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Abstract

We set forth a time-fractional logistic model and give an implicit finite difference scheme for solving of the model. The L2

stability and convergence of the scheme are proved with the aids of discrete Gronwall inequality, and numerical examples
are presented to support the theoretical analysis.
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1. Introduction

Logistic equation with space distribution is an important mathematical model in describing space population ecology with
carrying capacity, which is given by Brauer & Castillo-Chavez (2012)

ut = ∇ · (D∇u) + ru(1 − u/K), (1.1)

where u = u(x, t) denotes the population density at t > 0 and x ∈ Ω, Ω is a bounded domain with smooth boundary, and D
is the diffusion coefficient(tensor), r > 0 is the intrinsic growth rate, and K > 0 is the carrying capacity of the population.
Eq.(1.1) is also called Fisher equation in the research field of nonlinear partial differential equations.

There are a lot of researches on nonlinear reaction-diffusion systems like Eq.(1.1), and most of the studies focus on
dynamics analysis from the viewpoints of population ecology and epidemiology, see Bai & Wang (2005), Balanov et
al. (2008), Chakraborty et al. (2007), Jin & Zhao (2008), Korobenko & Braverman (2009), Wang et al. (2018), Zhao
(2003) for instance. On the aspect of numerical methods for nonlinear partial differential equations, based on the classical
work by Xu (1994, 1996), a two-grids finite difference algorithm for nonlinear parabolic-type equations was set forth by
Dawson et al. (1998), and an optimal error estimate was obtained which gave ideas and approaches for solving nonlinear
fractional diffusion equation. We refer to the monograph by Sun (2018) and references therein for difference methods of
solving nonlinear evolution equations.

The fractional differential equations and their applications have attracted much attentions in science and engineering dur-
ing the last decades. We refer to El-Nabulsi (2011, 2019, 2020), Lima et al. (2007), Magin (2006), Moshrefi-Torbati
& Hammond (1998), Singla & Gupta (2016) for the applications of fractional calculus in quantum mechanics, molec-
ular physics, fluid and microfilaments, bioengineering, signal processing and system control, etc.. Especially for solute
transport behaviors with memory in heterogeneous porous media with low-permeability, the fractional diffusion equations
could be more suitable than those of classical diffusion equations, see Chen et al. (2010), Kelly & Meeschaert (2019),
Schumer & Benson (2003), Zhang et al. (2009), Zhou et al. (2019) for instance. Under the constraints of available
resources in a living environment, if considering the influence of historical factors on the diffusion and growth of a pop-
ulation, we can get a time-fractional diffusion equation by replacing the integer-order derivative of ut in Eq.(1.1) with a
time fractional derivative, named the fractional logistic model, which is given by

R ∂αt u = ∇ · (D∇u) + ru(1 − u/K), (1.2)

where R > 0 denotes the time-scale factor, and ∂αt u denotes the Caputo’s fractional derivative of u on t > 0 with the order
of α ∈ (0, 1) (Podlubny, 1999), and the others denote the same meanings as in Eq.(1.1).

In contrast to the classical diffusion equations characterized by the exponential decay in time and Gaussian profile in space,
it reveals that fractional diffusion equations possess properties of slow decay in time and long-tailed profile in space. Thus
the fractional diffusion equation Eq.(1.2) could be more suitable than the classical logistic models in modeling anomalous
diffusion and sub-growth of a population with carrying capacity. Nevertheless, it is very difficult to study well-posedness
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of nonlinear fractional diffusion equations like (1.2). In the case of the diffusion coefficient and the initial distribution are
both constants, the unique existence of weak solution to the time-fractional diffusion equation with a nonlinear term is
proved by Luchko et al. (2013), and most of the researches on nonlinear fractional differential equations are concerned
with numerical methods, see Liu et al. (2015, 2016, 2018), Li & Rui (2017) for instance. Recently, a two-grids algorithm
based on finite difference method was utilized to solve a 2D nonlinear time fractional mobile-immobile solute transport
model, and the L2 stability and convergence were proved (Qiu et al., 2020), and a multi-grids algorithm was set forth for
solving nonlinear fractional diffusion equations in 1D and 2D cases, and the unique solvability, stability and convergence
of the numerical schemes were proved by the optimal error estimates (Maurya et al., 2021). For the detailed numerical
methods of solving fractional differential equations, see the monograph (Sun & Gao, 2020) and the references therein.

