Using the relation 13 and condition 0 < αk ≤ 1 we get: For k ≥ K the inequality (7) is checked for αk = 1 which
gives:

xk+1 = yk ∀k ≥ K (16)

2. By the convexity of gk, the generalized Lagrange formula (Kolmogorov & Fomine, 1979), and the relation gk(xk) =

0, we have:

gk(xk+1) ≥
(
∇gk(xk), xk+1 − xk

)
=

(
∇ f (xk), xk+1 − xk)

)
+

(
∇2 f (xn)(xk+1 − xk), xk+1 − xk

)
≥

(
∇ f (xk), xk+1 − xk)

)
=

(
∇ f (xk) − ∇ f (xk−1), xk+1 − xk

)
+

(
∇ f (xk−1), xk+1 − xk

)
=

(
∇2 f (tk)(xk − xk−1), xk+1 − xk

)
+

(
∇ f (xk−1), xk+1 − xk

)
=

(
∇ f (xk−1) + ∇2 f (xk−1)(xk − xk−1), xk+1 − xk

)
+

(
(∇2 f (tk) − ∇2 f (xk−1))(xk − xk−1), xk+1 − xk

)
So:

gk(xk+1) ≥
(
∇gk−1(xk), xk+1 − xk

)
+

(
(∇2 f (tk) − ∇2 f (xk−1)(xk − xk−1), xk+1 − xk

)
(17)

with tk = xk−1 + s(xk − xk−1) and s ∈ [0, 1], which gives Using the relation (16) and the fact that

minx∈Xgk−1(x) = gk−1(yk−1) = gk−1(xk)

we obtain: (
∇gk−1(xk), xk+1 − xk

)
≥ 0

And from the relation (17), it follows that:

g(xk+1) ≥
(
(∇2 f (tk) − ∇2 f (xk−1)(xk − xk−1), xk+1 − xk

)
Which gives:

−g(xk+1) ≤ ||∇2 f (tk) − ∇2 f (xk)||||xk − xk−1||||xk+1 − xk ||

Moreover, by (12) and (16), we have:

||xk+1 − xk || ≤
2||∇2 f (tk) − ∇2 f (xk)||

m
||xk − xk−1||

By having:

βk =
2||∇2 f (tk) − ∇2 f (xk)||

m
and using (15), we have:

||xk+1 − xk || ≤ βk ||xk − xk−1||
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With βk −−−−−→
k→+∞

0

Using Lemma 1, we finally obtain that: xk is a convergent sequence

And:
∃K > 0, ∃C > 0,∀k ≥ K ||xk − x∗|| ≤ CβKβK+1...βk

With: x∗ = lim
k → +∞

xk

3. Let us show that x∗ is the solution of problem (1).

Using relation (4) we have: (
∇gk(yk) , yk − y

)
≤ 0 ∀y ∈ X

Which gives: (
∇ f (xk) , yk − y

)
+

(
∇2 f (xk)(yk − xk) , yk − y

)
≤ y ∀y ∈ X

Using the Lemma (2) and the fact that: x∗ = lim
k → +∞

xk

We have thus: (
∇ f (x∗) , x∗ − y

)
≤ ∀y ∈ X

Which proves that x∗ is the solution to problem (1).

5. Numerical Examples

In this section, we present some numerical experiments. We compare the new method N.M. with a quadratic program-
ming method Q.M.. This comparison is summarized in the tables which give the number of iterations, the associated
residual norms for each method and the convergence time.

Example 1:

We consider the following problem:


Minimize 0.5x2

1 + 0.5x2
2 − 2x1x2 − x1 − 2x2

subject to :
{

x1 + x2 ≤ 1
x1 ≥ 0, and x2 ≥ 0.

Table 1. Numerical results of example 1, x0 = (0.6, 0.9)

iterations N.M. Q.M.
1 0.354338193757822 0.354 e+00
2 2.342287234782921e-05 7.165e-01
3 4.950612686125601e-10 1.679e-03
4 3.021e-08
5

CPU 0.499203199999954 s 0.951606100000006 s

x∗ = (0.333333333463281, 0.666666666355120)

Example 2:

In this example, we have chosen the Resonbrock function defined by:

f (x) =

n
2∑

i=1

[(x2i−1 − 1)2 + 100(x2
2i−1 − x2i)2]

We consider the following problem:
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Minimize f (x) =

