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Abstract

The paper presents a dynamic and feasible approach to the successive over-relaxation (SOR) method for solving large
scale linear system through iteration. Based on the maximal orthogonal projection technique, the optimal relaxation
parameter is obtained by minimizing a derived merit function in terms of right-hand side vector, the coefficient matrix and
the previous step values of unknown variables. At each iterative step, we can quickly determine the optimal relaxation
value in a preferred interval. When the theoretical optimal value is hard to be achieved, the new method provides an
alternative choice of the relaxation parameter at each iteration. Numerical examples confirm that the dynamic optimal
successive over-relaxation (DOSOR) method outperforms the classical SOR method.

Keyword: linear equations system, successive over-relaxation (SOR) method, maximal projection, dynamic optimal
relaxation parameter

1. Introduction

In the paper, we derive a better realization of the successive over-relaxation (SOR) method [Quarteroni, Sacco & Saleri
(2000)] to find unknown variables x ∈ Rn from the linear equations system:

Ax = b, (1)

where A ∈ Rn×n is a given non-singular coefficient matrix and b ∈ Rn is a given right-hand side vector.

To minimize the following merit function:

min
x

{
f0 =

∥b∥2∥Ax∥2
[b · (Ax)]2

}
, (2)

Liu (2013a, 2013b, 2013c, 2014a) has developed new methods to iteratively solve Equation (1). By using the Cauchy-
Schwarz inequality

b · (Ax) ≤ ∥b∥∥Ax∥, (3)

it readily leads to
f0 ≥ 1. (4)

In general, f0 > 1 because x does not exactly satisfy Equation (1) during the numerical process. When f0 = 1 is reached,
x exactly satisfies Equation (1) and meanwhile the solution is obtained.

Liu (2013c, 2014b) employed a scaling invariant property of Equation (2) to derive a maximal projection solution in the
Krylov space and proved that Equation (2) implies the least squares solution [Blais (2010)]:

min
x
{∥b − Ax∥2}. (5)

Liu (2014c), based on Equations (2) and (5), has developed a double optimal technique for the solution of Equation (1).

The SOR is a well-known and well-developed classical iterative method, and the formulation depends on a relaxation pa-
rameter, whose optimal value needs to compute the spectral radius, defined as the absolute value of the largest eigenvalue
in magnitude of the iteration matrix. Therefore, its computational burden to involve the computation of optimal relaxation
parameter is great, when large scale linear problem is considered. Only for limited cases, the theoretical value of the
optimal relaxation parameter is known.

Bai and Chi (2003) have chosen the optimal relaxation parameter by the asymptotically optimal successive over-relaxation
method in a dynamic fashion. Wen, Meng & Wang (2013) have obtained the optimal parameter by an optimization
technique based on the quasi-Chebyshev accelerated iteration method. Similarly, Meng (2014) has proposed another
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asymptotic approach of the optimal relaxation parameter. On the other hand, Miyatake, Sogabe & Zhang (2020) proposed
an adaptive method based on the Wolfe condition to search the optimal relaxation parameter.

2. Successive Over-Relaxation (SOR) Method

It is known that the matrix A can be uniquely decomposed into

A = D − U − L, (6)

where the components of these matrices are given by

Dii = Aii, if i = j, Di j = 0, if i , j, i, j = 1 . . . , n, (7)
Ui j = −Ai j, if i < j, Ui j = 0, if i ≥ j, i, j = 1 . . . , n, (8)
Li j = −Ai j, if i > j, Li j = 0, if i ≤ j, i, j = 1 . . . , n. (9)

D is a diagonal matrix, U is a strict upper triangular matrix, while L is a strict lower triangular matrix.