This paper is to deal with the time-fractional logistic diffusion model (1.2) in 1D case with a general initial distribution
from numerics. The motivation is to get an effective method for solving of the nonlinear time-fractional logistic model
which can give basis for its application in ecology and biology. We are to set forth an implicit finite difference scheme
for solving of the model, and prove its stability and convergence in L2 norm, and present numerical examples to support
the theoretical analysis. As compared with the known results, the fractional model is concrete due to the special nonlinear
term, and the convergent rate of the difference scheme can reach to the order of h2+α in the case of τ = h2, where τ is
the time step and h is the space step, and α ∈ (0, 1) is the order of the time fractional derivative. The rest of the paper is
arranged as follows.

In section 2, an implicit finite difference scheme for the nonlinear fractional logistic problem is set forth, and in section
3 the L2 stability and convergence are proved with the aids of discrete Gronwall inequality. Numerical examples are
presented in section 4 and concluding remarks are given in section 5.

2. The Finite Difference Scheme

2.1 The Forward Problem

Let L > 0,T > 0, and denote Ω = (0, L), ΩT = Ω× (0,T ). Consider the 1D time-fractional logistic equation with constant
diffusion coefficient:

∂αt u = Duxx + ru(1 − u/K) + γ(x, t), (x, t) ∈ ΩT , (2.1)

where γ(x, t) is the force term. Given the initial distribution

u(x, 0) = u0(x), 0 ≤ x ≤ L, (2.2)

and the homogeneous Neumann boundary condition

∂u
∂x
|x=0 =

∂u
∂x
|x=L = 0, 0 ≤ t ≤ T, (2.3)

where u0(x) is assumed to be a smooth function taking nonnegative values in Ω.

The forward problem is composed by Eq.(2.1) with the initial boundary conditions (2.2)-(2.3). This paper is devoted to
the finite difference solution of the forward problem. In the follows for convenience of writing, we denote the nonlinear
source term by

f (u) := ru(1 − u/K). (2.4)

By the real-life meanings of logistic models, the solution u is nonnegative and bounded, i.e., there is 0 ≤ u(x, t) < K for
(x, t) ∈ ΩT , where K > 0 is the carrying capacity. Obviously there exists constant C > 0 such that the nonlinear function
f (u) satisfying the condition:

(A1) | f (u)| ≤ C|u|, and | f ′(u)| ≤ C.

It can be seen that the nonlinear term ru(1 − u/K) in Eq.(2.1) satisfies the condition (A1) due to the natural boundedness
of the solution. In addition, the positive constant C is arbitrary and can take different values throughout this paper if there
is no specification.

2.2 The Difference Scheme

Denote
Ωh = {(xi, tn)|xi = ih, i = 0, 1, · · · ,M; tn = nτ, n = 0, 1, · · · ,N},

where h = L
M is the space step, and τ = T

N is the time step. At the griding points Eq.(2.1) becomes

∂αt u(xi, tn+1) = Duxx(xi, tn+1) + f (xi, tn+1) + γ(xi, tn+1). (2.5)
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Firstly the Caputo’s fractional derivative is discretized by

∂αt u(xi, tn+1) =
1

Γ(1 − α)

∫ tn+1

0
(tn+1 − η)−α

∂u(xi, η)
∂η

dη

=
τ−α

Γ(2 − α)

n∑
k=0

(u(xi, tn−k+1) − u(xi, tn−k))[(k + 1)1−α − kα] + O(τ).
(2.6)

Next the second-order derivative is discretized according to the general central difference

uxx(xi, tn+1) =
1
h2 (u(xi−1, tn+1) − 2u(xi, tn+1) + u(xi+1, tn+1)) + O(h2)

:= δ2xu(xi, tn+1) + O(h2).
(2.7)

Finally for the nonlinear source term f (u), there holds by Taylor’s expansion

f (u(xi, tn+1)) = 2 f (u(xi, tn)) − f (u(xi, tn−1)) + O(τ2). (2.8)