∑ n
2
i=1

(
(x2i−1 − 1)2 + 100(x2

2i−1 − x2i)2
)

subject to :
{

AX ≤ b
xi ≥ 0, , i = 1, ..., n

Where: A =



1 1 1 ... 1 1
0 1 1 ... 1 1
0 0 1 ... 1 1
0 0 . ... . .
0 0 . ... . .
0 0 0 ...0 1 1
0 0 0 ...0 0 1


and b =



n
n − 1
.
.
.
2
1


For n = 2

Table 2. Numerical results of example 2. X0 = (0.7, 0.8)

iterations N.M. Q.M.
1 0.028478407097865 0.028478e+00
2 0.012305422981477 3.370370e-02
3 0.0028790327150207 4.682192e-05
4 3.753682455549126e-04 2.582192e-07
5 9.362730949709947e-06
6 4.992750200674966e-08
7 4.795137971350407e-09

CPU 0.6708430000000 s 0.967206199999993 s

x∗ = (0.999492283237436 , 0.998982719563765)

For n = 4

Table 3. Numerical results of example 2. X0 = (0.8, 0.9, 2, 3).

iterations N.M. Q.M.
1 60.208398256230012 60.208e+00
2 10.951976263434688 1.646e+01
3 0.085938289646478 5.140e-02
4 9.721017738673661e-06 9.191e-05
5 4.159793037111924e-08 5.159e-07

CPU 0.577203700000041 s 1.060806799999966 s

x∗ = (0.999754865648997, 0.999508812425961, 0.999325348316186, 0.998648593607337)

For n = 6
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Table 4. Numerical results of example 2. X0 = (1, 1, 2, 3,−1, 1)

iterations N.M. Q.M.
1 9.482806440169231 9.482e+00
2 1.203531412605563 1.389e-01
3 0.952791678359950 6.529e-05
4 0.622953650681599 7.737e-07
5 0.239340264855938
6 0.418995706912790
7 0.145547118767705
8 0.064522231068026
9 0.031789110436983
10 0.009208499425393
11 0.002450547757329
12 2.002389648644385e-04
13 3.512172376494795e-06
14 2.613283061750371e-08

CPU 0.951606099999992 s 1.310408399999972 s

x∗=

Columns 1 through 4

0.999832428389446 , 0.999664221762951 , 0.999606232212638 , 0.999211176526036

Columns 5 through 6

0.999232165748957 , 0.998462090227239

6. Conclusions

1. The method described in this paper minimizes a sequence of quadratic problems under constraints without using
Lagrange multipliers, which does not increase the number of variables.

2. With this method, we can solve an important class of problems encountered in numerical analysis which are formulated
as follows: 

Min f (x)
Ax ≤ b
x ≥ 0

where A is the matrix that defines the constraints, x is the vector of variables and b is the vector of bounds of the variables
. At each iteration xk, we determine the direction dk = yk − xk by solving the following problem

Min 1
2 (Hky, y) + (ck, y)

Ay ≤ b
y ≥ 0

where Hk = ∇2 f (xk) and ck = ∇ f (xk).

3. What is also important is that in the sequence of quadratic problems solved by the method, what changes is the objective
function. This gives a gain in memory space and execution time.
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Culioli, J-C. (1994). Introduction à l’Optimisation . Ellipses, Paris.

Dennis, J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations.
Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611971200

Kolmogorove, H., & Fomine, S. (1979).lments de la thorie des fonctions et de l’analyse fonctionnelle. Edition Mir,
Moscou.

Laurent, P-J. (1972). Approximation et optimisation. Hermann, Paris.

99



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 2; 2021

Moulin, H., & Fougelman-Souli, F. (1979).Convexit dans les mathmatiques de la dcision. Hermann, Paris.

Rondepierre, A. (2017). Mthodes numriques pour l’optimisation non linaire dterministe.

Ortega, J. M., & Rheinboldt, W. C. (2000). Iterative solution of nonlinear equations in several variables. Society for
industrial and applied mathematics. https://doi.org/10.1016/C2013-0-11263-9

Rhanizar, B. (2002). Nonlinear Multiple Hybrid Procedures For Solving Some Constrained Nonlinear Optimization
problems. Applicationes mathematicae, 29(2), 185-198. http://dx.doi.org/10.4064/am29-2-5

Rhanizar, B. (2020). On a New Optimization Method With Constraints. Journal of mathematics research, 12(5), 27-36.
http://dx.doi.org/10.5539/jmr.v12n5p27

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

100