From Equations (1) and (6) it follows an equivalent linear system:

Dx − Ux − Lx = b. (10)

Multiplying the above equation by a nonzero constant w, it becomes

wDx − wUx − wLx = wb. (11)

Then adding a term Dx on both sides, we have

Dx + wDx − wUx − wLx = wb + Dx. (12)

By using an iterative method to solve the linear system, we suppose that the value xk at the kth-step is known. Now, we
remove wDx and −wUx to the right-side and take the value of x in the the right-side to be xk, while in the left-side we take
the value of x to be xk+1, and then the SOR iterative method is created as follows [Hadjidimos (2000)]:

(D − wL)xk+1 = wb + (1 − w)Dxk + wUxk, (13)

of which 0 < w < 2 is a relaxation parameter to guarantee the convergence of iteration. If Dii , 0, i = 1, . . . , n, from
Equation (13) it is easy to find xk+1 by using the forward substitution method, because D−wL is a lower triangular matrix.

When A is a positive definite matrix, the following w is the optimal one [Quarteroni, Sacco & Saleri (2000)]:

wopt =
2

1 +
√

1 − ρ2(In − D−1A)
, (14)

where ρ is the spectral radius of In − D−1A.

3. Maximizing Orthogonal Projection

In the classical SOR method, one needs to compute the spectral radius of In − D−1A as shown in Equation (14), which
requires a huge amount of calculation work. In general, the approximate manner to try w and to observe the convergence
effect is adopted [Milewski & Orkisz (2014); Yang & Gobbert (2009)].

Let
y := Ax. (15)

The minimization in Equation (2) is equivalent to maximize

max
y

{
(b · y)2

∥b∥2∥y∥2

}
, (16)

which is the orthogonal projection of b/∥b∥ onto the y direction.

In order to obtain the optimal value of w in Equation (13), we temporarily take xk+1 in the left-hand side to be xk, and then
at each iterative step, we have a linear system:

(D − wkL)xk = bk
1 + wkbk

2, (17)
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where
bk

1 = Dxk, bk
2 = b − Dxk + Uxk. (18)

Let
ak

1 := Dxk, ak
2 := −Lxk, (19)

and insert them into Equation (2), we can derive

f0 =
f1(wk) f2(wk)

f 2
3 (wk)

, (20)

f1(wk) := ∥ak
1 + wkak

2∥2 = ∥ak
1∥2 + 2wkak

1 · ak
2 + w2

k∥ak
2∥2, (21)

f2(wk) := ∥bk
1 + wkbk

2∥2 = ∥bk
1∥2 + 2wkbk

1 · bk
2 + w2

k∥bk
2∥2, (22)

f3(wk) := (ak
1 + wkak

2) · (bk
1 + wkbk

2)
= ak

1 · bk
1 + wk(ak

1 · bk
2 + ak

2 · bk
1) + w2

kak
2 · bk

2. (23)

At each iterative step, we can search the optimal value of wk to minimize f0:

min
wk∈(a,b)

 f0 =
f1(wk) f2(wk)

f 2
3 (wk)

 (24)

in a given interval (a, b) ⊂ (0, 2), by taking w j
k = a + j(b − a)/Nw, j = 1, . . . ,Nw − 1.

We can quickly find the optimal value of wk in a preferred interval (a, b) for the convergence of the SOR. In this study, we
use this process to pick up wk and the resulting iterative algorithm is very time saving and is named a dynamic optimal
SOR (DOSOR) method. Instead of using the constant value of w in the SOR method, the present method in Equation (24)
provides a dynamic value of wk at each iteration.

When
∥xk+1 − xk∥ < ε1, (25)

the iteration process is terminated for satisfying a given convergence criterion. As mentioned below Eq. (4), when f0 −→
1, the solution is obtained. In this regard, we can also take the following as a convergence criterion:

f0 − 1 < ε2, (26)

where ε1 and ε2 are small positive numbers.

4. Numerical Verification

In order to compare the performance of the DOSOR to the SOR, we test some linear problems.

4.1 Example 1

Equation (1) is solved with

A =



4 −1 0 0 0 0
2 2 1.5 0 0 0
0 1 3 −1 0 0
0 0 1.5 2 2 0
0 0 0 1 4 −1
0 0 0 0 2 2


, b =



3
5.5
3

5.5
4
4


, x =



1
1
1
1
1
1


. (27)

From Equation (14) wopt is found to be
wopt = 1.016288735, (28)

and the SOR is convergence with 28 iterations as shown in Figure 1(a) with the following initial guess:

x0 =



10
30
−20
−40
−8
9


. (29)
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The maximum error (ME) is 5.71 × 10−11 and the root-mean-square-error (RMSE) is 2.98 × 10−11. Because wopt is given
with one calculation, the CPU time of the SOR is very short with 0.2 s.

