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Abstract

In this paper, deterministic and stochastic models are developped for a class of SIRS epidemic models. Firstly, The
conditions for the existence, local and global stability of the disease-free equilibrium and endemic equilibrium are ob-
tained. Secondly, we built the stochastic model. The populations are computationally simulated under various conditions.
Comparisons are made between the deterministic and stochastic model.
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1. Introduction

Historically the mathematical modeling of epidemics has started since the time of Graunt (Graunt, 1662). In fact, Kermack
and Mckendric (Kermack, Mckendric, 1927) describe some classical deterministic mathematical models of epidemiology
by considering the total population into three classes namely of epidemiology susceptible (S) individuals, infected (I)
individuals and recovered (R) individuals which is known to us as SIR epidemic models. This SIR epidemic model is
very important in today’s analysis of diseases. When the recovered lost immunity we say that we are an SIRS epidemic
models.

Epidemic models have been studied by many authors. Most of them are interesting in the formulation of the incidence
rate, i.e. the infection rate of susceptible individuals through their contacts with infective (see, for example, (Gao,Chen,
Nieto,Torres, 2006),(Kyrychko, Blyuss,2005),(Li, Wang, Wang,Jin, 2007)). In order to model the disease transmission
process several authors employ the following incidence functions. The first one is the bilinear incidence rate βS I, where
S and I are respectively the number of susceptible and infective individuals in the population, and β is a positive constant
((Jiang, Wei, 2008, (Zhang, Li, Zhang 2008), (Zhou, Liu, 2003)). The second one is the saturated incidence rate of the

form
βS I

1 + α1S
, where α1 is a positive constant. The effect of saturation factor (refer to α1) stems from epidemic control

(tacking appropriate preventive measures)((Wei,Chen, 2008), (Zhang, Jin, Liu, Zhang, 2008)).

Stochastic differential equation (SDE) model is a natural generalization of ordinary differential equation (ODE) model.
SDE became increasingly more popular in mathematical biology ((Allen, 2003),(Gard 1988) and the references therein).
In (Allen, Victory,2003), a SDE model for transmission of schistosomiasis was analyzed. That model assumes that births
and deaths are neglected. So, the computational work is involved in a computation of

√
Bη that one requires other schemes

in which we solve an initial value problem.

In this paper, we consider SIR model of disease transmission that was presented and studied in (Connell, McCuskey,

2010). It is a refinement and generalization of earlier model that used incidence function
βS Iτ

1 + αIτ
. The model given in

(Connell, McCuskey, 2010) allows for saturation in the force of infection by using the general incidence function f (S , I).
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In this paper, we consider the following SIRS epidemic model described by differential equations.

Ṡ = B − µ1S − f (S , I) + δR,

İ = f (S , I) − (µ2 + γ)I,

Ṙ = γI − (µ3 + δ)R,

(1)

with initial conditions:
S (0) > 0, I(0) > 0 and R(0) > 0 (2)

where S (t), I(t) and R(t) denote the numbers of susceptible, infective and recovered individuals at time t, respectively, B
is the recruitment rate of the population, µi(i = 1, 2, 3) is the death rate of S (t), I(t) and R(t), respectively, γ is the recovery
rate of the infective individuals, f (S , I) is the general incidence function, δ is the rate which the recovered individuals
become susceptible again.

The organization of the paper is as follows. In Section 2, We give the positiveness and the boundedness of the different
classes, the existence of equilibria is presented, We study the local and global stability of the free-equilibrium point and
the global stability of the endemic equilibrium. We construct a Stochastic differential model in Section 3 and we derive an
equivalent stochastic model. Section 4 is devoted to describe a numerical method to solve the equivalent stochastic model
and numerical simulation. Finally, in Section 5, we end by a conclusion.

2. Analysis of SIRS Model

1.1 Positiveness, Eventual Boundedness

We consider the positiveness of system (1). We have the following basic lemma.

Lemma 1 For any solutions (S(t), I(t), R(t)) of system (1) with the initial conditions (2),

S (t) > 0, I(t) > 0 and R(t) > 0, for any t ≥ 0 (3)

and there solutions are bounded.

