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Abstract

We obtain some new identities for the generalized Fibonacci polynomial by a new approach, namely, the Q(x) matrix.
These identities including the Cassini type identity and Honsberger type formula can be applied to some polynomial
sequences such as Fibonacci polynomials, Lucas polynomials, Pell polynomials, Pell-Lucas polynomials and so on, which
generalize the previous results in references.
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1. Introduction

A second order polynomial sequence Fn(x) is said to be the Fibonacci polynomial if for n ≥ 2 and x ∈ R,

Fn(x) = xFn−1(x) + Fn−2(x)

with F0(x) = 0 and F1(x) = 1. The Fibonacci polynomial and other polynomials attracted a lot of attention over the
last several decades (see, for instance, Falcón & Plaza, 2007, 2009; Gould, 1981; Horadam, 1979; Horadam & Mahon,
1985; Wu & Zhang, 2013). Recently, the generalized Fibonacci polynomial is introduced and studied intensely by many
authors (André-Jeannin, 1994, 1995; Flórez, Higuita & Mukherjee, 2018; Flórez, McAnally & Mukherjee, 2018), which
is a generalization of the Fibonacci polynomial. Indeed, a polynomial sequence Gn(x) in (Flórez, Higuita & Mukherjee,
2018; Flórez, McAnally & Mukherjee, 2018) is called the generalized Fibonacci polynomial if for n ≥ 2,

Gn(x) = c(x)Gn−1(x) + d(x)Gn−2(x)

with G0(x) and G1(x), where c(x) and d(x) are fixed non-zero polynomials in Q[x]. It should be noted that there is no
unique generalization of Fibonacci polynomials. Following the similar definitions in (Flórez, McAnally & Mukherjee,
2018), in this note, Fn(x) is said to be the Fibonacci type polynomial if for n ≥ 2,

F0(x) = 0, F1(x) = a and Fn(x) = c(x)Fn−1(x) + d(x)Fn−2(x)

where a ∈ R \ {0}. If for n ≥ 2,

L0(x) = q, L1(x) = b(x) and Ln(x) = c(x)Ln−1(x) + d(x)Ln−2(x),

then the polynomial sequence Ln(x) is called the Lucas type polynomial, where q ∈ R \ {0} and b(x) is a fixed non-zero
polynomial in Q[x]. Naturally, both Fn(x) and Ln(x) are the generalized Fibonacci polynomials. We note that if we
assume F1(x) = a = 1, then Fn(x) is the Fibonacci type polynomial given in (Flórez, McAnally & Mukherjee, 2018). In
addition, the definition of Ln(x) is the same with that of Flórez et al (Flórez, McAnally & Mukherjee, 2018) if |q| = 1 or
2, and c(x) = 2

q b(x). In other words, our definitions of Fn(x) and Ln(x) are generalizations of those in (Flórez, McAnally
& Mukherjee, 2018).

Our goal is to give some new identities for Fn(x) and Ln(x) by applying a new approach, namely the Q(x) matrix, rather
than using the Binet formulas. We note that in some references, the authors obtain identities for polynomial sequences
by using the Binet formulas. Here, we provide a new way to deduce some new identities for Fn(x) and Ln(x). Besides,
these results can be applied to some familiar polynomial sequences. Indeed, the polynomial sequences in the upper part
of Table 1 below are the Fibonacci type polynomials. On the other hand, those in the lower part of Table 1 are the Lucas
type polynomials. Table 1 is the rearrangement of Table 1 (Flórez, McAnally & Mukherjee, 2018).
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Table 1. Some examples of the generalized Fibonacci polynomials
Polynomial Initial value Initial value Recursive Formula