By using the DOSOR, we take a = 0.9, b = 1 and Nw = 10, and through 26 iterations it converges under ε1 = 10−10 as
shown in Figure 1(b). Because Nw is small with Nw = 10 calculations to determine wk at each iteration, the CPU time of
the DOSOR is still very short with 0.25 s. In Figure 1(b), the values of f0 are plotted, which fast tends to the minimal
value f0 = 1, and in Figure 1(c), the values of w are plotted, which are varying between [0.9, 1], where the peak value
is close to the optimal value given in Equation (28). The ME obtained by the DOSOR is 2.41 × 10−11 and the RMSE is
1.27 × 10−11, which are better than that obtained by the SOR.

If we raise Nw to Nw = 100, the CPU time of the DOSOR is slightly increased to 0.3 s, and the ME and the RMSE become
4.85 × 10−11 and 2.35 × 10−11, respectively. Larger Nw would increase the CPU time but not necessarily serves better
accuracy. If we change the right-hand side to

b = Ax =



4 −1 0 0 0 0
2 2 1.5 0 0 0
0 1 3 −1 0 0
0 0 1.5 2 2 0
0 0 0 1 4 −1
0 0 0 0 2 2





1
2
3
4
5
6


,

the number of iterations, the CPU time and the accuracy of the DOSOR are not affected apparently. Of course, for different
coefficient matrix A, the number of iterations, the CPU time and the accuracy of the DOSOR are different as to be shown
below.

4.2 Example 2

In this example, we apply the DOSOR to solve the following boundary value problem:

u′′(x) = f (x), u(0) = 0, u(1) = 0. (30)

The exact solution is supposed to be

u(x) = sin πx, (31)

and f (x) = −π2 sin πx.

The finite difference discretization of Equation (30) is

1
(∆x)2 (ui+1 − 2ui + ui−1) − f (xi) = 0, i = 1, . . . , n,

u0 = 0, un+1 = 0, (32)

where ∆x = 1/(n + 1) and xi = i∆x = i/(n + 1), i = 1, . . . , n.
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Figure 1. For example 1, (a) comparing the convergence residuals obtained by the SOR with optimal parameter and the
DOSOR, (b) the minimal values of merit function and (c) optimal values of relaxation parameter

By using the DOSOR, we take n = 99, a = 1.85, b = 1.95 and Nw = 10, and through 467 iterations it converges under
ε1 = 10−5 as shown in Figure 2(a). The CPU time of the DOSOR is very short with 0.6 s. In Figure 2(b), the values of
f0 are plotted, which tends to the minimal value f0 = 1 very fast, and in Figure 2(c), the values of w are plotted, which
are varying between [1.86, 1.94], where the peak value is near to the optimal value given below. The pattern is almost
periodic, which is due to the periodic solution in Eq. (31) being searched. The ME obtained by the DOSOR is 2.13× 10−5

and the RMSE is 1.4 × 10−5.

If we raise the value of Nw = 100, the CPU time increases to 2.3 s, but the accuracy is not affected with ME=2.71 × 10−5

and RMSE=1.48 × 10−5. Larger Nw would increase the CPU time but not necessarily offers better accuracy. So we prefer
to use Nw = 10 for saving CPU time. If we adopt u(x) = x3 − x2 as being another solution, the new right-hand side is
obtained to be f (x) = 6x − 2. By using the DOSOR, we take n = 99, a = 1.85, b = 1.95 and Nw = 10, and through 660
iterations it converges under ε1 = 10−5. For this case the pattern of w vs. number of iterations is not periodic as the one in
Figure 2(c) and only with a single value w = 1.86. The CPU time of the DOSOR is very short with 0.8 s. ME=1.04×10−4

and RMSE=7.35 × 10−5 are obtained by the DOSOR.
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On the other hand, we have [Demmel (1997); Watkins (2002); Yang & Gobbert (2009)]