Proof. First, by (2), we have that S (0) > 0, I(0) > 0 and R(0) > 0 and by continuity of the solution of (1), we may
assume that there exists a positive t1 such that S (t) > 0, I(t) > 0 and R(t) > 0 for any 0 ≤ t < t1. Suppose that there
exists a positive t1 such that S (t1) = 0 and S (t) > 0, I(t) > 0 and R(t) > 0 for any 0 ≤ t < t1. But by (1), we have that
dS
dt

(t1) ≥ B > 0 which is a contradiction to the fact S (t) > 0 = S (t1) for any 0 ≤ t < t1. Thus, we have that if there exists
a positive t1 such that S (t) > 0, I(t) > 0 and R(t) > 0 for any 0 ≤ t < t1, then S (t1) > 0.

Moreover, by (1), we have that
I(t) = e−(µ2+γ)tI(0) + e−(µ2+γ)t

∫ t
0 e(µ2+γ)u( f (S (u), I(u)))du,

R(t) = e−(µ3+δ)tR(0) + e−(µ3+δ)t
∫ t

0 γI(u)e(µ3+δ)udu,

which implies that if there exists a positive t1 such that S (t) > 0, I(t) > 0 and R(t) > 0 for any 0 ≤ t < t1, then we
also obtain that I(t1) > 0 and R(t1) > 0. Thus, as a result, we obtain (3).

By doing the sum of the three equations in system (1), we have

d(S + I + R)
dt

≤ B − µ̄(S + I + R)

where µ̄ = min(µ1, µ2, µ3). By using (Guiro, Ouedraogo and Ouedraogo, 2018), we conlude that S (t), I(t) and R(t) are
bounded.

2.2 Existence of Equilibria

For model (1) we introduce the following assumptions.

H1 All parameters B, µi(i = 1, 2, 3), δ and γ are positive constants.

H2 Function f (S , I) is continuously differentiable for all S ≥ 0, I ≥ 0 , f (S , 0) = f (0, I) = 0 and f (S , I) > 0 for all S > 0,
I > 0.
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Let us denote by f1 and f2 the partial derivatives of f with respect to the first and to the second variable.

Let R0 =
f2(S 0, 0)
(µ2 + γ)

where S 0 =
B
µ1

.

Remark 1 R0 is the basic reproduction number evaluate the average number of new infections generated by a single
infected individual in a completely susceptible population.

On the existence of the nonnegative equilibria of model (1), we have the following results:

Theorem 1

(1) If R0 ≤ 1, then model (1) has an unique disease-free equilibrium E0.

(2) If R0 > 1, then model (1) has an unique endemic equilibrium.

Proof. Let E = (S , I,R) be an equilibrium point of system (1).

By using the third equation of (1), we get

R =
γI

µ3 + δ

By adding the first and the second equations of the model (1), we have

S =
B
µ1
− (−

δγ

(µ3 + γ)µ1
+ (µ2 + γ))I

so
S = S 0 − θI

where θ =
−δγ

(µ3 + γ)µ1
+ (µ2 + γ). By using the second equation of (1), we get

f (S 0 − θI, I)
I

= (µ2 + γ)

Let Φ(I) =
f (S 0 − θI, I)

I
− (µ2 + γ)

lim
I→0+

Φ(I) = −θ f1(S 0, 0) + f2(S 0, 0) − (µ2 + γ),

since f (S , 0) = 0, we have
lim
I→0+

Φ(I) = (µ2 + γ)(R0 − 1)

and we have also Φ(Ī) = −(µ2 + γ) with Ī =
S 0

θ
. When R0 ≤ 1, we have limI→0+ Φ(I) ≤ 0, thus, there is not any I∗ > 0

such that Φ(I∗) = 0. Therefore system (2) have a unique free-disease equilibrium E0.

When R0 > 1, we have limI→0+ Φ(I) ≥ 0 so there exists I∗ ∈]0, Ī[. This implies that system (2) have a unique endemic
equilibrium point E∗.

2.3 Stability of the Disease-Free Equilibrium for R0 ≤ 1

In this section, we study the local and global behaviour of the disease-free equilibrium.

Theorem 2 The disease-free equilibrium is locally asymptotically stable if R0 ≤ 1

Proof. The characteristic equation of linearized system (1) at E0 gives the following equation,

(−µ3 − δ − λ)
[
(−µ1 − f1(S 0, 0) − λ)( f2(S 0, 0) − (µ2 + γ) − λ) + f1(S 0, 0) f2(S 0, 0)

]
= 0. (4)

It is exact to check that all solutions λ of equation (4) are a negative real parts.