G0(x) G1(x) Gn(x) = c(x)Gn−1(x) + d(x)Gn−2(x)
Fibonacci 0 1 Fn(x) = xFn−1(x) + Fn−2(x)
Pell 0 1 Pn(x) = 2xPn−1(x) + Pn−2(x)
Fermat 0 1 Φn(x) = 3xΦn−1(x) − 2Φn−2(x)
Chebyshev second kind 0 1 Un(x) = 2xUn−1(x) − Un−2(x)
Jacobsthal 0 1 Jn(x) = Jn−1(x) + 2xJn−2(x)
Morgan-Voyce 0 1 Bn(x) = (x + 2)Bn−1(x) − Bn−2(x)
Vieta 0 1 Vn(x) = xVn−1(x) − Vn−2(x)
Lucas 2 x Ln(x) = xLn−1(x) + Ln−2(x)
Pell-Lucas 2 2x Dn(x) = 2xDn−1(x) + Dn−2(x)
Pell-Lucas-prime 1 x D′n(x) = 2xD′n−1(x) + D′n−2(x)
Fermat-Lucas 2 3x ϑn(x) = 3xϑn−1(x) − 2ϑn−2(x)
Chebyshev first kind 1 x Tn(x) = 2xTn−1(x) − Tn−2(x)
Jacobsthal-Lucas 1 1 Λn(x) = Λn−1(x) + 2xΛn−2(x)
Morgan-Voyce 2 x + 2 Cn(x) = (x + 2)Cn−1(x) −Cn−2(x)
Vieta-Lucas 2 x vn(x) = xvn−1(x) − vn−2(x)

2. Fibonacci Type Polynomials

In this section, we will provide and prove some identities for the Fibonacci type polynomial Fn(x) by applying the
Fibonacci type Q(x) matrix. The original Fibonacci Q matrix was introduced by Charles H. King in his master thesis (cf.
Koshy, 2001), and given by

Q =

(
1 1
1 0

)
.

The Fibonacci Q matrix is connected to the Fibonacci sequence Fn, which is defined as below

F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Indeed, it is noted in (Gould, 1981) that

Qn =

(
1 1
1 0

)n

=

(
Fn Fn−1

Fn−1 Fn−2

)
.

Using this relation above, some familiar identities can be obtained. For instance,

det
(
Fn+1 Fn

Fn Fn−1

)
=

(
det

(
1 1
1 0

))n

implies the Cassini identity
Fn+1Fn−1 − F2

n = (−1)n.

Also, using this equality Qn+m = QnQm, one can deduce the Honsberger formula.

In the following, we will apply some similar idea of Q matrix from the numerical cases (Lin, 2012) to the Fibonacci type
polynomials Fn(x). For n ≥ 2 and x ∈ R, the Fibonacci type polynomial Fn(x) is defined by

F0(x) = 0, F1(x) = a and Fn(x) = c(x)Fn−1(x) + d(x)Fn−2(x) (1)

where a ∈ R \ {0}. Then (
Fn+2(x)
Fn+1(x)

)
=

(
c(x) d(x)

1 0

) (
Fn+1(x)
Fn(x)

)
.

Here we define the Fibonacci type Q(x) matrix by

Q(x) =

(
c(x) d(x)

1 0

)
.

We note that if Fn(x) = Pn(x) is the Pell polynomial as defined in Table 1, then

Q(x) =

(
2x 1
1 0

)
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which appeared in (Horadam & Mahon, 1985). In addition, we observe that(
Fn+2(x)
Fn+1(x)

)
=

(
c(x) d(x)

1 0

)n (
F2(x)
F1(x)

)
=

(
c(x) d(x)

1 0

)n (
ac(x)

a

)
.

On the other hand, (
Fn+2(x)
Fn+1(x)

)
=

(
c(x)Fn+1(x) + d(x)Fn(x)
c(x)Fn(x) + d(x)Fn−1(x)

)
=

( 1
aFn+1(x) d(x)

a Fn(x)
1
aFn(x) d(x)

a Fn−1(x)

) (
ac(x)

a

)
.

Hence the below result follows.

Theorem 2.1 Let Fn(x) be the Fibonacci type polynomial as defined in Eq. (1). Then for each n ∈ N,( 1
aFn+1(x) d(x)

a Fn(x)
1
aFn(x) d(x)

a Fn−1(x)

)
=

(
c(x) d(x)

1 0

)n

= Qn(x).

Proof. Let n = 1. Then ( 1
aF2(x) d(x)

a F1(x)
1
aF1(x) d(x)

a F0(x)

)
=

(
c(x) d(x)

1 0

)
.