wopt =
2

1 + sin(π∆x)
= 1.939091659, (33)

which is inserted into the SOR to find the solution. It converges through 202 iterations, faster than the DOSOR; however,
the maximum error obtained by the SOR with the above wopt is 9.27 × 10−5 and the RMSE is 6.74 × 10−5, which are less
accurate than that obtained by the DOSOR with ME=2.11×10−5 and RMSE=1.4×10−5. Because wopt is given by Eq. (33)
with one calculation, the CPU time of the SOR is very short with 0.5 s. The CPU times of the SOR and the DOSOR are
competitive if Nw = 10 is taken in the DOSOR. The accuracy of the presented method is enhanced for the use of the merit
function (24).
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Figure 2. For example 2, (a) showing convergence rate, (b) the minimal values of merit function and (c) optimal values
of relaxation parameter

4.3 Example 3

We consider the Hilbert matrix:

Ai j =
1

i + j − 1
(34)
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Figure 3. For example 3, (a) showing convergence rate, (b) the minimal values of merit function and (c) optimal values
of relaxation parameter

in Equation (1), which is a notorious example of highly ill-conditioned matrices. Also, x j = 1, j = 1, . . . , n is an exact
solution, leading to

bi =

n∑
j=1

1
i + j − 1

. (35)

By using the DOSOR, we take n = 99, a = 0, b = 2 and Nw = 50, and through 691 iterations it converges under ε1 = 10−4

as shown in Figure 3(a). The CPU time of the DOSOR is quite short with 1.7 s. In Figure 3(b), the values of f0 are
plotted, which tends to the minimal value f0 = 1 very fast, and in Figure 3(c) the values of w are plotted, which are
varying between [0.04, 0.24] and tend to 0.04 very fast. The ME obtained by the DOSOR is 1.5 × 10−2 and the RMSE is
4.56 × 10−3. With an ad hoc value of w = 1.5, the number of iterations becomes 3297 and the ME and RMSE raise to
7.3 × 10−2 and 1.36 × 10−2, respectively.

4.4 Example 4

In this example, we apply the DOSOR to solve the following 2D boundary value problem of the Poisson elliptic equation:

∆u(x, y) = p(x, y). (36)
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While
u(x, y) = (x2 − x)(y2 − y) (37)

is an exact solution, p(x, y) = 2(x2 − x) + 2(y2 − y) is derived.

As shown by Bai & Chi (2003), we take n1 = n2 = 31, ∆x = ∆y = 1/32 and ε1 = ∆x2∥r0∥/5, where rk = b − Axk is the
residual vector. When

wopt =
2

1 + sin(π∆x)
= 1.81072744298 (38)

is inserted into the SOR, it converges through 62 iterations as shown in Figure 4(a). The CPU time of the SOR is very
short with 0.25 s. By using the DOSOR, we take a = 1.8, b = 2 and Nw = 10, and through 61 iterations it converges as
shown in Figure 4(a) with the CPU time being 6.86 s. The ME obtained by the SOR is 3.66×10−6 and RMSE=1.42×10−6,
which is less accurate than that obtained by the DOSOR with ME=1.52 × 10−6 and RMSE=5.59 × 10−7. The accuracy of
the presented method is enhanced owing to the use of the merit function (24).

In the use of Equation (26), the DOSOR converges with 69 iterations under the convergence criterion ε2 = 10−12. How-
ever, it is deserved because the accuracy is raised to ME=4.4 × 10−7 and RMSE=1.57 × 10−7.
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Figure 4. For example 4, (a) comparing the convergence residuals obtained by the SOR with optimal parameter and the
DOSOR, and (b) the minimal values of merit function

5. Conclusions

There are two factors to evaluate the performance of a newly developed iterative scheme: accuracy and convergence speed.
In this paper, we proposed a dynamic optimal SOR method based on the maximal orthogonal projection technique, which
is equivalent to the minimization in Equation (24). The features of the proposed method are summarized as follows:
(a) The merit function is in terms of the coefficient matrix, right-side vector and the value of unknown vector at the
previous step. (b) Searching the minimization in a preferred interval through a few operations is easily performed. (c)
The accuracy is better than the classical SOR with optimal relaxation parameter about two to four times in the maximum
error as well as in the root-mean-square-error. (d) The convergence speeds are competitive of both methods. The CPU
time of the DOSOR with low number of Nw is slightly increased than the SOR. (e) When the theoretical value of the
optimal relaxation parameter is in general not available, the new method provided an alternative and feasible choice of the
relaxation parameter at each iteration.