Indeed, the equation (4) has negative root λ = −µ3 − δ and other roots are given by

(−µ1 − f1(S 0, 0) − λ)( f2(S 0, 0) − (µ2 + γ) − λ) + f1(S 0, 0) f2(S 0, 0) = 0. (5)
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By developping (5), we get

λ2 + (µ1 + f1(S 0, 0) − f2(S 0, 0) + µ2 + γ)λ − µ1 f2(S 0, 0) + µ1(µ2 + γ) + f1(S 0, 0)(µ2 + γ) = 0. (6)

Since f (S , 0) = 0, we have

λ2 + (µ1 − f2(S 0, 0) + µ2 + γ)λ − µ1 f2(S 0, 0) + µ1(µ2 + γ) = 0. (7)

Since R0 ≤ 1, we obtain
µ1 − f2(S 0, 0) + µ2 + γ > 0.

Therefore, by the Routh-Hurwitz criterion all the roots of equation (7) have a negative real parts. This shows that equilib-
rium E0 is locally asymptotically stable. This completes the proof.

H3 For all (S , I) ∈ R2, f (S , I) ≤ f2(S 0, 0)I.

Theorem 3 The disease-free equilibrium is globally asymptotically stable if R0 ≤ 1

Proof. The proof is based on using a comparison theorem (Lakshmikantham, Leela, Martynyuk, 1989). Note that the
equations of infected components in system (1) can be expressed as

İ ≤
(

f2(S 0, 0) − (µ2 + γ)
)
I. (8)

So, we deduce that, f2(S 0, 0) − (µ2 + γ) is negative since R0 ≤ 1.

Thus, I(t) → 0 as t → ∞ for the system (8). Consequently, by a standard comparison theorem (Lakshmikantham, Leela,
Martynyuk, 1989), I(t)→ 0 as t → ∞ and substituting I = 0 into system (1) S → S 0 as t → ∞.

Thus,(S , I,R)→ (S 0, 0, 0) as t → ∞ for R0 ≤ 1. Therefore, E0 is globally asymptotically stable if R0 ≤ 1.

2.4 Stability of the Endemic Equilibrium for R0 > 1

In this section, we study the global dynamics for R0 > 1.We make this additional assumption as in (Guiro, Ngom,
Ouedraogo, 2017).

H4 For all (S , I) ∈ R2
+,

f (S ∗, I∗)
f (S , I)

≤
S ∗

S
≤

I∗

I
(9)

We recall that the endemic equilibrium E∗ exists if and only if R0 > 1.

Theorem 4 If R0 > 1 the endemic equilibrium E∗ is globally asymptotically stable.

Proof. We consider the system (1) when R0 > 1, there exists a unique endemic equilibrium E∗. We now establish the
global asymptotic stability of this endemic equilibrium.

Evaluating both sides of (1) at E∗ gives 

B = µ1S ∗ + f (S ∗, I∗) − δR∗,

f (S ∗, I∗) = (µ2 + γ)I∗,

γI∗ = (µ3 + δ)R∗.

(10)

Let
g(x) = x − 1 − ln x

and

VS = g(
S
S ∗

)

VI = g(
I
I∗

), (11)

VR = g(
R
R∗

).
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Thus, VS ≥ 0, VI ≥ 0, VR ≥ 0 with equality if and only if S = S ∗, I = I∗ and R = R∗. We will study the behaviour of
the Lyapunov function

V(t) = VS + VI + VR. (12)

We can see that V(t) ≥ 0 with equality if and only if S = S ∗, I = I∗ and R = R∗.

The derivatives of VS , VI , and VR will be calculated separately and then combined to get the desired quantity
dV
dt

.

dVs

dt
=

1
S ∗

(
1 −

S ∗

S

)dS
dt

=
1

S ∗

(
1 −

S ∗

S

)
(B − µ1S − f (S , I) + δR).