Assume the equality holds for n = k. Then we have( 1
aFk+1(x) d(x)

a Fk(x)
1
aFk(x) d(x)

a Fk−1(x)

)
=

(
c(x) d(x)

1 0

)k

.

If n = k + 1, then ( 1
aFk+2(x) d(x)

a Fk+1(x)
1
aFk+1(x) d(x)

a Fk(x)

)
=

(
c(x) d(x)

1 0

) ( 1
aFk+1(x) d(x)

a Fk(x)
1
aFk(x) d(x)

a Fk−1(x)

)
=

(
c(x) d(x)

1 0

)k+1

.

By induction, the result follows. �

The Cassini type identity of the Fibonacci type polynomial Fn(x) can be obtained below by Theorem 2.1.

Corollary 2.2 Let Fn(x) be the Fibonacci type polynomial. Then for each n ∈ N,

F 2
n (x) − Fn+1(x)Fn−1(x) = a2(−d(x))n−1.

Proof. By Theorem 2.1,

det
( 1

aFn+1(x) d(x)
a Fn(x)

1
aFn(x) d(x)

a Fn−1(x)

)
=

(
det

(
c(x) d(x)

1 0

))n

.

Hence
F 2

n (x) − Fn+1(x)Fn−1(x) = a2(−d(x))n−1.

�

Example 2.3 Let a = 1, c(x) = x, d(x) = 1 in Eq. (1). Then Fn(x) is the classical Fibonacci polynomial Fn(x). By
Corollary 2.2, we recover the Cassini identity in (Falcón & Plaza, 2009),

Fn+1(x)Fn−1(x) − F2
n(x) = (−1)n.

Example 2.4 Let Fn(x) be the Pell polynomial Pn(x) as defined in Table 1. By Corollary 2.2,

Pn+1(x)Pn−1(x) − P2
n(x) = (−1)n

which is the identity (2.5) in (Horadam & Mahon, 1985).
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Example 2.5 Let a = 1, c(x) = 1, d(x) = 2x in Eq. (1). Then Fn(x) = Jn(x) is the Jacobsthal polynomial as defined in
Table 1. By Corollary 2.2, one can obtain the Cassini identity for the Jacobsthal polynomial below

J2
n(x) − Jn+1(x)Jn−1(x) = (−2x)n−1.

By Corollary 2.2, we have the result below.

Corollary 2.6 Let Fn(x) be the Fibonacci type polynomial. Then for each n ∈ N,

F 2
n (x) − c(x)Fn(x)Fn−1(x) − d(x)F 2

n−1(x) = a2(−d(x))n−1.

Proof. By
F 2

n (x) − Fn+1(x)Fn−1(x) = a2(−d(x))n−1.

and
Fn+1(x) = c(x)Fn(x) + d(x)Fn−1(x),

we have

a2(−d(x))n−1 = F 2
n (x) − (c(x)Fn(x) + d(x)Fn−1(x))Fn−1(x)

= F 2
n (x) − c(x)Fn(x)Fn−1(x) − d(x)F 2

n−1(x).

�

By applying Qn+m(x) = Qn(x)Qm(x), we give the Honsberger type formula for the Fibonacci type polynomials Fn(x)
below.

Corollary 2.7 Let Fn(x) be the Fibonacci type polynomial. Then for each n,m ∈ N,

aFn+m(x) = Fn(x)Fm+1(x) + d(x)Fn−1(x)Fm(x).

Proof. By (
c(x) d(x)

1 0

)n+m

=

(
c(x) d(x)

1 0

)n (
c(x) d(x)

1 0

)m

,

we have ( 1
aFn+m+1(x) d(x)

a Fn+m(x)
1
aFn+m(x) d(x)

a Fn+m−1(x)

)
=

( 1
aFn+1(x) d(x)

a Fn(x)
1
aFn(x) d(x)

a Fn−1(x)

) ( 1
aFm+1(x) d(x)

a Fm(x)
1
aFm(x) d(x)

a Fm−1(x)

)
.

Hence by the (2, 1) entry of the first matrix in the equality above,

aFn+m(x) = Fn(x)Fm+1(x) + d(x)Fn−1(x)Fm(x).