Substituting (2.6), (2.7) and (2.8) into (2.5), we have

Case I. n = 0
τ−α

Γ(2 − α)
[u(xi, t1) − u(xi, t0)] − Dδ2xu(xi, t1) = f (u(xi, t0)) + γ(xi, t1) + E0 + E1. (2.9)

Case II. n ≥ 1
τ−α

Γ(2 − α)

n∑
k=0

(u(xi, tn−k+1) − u(xi, tn−k))ck − Dδ2xu(xi, tn+1)

=[2 f (u(xi, tn)) − f (u(xi, tn−1))] + γ(xi, tn+1) + E0 + E2.

(2.10)

where
ck = (k + 1)1−α − k1−α, k = 0, 1, · · · , (2.11)

and
E0 = O(τ + h2),
E1 = f (u(xi, t1)) − f (u(xi, t0)) = f ′(u(xi, tξ))(u(xi, t1) − u(xi, t0))
= f ′(u(xi, tξ))(ut(xi, tη)τ),

E2 = f (u(xi, tn+1)) − [2 f (u(xi, tn)) − f (u(xi, tn−1))] = O(τ2).

(2.12)

Denote u j
i ≈ u(xi, t j), and discretize the initial boundary values by

u0
i = u0(xi), u

j
0 = u j

1, u
j
M = u j

M−1.

Omitting the truncated terms, we get an implicit difference scheme given as

Case I. n = 0
τ−α

Γ(2 − α)
(u1

i − u0
i ) − Dδ2xu1

i = f (u0
i ) + γ1

i . (2.13)

Case II. n ≥ 1
τ−α

Γ(2 − α)

n∑
k=0

(un−k+1
i − un−k

i )ck − Dδ2xun+1
i = [2 f (un

i ) − f (un−1
i )] + γn+1

i . (2.14)

Denote

p =
DταΓ(2 − α)

h2 , q = ταΓ(2 − α),

Un = (un
1, u

n
2, · · · , un

M−1)T ,

(Un)2 = ((un
1)2, (un

2)2, · · · , (un
M−1)2),

Gn = (γn
1, γ

n
2, · · · , γn

M−1).
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Noting that f (u) = ru − r
K u2, by rearrangement we get the difference scheme in matrix form:

AU1 = (1 + qr)U0 − qr
K

(U0)2 + qG1,

AUn+1 =

n∑
j=1

(cn−1 − cn)Un+1− j + cnU0 + 2qrUn − 2qr
K

(Un)2 − qrUn−1 +
qr
K

(Un−1)2 + qGn+1,
(2.15)

n = 1, 2, · · · ,N − 1, where

A = (ai j)(M−1)×(M−1) =



1 + p −p 0 · · · 0 0
−p 1 + 2p −p · · · 0 0
0 −p 1 + 2p · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + 2p −p
0 0 0 · · · −p 1 + p


(2.16)

Noting to p > 0, the coefficient matrix A defined by (2.16) is strictly diagonal-dominant, then we have

Lemma 1 The difference scheme (2.15) is uniquely solvable.

Since aii = 1+
∑M−1

j=1, j,i |ai j|, i = 1, 2, · · · ,M − 1, we can not accurately estimate the spectral radius and obtain the stability
and convergence of the difference scheme. We are to prove the stability and convergence based on the discrete forms
(2.13)-(2.14). Therefore we need the discrete Gronwall inequality.

Lemma 2 Assume that {Fk, k ≥ 0} be nonnegative series and satisfy the condition:

Fk+1 ≤ A + Bs
k∑

l=0

Fl, k = 0, 1, · · · ,

then there holds
Fk+1 ≤ A exp(Bks), k = 0, 1, · · · ,

where A, B and s are nonnegative constants.

In addition, for the coefficient ck given by (2.11), it is not difficult to testify

Lemma 3 The series ck, k = 0, 1, · · · , defined by (2.11), is strictly decreasing, and there holds

0 < ck < c0 = 1, k = 1, 2, · · · ;

and
N−1∑
n=1

cn = N1−α − 1,N ≥ 2.

3. Stability and Convergence

In the follows, we denote L2 inner by (·, ·), and L2 norm by ∥ · ∥, and C > 0 always represents a positive constant.