8



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 1; 2021

References

Bai, Z. Z., & Chi, X. B. (2003) Asymptotically optimal successive overrelaxation method for systems of linear equations.
J. Comput. Math., 21, 603-612.

Blais, J. A. (2010). Least squares for practitioners. Mathematical Problems in Engineering, 2010.
https://dx.doi.org/10.1155/508092

Demmel, J. W. (1997). Applied Numerical Linear Algebra, SIAM. https://doi.org/10.1137/1.9781611971446

Hadjidimos, A. (2000). Successive overrelaxation (SOR) and related methods. Journal of Computational and Applied
Mathematics, 123(1-2), 177-199. https://doi.org/10.1016/S0377-0427(00)00403-9

Liu, C. S. (2013a). An optimal tri-vector iterative algorithm for solving ill-posed linear inverse problems. Inv. Prob. Sci.
Eng., 21, 650-681. https://dx.doi.org/ 10.1080/17415977.2012.717077

Liu, C. S. (2013b). A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems. Acta Appl. Math.,
123, 285-307. https://dx.doi.org/10.1007/s10440-012-9766-3

Liu, C. S. (2013c). Discussing a more fundamental concept than the minimal residual method for solving linear system in
a Krylov subspace. J. Math. Research, 5(4), 58-70. https://doi.org/10.5539/jmr.v5n4p58

Liu, C. S. (2014a). A globally optimal tri-vector method to solve an ill-posed linear system. J. Comp. Appl. Math., 260,
18-35. https://dx.doi.org/10.1016/ j.cam.2013.09.017

Liu, C. S. (2014b). A maximal projection solution of ill-posed linear system in a column subspace, better than the least
squares solution. Comput. Math. Appl., 67, 1998-2014. https://doi.org/10.1016/j.camwa.2014.04.011

Liu, C. S. (2014c). A doubly optimized solution of linear equations system expressed in an affine Krylov subspace. J.
Comp. Appl. Math., 260, 375-394. https://dx.doi.org/10.1016/j.cam.2013.10.013

Meng, G. Y. (2014). A practical asymptotical optimal SOR method. Appl. Math. Comput., 242, 707-715.
https://doi.org/10.1016/j.amc.2014.06.034

Milewski, S., & Orkisz, J. (2014). In search of optimal acceleration approach to iterative solution methods of simultaneous
algebraic equations. Comput. Math. Appl., 68, 101-117. https://doi.org/10.1016/j.camwa.2014.05.010

Miyatake, Y., Sogabe, T., & Zhang, S. L. (2020) Adaptive SOR methods based on the Wolfe conditions. Numer. Algo.,
84, 117-132. https://doi.org/10.1007/s11075-019-00748-0

Quarteroni, A., Sacco, R., & Saleri, F. (2000). Numerical Mathematics. Springer Science, New York.

Trefethen, L. N., & Bau, III, D. (1997). Numerical Linear Algebra. SIAM, Pennsylvania.
https://doi.org/10.1137/1.9780898719574

Wen, R. P., Meng, G. Y., & Wang, C. L. (2013) Quasi-Chebyshev accelerated iteration methods based on optimization for
linear systems. Comput. Math. Appl., 66, 934-942. https://doi.org/10.1016/j.camwa.2013.06.016

Watkins, D. S. (2002). Fundamentals of Matrix Computations (2nd ed.). Wiley, New York.
https://doi.org/10.1002/0471249718

Yang, S., & Gobbert, M. K. (2009) The optimal relaxation parameter for the SOR method applied to the Poisson equation
in any space dimensions. Appl. Math. Lett., 22, 325-331. https://doi.org/10.1016/j.aml.2008.03.028

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

9