�

Remark 2.8

(i) Let a = 1 in Corollary 2.7. Then Corollary 2.7 is the same with the first result of Proposition 1 (Flórez, McAnally &
Mukherjee, 2018), and a generalization of Proposition 5 (Falcón & Plaza, 2009).

(ii) If m = n − 1 in the above corollary, then for each n ∈ N,

aF2n−1(x) = F 2
n (x) + d(x)F 2

n−1(x)

which generalizes the numerical case of Fibonacci sequences.
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Example 2.9 Let a = 1, c(x) = x, d(x) = 1 in Eq. (1). Then Fn(x) = Fn(x) is the Fibonacci polynomial as defined in Table
1. By Corollary 2.7, we recover the Honsberger formula in Proposition 5 (Falcón & Plaza, 2009),

Fn+m(x) = Fn(x)Fm+1(x) + Fn−1(x)Fm(x).

Example 2.10 Let a = 1, c(x) = 2x, d(x) = 1 in Eq. (1). Then Fn(x) is the Pell polynomial Pn(x). By Corollary 2.7, we
have

Pn+m(x) = Pn(x)Pm+1(x) + Pn−1(x)Pm(x)

which is the equality (3.14) in (Horadam & Mahon, 1985).

Using Qn−m(x) = Qn(x)Q−m(x) for n ≥ m, we next will prove the d’Ocagne type identity for Fn(x). Here we need to
assume d(x) , 0 for each x ∈ R so that Q(x) is invertible. Moreover, note that

Q−m(x) =

( 1
aFm+1(x) d(x)

a Fm(x)
1
aFm(x) d(x)

a Fm−1(x)

)−1

=
1

(−d(x))m

( d(x)
a Fm−1(x) −

d(x)
a Fm(x)

− 1
aFm(x) 1

aFm+1(x)

)
by Theorem 2.1 and Corollary 2.2.

Corollary 2.11 Let Fn(x) be the Fibonacci type polynomial, and let d(x) , 0 for each x ∈ R. Then for n,m ∈ N with
n ≥ m,

a(−d(x))mFn−m(x) = Fn(x)Fm+1(x) − Fn+1(x)Fm(x).

Proof. By Qn−m(x) = Qn(x)Q−m(x), we have( 1
aFn−m+1(x) d(x)

a Fn−m(x)
1
aFn−m(x) d(x)

a Fn−m−1(x)

)
=

( 1
aFn+1(x) d(x)

a Fn(x)
1
aFn(x) d(x)

a Fn−1(x)

)
1

(−d(x))m

( d(x)
a Fm−1(x) −

d(x)
a Fm(x)

− 1
aFm(x) 1

aFm+1(x)

)
.

Hence considering the (1, 2) entry of the first matrix in the equality above,

a(−d(x))mFn−m(x) = Fn(x)Fm+1(x) − Fn+1(x)Fm(x).

�

Example 2.12 Let Fn(x) be the Fibonacci polynomial Fn(x) as in Table 1. By Corollary 2.11,

(−1)mFn−m(x) = Fn(x)Fm+1(x) − Fn+1(x)Fm(x)

which is the d’Ocagne identity in Corollary 8 (Falcón & Plaza, 2009), and the identity (47) of Proposition 3 (Flórez,
McAnally & Mukherjee, 2018).

We note that Q(x) =

(
c(x) d(x)

1 0

)
satisfies Q2(x) = c(x)Q(x) + d(x)I where I =

(
1 0
0 1

)
. Using this equality, one can

obtain the following expression of Fn(x).

Theorem 2.13 Let Fn(x) be the Fibonacci type polynomial. Then for each n, p ∈ N,

F2n+p(x) =

n∑
j=0

(
n
j

)
c j(x)dn− j(x)F j+p(x).
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Proof. Consider ( 1
aF2n+p+1(x) d(x)

a F2n+p(x)
1
aF2n+p(x) d(x)

a F2n+p−1(x)

)
= Q2n+p(x)

= Qp(x)
(
Q2(x)

)n

= Qp(x) (c(x)Q(x) + d(x)I)n

= Qp(x)

 n∑
j=0

(
n
j

)
c j(x)dn− j(x)Q j(x)


=

( 1
aFp+1(x) d(x)

a Fp(x)
1
aFp(x) d(x)

a Fp−1(x)

)
·

n∑
j=0

(
n
j

)
c j(x)dn− j(x)

( 1
aF j+1(x) d(x)

a F j(x)
1
aF j(x) d(x)

a F j−1(x)

)
.