3.1 Stability

Theorem 1 For 0 < T < ∞ and τ small enough, there holds

Ξ(uN) ≤ C(
T 1−α + τ1−α

2Γ(2 − α)
+ τ)∥u0∥2 +Cτ

N−1∑
n=1

∥γn∥2, (3.1)

and the finite difference scheme (2.15) is stable, where Ξ(un) = τ1−α

2Γ(2−α)

n−1∑
k=0

ck∥un−k∥2, and C is an arbitrary positive constant

but independent of h and τ.

Proof Firstly consider the discrete equation (2.14). By un+1
i making inner product with all terms in (2.14) respectively,

and summing on i (i = 1, 2, · · · ,M − 1), there holds

(
τ−α

Γ(2 − α)

n∑
k=0

(un−k+1 − un−k)ck, un+1) − (Dδ2xun+1, un+1)

=(2 f (un) − f (un−1), un+1) + (γn+1, un+1).

(3.2)
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Noting that

(
τ−α

Γ(2 − α)

n∑
k=0

(un−k+1 − un−k)ck, un+1)

=
τ−α

Γ(2 − α)
(c0un+1 −

n−1∑
k=0

(ck − ck+1)un−k − cnu0, un+1)

=
τ−α

Γ(2 − α)
(c0∥un+1∥2 −

n−1∑
k=0

(ck − ck+1)(un−k, un+1) − cn(u0, un+1)),

(3.3)

and
(Dδ2xun+1, un+1) = −D(δxun+1, δxun+1) = −D∥δxun+1∥2,

we have
τ−α

Γ(2 − α)
(c0∥un+1∥2 −

n−1∑
k=0

(ck − ck+1)(un−k, un+1) − cn(u0, un+1)) + D∥δxun+1∥2

=(2 f (un) − f (un−1), un+1) + (γn+1, un+1).

(3.4)

Thanks to the nonnegativity of D∥δxun+1∥2, we get

τ−α

Γ(2 − α)
(c0∥un+1∥2 −

n∑
k=0

(ck − ck+1)(un−k, un+1) − cn(u0, un+1))

≤(2 f (un) − f (un−1), un+1) + (γn+1, un+1).

(3.5)

Noting c0 = 1, there holds by Cauchy-Schwarz inequality

τ−α

Γ(2 − α)
∥un+1∥2

≤ τ−α

2Γ(2 − α)
[

n−1∑
k=0

(ck − ck+1)(∥un−k∥2 + ∥un+1∥2) + cn(∥u0∥2 + ∥un+1∥2)]

+ (2 f (un) − f (un−1), un+1) + (γn+1, un+1)

=
τ−α

2Γ(2 − α)
[

n−1∑
k=0

(ck − ck+1)∥un−k∥2 + ∥un+1∥2 + cn∥u0∥2]

+ (2 f (un) − f (un−1), un+1) + (γn+1, un+1).

(3.6)

That is
τ−α

2Γ(2 − α)
∥un+1∥2 + τ−α

2Γ(2 − α)

n−1∑
k=0

ck+1∥un−k∥2

≤ τ−α

2Γ(2 − α)

n−1∑
k=0

ck∥un−k∥2 + τ−α

2Γ(2 − α)
cn∥u0∥2 + (2 f (un) − f (un−1), un+1) + (γn+1, un+1).

(3.7)

Since
τ−α

2Γ(2 − α)
∥un+1∥2 + τ−α

2Γ(2 − α)

n−1∑
k=0

ck+1∥un−k∥2 = τ−α

2Γ(2 − α)

n∑
k=0

ck∥un+1−k∥2,

by τ > 0 multiplying the two-sides of (3.7), there holds

τ1−α

2Γ(2 − α)

n∑
k=0

ck∥un+1−k∥2

≤ τ1−α

2Γ(2 − α)

n−1∑
k=0

ck∥un−k∥2 + τ1−α

2Γ(2 − α)
cn∥u0∥2 + τ(2 f (un) − f (un−1), un+1) + τ(γn+1, un+1).