Then by Corollary 2.7 and the (1, 2) entry of the first matrix in the above equality, we have

aF2n+p(x) =

n∑
j=0

(
n
j

)
c j(x)dn− j(x)

(
Fp(x)F j+1(x) + d(x)Fp−1(x)F j(x)

)
= a

n∑
j=0

(
n
j

)
c j(x)dn− j(x)F j+p(x).

�

Example 2.14 Let Fn(x) be the Fibonacci polynomial Fn(x) in which a = 1, c(x) = x, d(x) = 1 in Eq. (1). By Theorem
2.13, we have

F2n+p(x) =

n∑
j=0

(
n
j

)
x jF j+p(x).

Given n = 2 and p = 1, we have
F5(x) = F1(x) + 2xF2(x) + x2F3(x).

Indeed, this equality holds for F1(x) = 1, F2(x) = x, F3(x) = x2 + 1 and F5(x) = x4 + 3x2 + 1.

3. Lucas Type Polynomials

Based on the results of Fibonacci type Fn(x), some identities of Lucas type polynomials Ln(x) will be demonstrated in
this section. Throughout this section, we assume Ln(x) and Fn(x) have the same recursive formula with L0(x) = F1(x),
that is, for n ≥ 2,

F0(x) = 0, F1(x) = a and Fn(x) = c(x)Fn−1(x) + d(x)Fn−2(x),

and
L0(x) = a, L1(x) = b(x) and Ln(x) = c(x)Ln−1(x) + d(x)Ln−2(x) (2)

where a ∈ R \ {0}. By applying Theorem 2.1, one can connect Ln(x) with Fn(x) below.

Theorem 3.1 Let Fn(x) andLn(x) be the Fibonacci type polynomial and Lucas type polynomial respectively withL0(x) =

F1(x) = a. Then for each n ∈ N,(
Ln+2(x) Ln+1(x)
Ln+1(x) Ln(x)

)
=

( b(x)c(x)+ad(x)
a

b(x)d(x)
a

b(x)
a d

) (
Fn+1(x) Fn(x)
Fn(x) Fn−1(x)

)

Proof. First, we will prove Ln(x) =
b(x)

a Fn(x) + d(x)Fn−1(x) holds for each n ∈ N. Let n = 1. Then

L1(x) = b(x) =
b(x)

a
F1(x) + d(x)F0(x).

Let n = 2. Then
L2(x) = b(x)c(x) + ad(x) =

b(x)
a
F2(x) + d(x)F1(x).
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Assume this equality hods for n = k − 1 and k. Let n = k + 1. Then

Lk+1(x) = c(x)Lk(x) + d(x)Lk−1(x)

= c(x)
(

b(x)
a
Fk(x) + d(x)Fk−1(x)

)
+ d(x)

(
b(x)

a
Fk−1(x) + d(x)Fk−2(x)

)
=

b(x)
a

(c(x)Fk(x) + d(x)Fk−1(x)) + d(x) (c(x)Fk−1(x) + d(x)Fk−2(x))

=
b(x)

a
Fk+1(x) + d(x)Fk(x).

By induction, Ln(x) =
b(x)

a Fn(x) + d(x)Fn−1(x) holds for all n ∈ N. Also,

Ln(x) =
b(x)

a
Fn(x) + d(x)Fn−1(x)

=
b(x)

a
(c(x)Fn−1(x) + d(x)Fn−2(x)) + d(x)Fn−1(x)

=
b(x)c(x) + ad(x)

a
Fn−1(x) +

b(x)d(x)
a

Fn−2(x).

One has the result by these two equalities

Ln(x) =
b(x)

a
Fn(x) + d(x)Fn−1(x)

and
Ln(x) =

b(x)c(x) + ad(x)
a

Fn−1(x) +
b(x)d(x)

a
Fn−2(x).

�

Next, we will demonstrate the relation between Lucas type polynomials and the Fibonacci type Q(x) matrix .

Theorem 3.2 Let Ln(x) be the Lucas type polynomial. Then for each n ∈ N,(
Ln+2(x) d(x)Ln+1(x)
Ln+1(x) d(x)Ln(x)

)
=

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

)
Qn(x)

Proof. By Theorem 2.1 and Theorem 3.1, we have(
Ln+2(x) d(x)Ln+1(x)
Ln+1(x) d(x)Ln(x)

)
=

(
Ln+2(x) Ln+1(x)
Ln+1(x) Ln(x)

) (
1 0
0 d(x)

)
=

( b(x)c(x)+ad(x)
a

b(x)d(x)
a

b(x)
a d

) (
Fn+1(x) Fn(x)
Fn(x) Fn−1(x)

) (
1 0
0 d(x)

)
=

(
b(x)c(x) + ad(x) b(x)d(x)

b(x) ad(x)

) ( 1
aFn+1(x) d(x)

a Fn(x)
1
aFn(x) d(x)

a Fn−1(x)

)
=

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

) (
c(x) d(x)

1 0

)n

for each n ∈ N. �

Using Theorem 3.2, one has the Cassini type identity for the Lucas type polynomial Ln(x).

Corollary 3.3 Let Ln(x) be the Lucas type polynomial. Then for each n ∈ N,

Ln+2(x)Ln(x) − L2
n+1(x) =

(
L2(x)L0(x) − L2

1(x)
)

(−d(x))n.
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Proof. By Theorem 3.2, we have

det
(
Ln+2(x) d(x)Ln+1(x)
Ln+1(x) d(x)Ln(x)

)
= det

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

) (
det

(
c(x) d(x)

1 0

))n

.

Hence
Ln+2(x)Ln(x) − L2

n+1(x) =
(
L2(x)L0(x) − L2

1(x)
)

(−d(x))n.

�

Example 3.4 Let a = 2, b(x) = 2x, c(x) = 2x, d(x) = 1 in Eq. (2). Then Ln(x) = Dn(x) is the Pell-Lucas polynomial as
defined in Table 1. By Corollary 3.3, the Cassini identity for the Pell-Lucas polynomial Dn(x) is

Dn+2(x)Dn(x) − D2
n+1(x) = (4x2 + 4)(−1)n.

By Corollary 3.3, we have the result below.

Corollary 3.5 Let Ln(x) be the Lucas type polynomial. Then for each n ∈ N,

c(x)Ln+1(x)Ln(x) + d(x)L2
n(x) − L2

n+1(x) =
(
L2(x)L0(x) − L2

1(x)
)

(−d(x))n.

Proof. By
Ln+2(x)Ln(x) − L2

n+1(x) =
(
L2(x)L0(x) − L2

1(x)
)

(−d(x))n

and
Ln+2(x) = c(x)Ln+1(x) + d(x)Ln(x),

we have (
L2(x)L0(x) − L2

1(x)
)

(−d(x))n

= (c(x)Ln+1(x) + d(x)Ln(x))Ln(x) − L2
n+1(x)

= c(x)Ln+1(x)Ln(x) + d(x)L2
n(x) − L2

n+1(x).

�

Using Q2(x) = c(x)Q(x) + d(x)I again, we have the expression of Ln(x).

Theorem 3.6 Let Ln(x) be the Lucas type polynomial. Then for each n, p ∈ N,

L2n+p(x) =

n∑
j=0

(
n
j

)
c j(x)dn− j(x)Lp+ j(x).