(3.8)

Denote Ξ(un) = τ1−α

2Γ(2−α)
∑n−1

k=0 ck∥un−k∥2. Noting the condition | f (u)| ≤ C|u|, we have by using the Cauchy-Schwarz inequal-
ity again

τ(2 f (un) − f (un−1), un+1) + τ(γn+1, un+1)

≤Cτ(∥un∥2 + ∥un+1∥2 + ∥un−1∥2 + ∥γn+1∥2).
(3.9)
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Substituting (3.9) into (3.8), there holds

Ξ(un+1) ≤ Ξ(un) +
τ1−α

2Γ(2 − α)
cn∥u0∥2 +Cτ(∥un∥2 + ∥un+1∥2 + ∥un−1∥2 + ∥γn+1∥2), (3.10)

and summing on n form n = 1 to n = N − 1, we get

Ξ(uN) ≤ Ξ(u1) +
τ1−α

2Γ(2 − α)

N−1∑
n=1

cn∥u0∥2 +Cτ
N−1∑
n=1

(∥un∥2 + ∥un+1∥2 + ∥un−1∥2 + ∥γn+1∥2). (3.11)

Thanks to ∥un∥2 ≤ CΞ(un) and τN ≤ T , we have by Lemma 3

(1 −Cτ)Ξ(uN)

≤Ξ(u1) + (
τ1−α

2Γ(2 − α)

N−1∑
n=1

cn +Cτ)∥u0∥2 +Cτ
N−1∑
n=1

Ξ(un) +Cτ
N−1∑
n=1

∥γn+1∥2

≤Ξ(u1) + [
τ1−α

2Γ(2 − α)
(N1−α − 1) +Cτ]∥u0∥2 +Cτ

N−1∑
n=1

Ξ(un) +Cτ
N−1∑
n=1

∥γn+1∥2

≤Ξ(u1) + (
T 1−α

2Γ(2 − α)
+Cτ)∥u0∥2 +Cτ

N−1∑
n=1

Ξ(un) +Cτ
N−1∑
n=1

∥γn+1∥2.

(3.12)

Let the time step τ small enough such that 1 −Cτ > 0. Noting that nτ ≤ T for n = 1, · · · ,N, we have by using Lemma 2

Ξ(uN) ≤ CΞ(u1) +C(
T 1−α

2Γ(2 − α)
+ τ)∥u0∥2 +Cτ

N−1∑
n=1

∥γn+1∥2. (3.13)

Based on (2.13), with a completely similar method as used in the above to estimate Ξ(u1), there holds

Ξ(u1) ≤ C(
τ1−α

2Γ(2 − α)
+ τ)∥u0∥2 +Cτ∥γ1∥2, (3.14)

by substituting it into (3.13) follows that (3.1) is valid. The proof is over.

3.2 Convergence

Theorem 2 The difference scheme (2.15) is convergent as h, τ→ 0 for given T < +∞, and there holds

∥en∥22 ≤ Cτα(τ2 + h4), (3.15)

where en = (en
1, · · · , en

M)T denotes the solutions error, and

en
i = u(xi, tn) − un

i , i = 1, · · · ,M; n = 1, · · · ,N.

Proof Also consider the discrete scheme (2.13)-(2.14). By (2.13) subtracting (2.9) and (2.14) subtracting (2.10), respec-
tively, there holds

Case I. n = 0
τ−α

Γ(2 − α)
(e1

i − e0
i ) − Dδ2xe1

i = E1 + E0; (3.16)

Case II. n ≥ 1
τ−α

Γ(2 − α)

n∑
k=0

(en−k+1
i − en−k

i )ck − Dδ2xen+1
i = εn + E2 + E0, (3.17)

where E0, E1 and E2 are given by (2.12), and

εn = 2 f (u(xi, tn)) − f (u(xi, tn−1)) − 2 f (un
i ) + f (un−1

i ). (3.18)

By en+1
i making inner product with the terms of (3.17), and summing on i for i = 1, 2, · · · ,M − 1, we have

τ−α

Γ(2 − α)
(

n∑
k=0

(en−k+1 − en−k)ck, en+1) − D(δ2xen+1, en+1)

=(εn, en+1) + (E2, en+1) + (E0, en+1).

(3.19)
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With a similar method as used in the proof of stability, we get

τ1−α

2Γ(2 − α)

n∑
k=0

ck∥en+1−k∥2

≤ τ1−α

2Γ(2 − α)

n−1∑
k=0

ck∥en−k∥2 + τ1−α

2Γ(2 − α)
cn∥e0∥2

+τ(εn, en+1) + τ(E2, en+1) + τ(E0, en+1).

(3.20)

Noting the definition of Ξ, there holds

Ξ(en+1) ≤ Ξ(en) +
τ1−α

2Γ(2 − α)
cn∥e0∥2 + τ(εn, en+1) + τ(E2, en+1) + τ(E0, en+1). (3.21)

By the condition of | f ′(u)| ≤ C and utilizing the triangular inequality, we have

(εn, en+1)

=(2 f (u(xi, tn)) − f (u(xi, tn−1)) − 2 f (un
i ) + f (un−1

i ), en+1)

≤C∥2 f ′(vn)en − f ′(vn−1)en−1∥2 +C∥en+1∥2

≤C(∥en∥2 + ∥en−1∥2 + ∥en+1∥2).

(3.22)

Thus (3.21) reduces to

Ξ(en+1) ≤ Ξ(en) +
τ1−α

2Γ(2 − α)
cn∥e0∥2 +Cτ(∥en∥2 + ∥en−1∥2 + ∥en+1∥2)

+Cτ(∥E0∥2 + ∥E2∥2).
(3.23)

Making summation on n for n = 1, · · · ,N − 1, we get

Ξ(eN) ≤ Ξ(e1) +
τ1−α

2Γ(2 − α)

N−1∑
n=1

cn∥e0∥2 +Cτ
N−1∑
n=1

(∥en∥2 + ∥en−1∥2 + ∥en+1∥2)

+Cτ(∥E0∥2 + ∥E2∥2).

(3.24)

Noting that e0
i = 0 and the arbitrary property of the constant C > 0, we have by using the estimates of E0 and E2

Ξ(eN) ≤ CΞ(e1) +Cτ
N−1∑
n=1

Ξ(en) +Cτ(τ2 + h4). (3.25)

Similarly, by e1
i making the inner product with the terms of (3.16), and summing on i (i = 1, · · · ,M − 1), there holds

Ξ(e1) ≤ Cτ(τ2 + h4),

and substituting it into (3.25), and utilizing Lemma 2 again we get

Ξ(eN) ≤ Cτ(τ2 + h4). (3.26)

Noting the definition of Ξ(eN) there holds

τ1−α

2Γ(2 − α)

N−1∑
k=0

ck∥eN−k∥2 ≤ Cτ(τ2 + h4), N ≥ 2, (3.27)

by the arbitrariness of C > 0 again implies that the assertion (3.15) is valid. The proof is completed.

4. Numerical Tests

4.1 Example 4.1

Without loss of generality, we take the fractional order α = 0.5 as example, and the model parameters are chosen as
D = 0.001, r = 0.01 and L = 1,K = 10. Let the exact solution of the forward problem be

u(x, t) = x2(1 − x)2(1 − t), (4.1)
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and the force term is

γ(x, t) = − x2(1 − x)2t1−α

Γ(2 − α)
− 2D(1 − t)(6x2 − 6x + 1) − rx2(1 − x)2(1 − t) +

r
K

x4(1 − x)4(1 − t)2. (4.2)

The relative error in the exact and numerical solutions at t = 0.5 is expressed by

Err =
∥u(x, 0.5) − u∗(x, 0.5)∥2

∥u(x, 0.5)∥2
. (4.3)

By using the finite difference scheme (2.15) to solve the problem, and the computational results are listed in Table 1,
Table 2 with fixed time step and space step respectively. From Table 1 and Table 2 it can be found that the solutions errors
become small as the space-time steps going to small, but the convergent rate is slow relatively.