Proof. By Theorem 3.2, we have (
L2n+p+2(x) d(x)L2n+p+1(x)
L2n+p+1(x) d(x)L2n+p(x)

)
=

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

)
Q2n+p(x)

=

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

)
Qp(x)

(
Q2(x)

)n

=

(
Lp+2(x) d(x)Lp+1(x)
Lp+1(x) d(x)Lp(x)

)
(c(x)Q(x) + d(x)I)n

=

(
Lp+2(x) d(x)Lp+1(x)
Lp+1(x) d(x)Lp(x)

)  n∑
j=0

(
n
j

)
c j(x)dn− j(x)Q j(x)


=

n∑
j=0

(
n
j

)
c j(x)dn− j(x)

(
Lp+ j+2(x) d(x)Lp+ j+1(x)
Lp+ j+1(x) d(x)Lp+ j(x)

)
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By considering the (2, 2) entry of the first matrix in the above equality, we have

L2n+p(x) =

n∑
j=0

(
n
j

)
c j(x)dn− j(x)Lp+ j(x).

�

Example 3.7 Let Ln(x) be the Morgan-Voyce polynomial Cn(x) in which a = 2, b(x) = x + 2, c(x) = x + 2, d(x) = −1 in
Eq. (2). By Theorem 3.6, we have

C2n+p(x) =

n∑
j=0

(
n
j

)
(x + 2) j(−1)n− jCp+ j(x).

Finally, we end up this note by providing two identities in which Fn(x) and Ln(x) are involved.

Proposition 3.8 Let Fn(x) and Ln(x) be the Fibonacci type polynomial and Lucas type polynomial respectively with
L0(x) = F1(x) = a. Then for each n,m ∈ N,

aLn+m(x) = Ln+1(x)Fm(x) + d(x)Ln(x)Fm−1(x).

Proof. By Theorem 3.2, we have (
Ln+m+2(x) d(x)Ln+m+1(x)
Ln+m+1(x) d(x)Ln+m(x)

)
=

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

)
Qn(x)Qm(x)

=

(
Ln+2(x) d(x)Ln+1(x)
Ln+1(x) d(x)Ln(x)

) ( 1
aFm+1(x) d(x)

a Fm(x)
1
aFm(x) d(x)

a Fm−1(x)

)
.

Then by the (2, 2) entry of the first matrix in the above equality, we have

aLn+m(x) = Ln+1(x)Fm(x) + d(x)Ln(x)Fm−1(x)

for each n,m ∈ N. �

Example 3.9 Let Fn(x) and Ln(x) be the Jacobsthal polynomial Jn(x) and the Jacobsthal-Lucas polynomial Λn(x) re-
spectively, as defined in Table 1. Then Λ0(x) = J1(x) = 1 which satisfies the condition in Proposition 3.8. Hence we have
the following equality for Jn(x) and Λn(x):

Λn+m(x) = Λn+1(x)Jm(x) + 2xΛn(x)Jm−1(x).

Proposition 3.10 Let Fn(x) and Ln(x) be the Fibonacci type polynomial and Lucas type polynomial respectively with
L0(x) = F1(x) = a. Let d(x) , 0 for each x ∈ R. Then for each n,m ∈ N with n ≥ m,

a(−d(x))mLn−m(x) = Ln(x)Fm+1(x) − Ln+1(x)Fm(x).

Proof. By Theorem 3.2 and Qn−m(x) = Qn(x)Q−m(x), we have(
Ln−m+2(x) d(x)Ln−m+1(x)
Ln−m+1(x) d(x)Ln−m(x)

)
=

(
L2(x) d(x)L1(x)
L1(x) d(x)L0(x)

)
Qn(x)Q−m(x)

=

(
Ln+2(x) d(x)Ln+1(x)
Ln+1(x) d(x)Ln(x)

)
1

(−d(x))m

( d(x)
a Fm−1(x) −

d(x)
a Fm(x)

− 1
aFm(x) 1

aFm+1(x)

)
.
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Then considering the (2, 2) entry of the first matrix in the above equality, we have

a(−d(x))mLn−m(x) = Ln(x)Fm+1(x) − Ln+1(x)Fm(x).

�

Example 3.11 Let Fn(x) and Ln(x) be the Jacobsthal polynomial Jn(x) and the Jacobsthal-Lucas polynomial Λn(x)
respectively. Then Λ0(x) = J1(x) = 1 and

(−2x)mΛn−m(x) = Λn(x)Jm+1(x) − Λn+1(x)Jm(x).
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