By Theorem 2, we recompute the problem by taking τ = h2, and other parameters unchanged. The computational results
are listed in Table 3, where Rat denotes the convergent rate. From Table 3 it can be found that the numerical solutions
converge to the exact solution almost with the order of 2 + α as the grids becoming fine, which basically coincides with
the theoretical analysis in Theorem 2. Furthermore, also taking α = 0.5, the exact solution and the numerical solutions
at t = 0.5, as τ = h2 with h = 1/10, 1/20, 1/40 and h = 1/80, are plotted in Figure 1. It can be seen clearly that the
numerical solutions converge to the exact solution as the grids becoming fine.

Table 1. The solutions errors with space steps(τ = 1/100)
h 1/20 1/40 1/60 1/80 1/100
Err 2.53697e-2 8.24423e-3 5.11389e-3 4.01149e-3 3.504e-3

Table 2. The solutions errors with time steps (h = 1/100)
τ 1/20 1/40 1/60 1/80 1/100
Err 3.19053e-2 1.09364e-2 6.20061e-3 4.37592e-3 3.504e-3

Table 3. The solutions errors with time-space steps in Ex.4.1
h τ = h2 Err Rat
1/10 1/100 1.00646e-1
1/20 1/400 2.49254e-2 4.0379
1/40 1/1600 7.55186e-3 3.3006
1/80 1/6400 2.79854e-3 2.6985
1/160 1/25600 1.18621e-3 2.3592

4.2 Example 4.2

Let the exact solution of the forward problem be

u(x, t) = e
1
2 x2− 1

3 x3
t2. (4.4)

The other parameters are the same as in Ex.4.1, and the force term here is

γ(x, t) = 2e
1
2 x2− 1

3 x3
t2−α

Γ(3−α) − De
1
2 x2− 1

3 x3
[x2(1 − x)2 + 1 − 2x]t2

− re
1
2 x2− 1

3 x3
t2 + r

K ex2− 2
3 x3

t4.
(4.5)

As done in Ex.4.1, the problem is solved by the finite difference scheme (2.15) by taking the grids of τ = h2, and the
computational results are given in Table 4. It can be found that the numerical solutions approximate to the exact solution
as the grids going to fine with a similar rate as that in Ex.4.1. Moreover, the exact and numerical solutions with different
grids also at t = 0.5 are plotted in Figure 2, and it can be seen again that the numerical solutions converge to the exact
solution.

Table 4. The solutions errors with time-space steps in Ex.4.2
h τ = h2 Err Rat
1/10 1/100 2.43968e-3
1/20 1/400 4.61353e-4 5.2881
1/40 1/1600 1.07166e-4 4.3050
1/80 1/6400 3.28737e-5 3.2599
1/160 1/25600 1.25486e-5 2.6197
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Figure 1. The exact and numerical solutions in Ex.4.1
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Figure 2. The exact and numerical solutions in Ex.4.2
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Figure 3. Long time behaviors of numerical solutions with fractional orders

Remark 1

The fractional order plays an important role in the fractional logistic diffusion model, especially for long time behaviors
of the solution. Without loss of generality, let the exact solution of the forward problem be

u(x, t) = x2(1 − x)2(1 + t), (4.6)

and the force term is

γ(x, t) =
x2(1 − x)2t1−α

Γ(2 − α)
− 2D(6x2 − 6x + 1)(1 + t) − rx2(1 − x)2(1 + t) +

r
K

x4(1 − x)4(1 + t)2, (4.7)

and the model parameters are chosen as D = 0.01, r = 0.01 and L = 1,K = 10. By using the difference scheme (2.15),
and taking T = 50, the numerical solutions at x = 0.5 with the time variables and different fractional orders are plotted in
Figure 3. From Figure 3 it can be seen that the fractional orders have impacts on the growth behavior of the solution of
the fractional logistic model with long time diffusion. The small of the fractional order, the slow of growth behavior of the
solution after t ≥ 20. However, when t < 10, the solutions almost have the same behaviors even with different fractional
orders.

5. Conclusion

A logistic-type model with space diffusion using fractional derivative is discussed which is of important meaning in
spatial ecology. Such model is nonlinear and nonlocal which is unable to get its analytical solution. An implicit finite
difference scheme is established and applied to give its numerical solution which is testified to be efficiency by numerical
experiments, and long time behaviors of the solution with different fractional orders are observed. We will focus on
regularity of solution of the forward problem and pay attention to inverse coefficient problems on the fractional logistic
model.
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