Using the first equation of (10) to replace B gives

dVs

dt
=

1
S ∗

(
1 −

S ∗

S

)
(µ1(S ∗ − S ) + ( f (S ∗, I∗) − f (S , I)) + δ(R − R∗))

= −
µ1

S S ∗
(S − S ∗)2 +

f (S ∗, I∗)
S ∗

(
1 −

S ∗

S

)(
1 −

f (S , I)
f (S ∗, I∗)

)
+
δR∗

S ∗

(
1 −

S ∗

S

)( R
R∗
− 1

)
.

Then, we may write

dVs

dt
= −

µ1

S S ∗
(S − S ∗)2 +

f (S ∗, I∗)
S ∗

(
1 −

f (S , I)
f (S ∗, I∗)

−
S ∗

S
+

S ∗ f (S , I)
S f (S ∗, I∗)

)
+
δR∗

S ∗

(
1 −

S ∗

S

)( R
R∗
− 1

)
(13)

Next, we calculate
dVI

dt
.

dVI

dt
=

1
I∗

(
1 −

I∗

I

)dI
dt

=
1
I∗

(
1 −

I∗

I

)
( f (S , I) − (µ2 + γ)I)

=
1
I∗

(
1 −

I∗

I

)(
f (S ∗, I∗)

f (S , I)
f (S ∗, I∗)

− (µ2 + γ)I∗
I
I∗

)
.

Using the second equation of (10) to replace (µ2 + γ)I∗ gives

dVI

dt
=

f (S ∗, I∗)
I∗

(
1 −

I∗

I

)( f (S , I)
f (S ∗, I∗)

−
I
I∗

)
We have,

dVI

dt
=

f (S ∗, I∗)
I∗

( f (S , I)
f (S ∗, I∗)

−
I
I∗
−

I∗ f (S , I)
I f (S ∗, I∗)

+ 1
)

(14)

After that , we evaluate
dVR

dt
.

dVR

dt
=

1
R∗

(1 −
R∗

R
)
dR
dt

=
1
R∗

(1 −
R∗

R
)
(
γI − (µ3 + δ)R

)
=

1
R∗

(1 −
R∗

R
)
(
γI∗

I
I∗
− (µ3 + δ)R∗

R
R∗

)
.

Using the last equation of (10) to replace γI∗ gives

dVR

dt
=

γI∗

R∗

(
1 −

R∗

R

)( I
I∗
−

R
R∗

)
We get,

dVR

dt
=
γI∗

R∗

( I
I∗
−

R
R∗
−

R∗I
RI∗

+ 1
)

(15)
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Combining equations (13)-(15),

dV
dt

≤ −
µ1

S S ∗
(S − S ∗)2 + max

{ f (S ∗, I∗)
S ∗

;
δR∗

S ∗
;
γI∗

R∗

}
×

(
2 +

S ∗ f (S , I)
S f (S ∗, I∗)

−
S ∗R
S R∗

−
I∗ f (S , I)
I f (S ∗, I∗)

−
R∗I
RI∗

)
by adding and substracting the quantity

1 + ln
( S ∗ f (S , I)
S f (S ∗, I∗)

)
+ ln

( I∗ f (S , I)
I f (S ∗, I∗)

)
+ ln

(S ∗R
S R∗

)
+ ln

(R∗I
RI∗

)
we obtain

dV
dt

≤ −
µ1

S S ∗
(S − S ∗)2 + max

{ f (S ∗, I∗)
S ∗

;
δR∗

S ∗
;
γI∗

R∗

}(
g
( S ∗ f (S , I)
S f (S ∗, I∗)

)
−g

( I∗ f (S , I)
I f (S ∗, I∗)

− g
(S ∗R
S R∗

)
− g

(R∗I
RI∗

))
, (16)

Since the function g is monotone on each side of point 1 and is minimized at this point 1,H4 implies

g
( S ∗ f (S , I)
S f (S ∗, I∗)

)
≤ g

( I∗ f (S , I)
I f (S ∗, I∗)

)
.

Since g ≥ 0, then
dV
dt
≤ 0, (17)

for all (S , I) ∈ R2
+ with equality only for S = S ∗, I = I∗ and R = R∗.

Hence, the endemic equilibrium E∗ is the only positively invariant set of the system (1) contained in {(S , I) ∈ R2
+; S =

S ∗, I = I∗ R = R∗}. Then, it follows that E∗ is globally asymptotically stable (Lasalle, 1976).

3. Stochastic Model

3.1 Stochastic Differential Equation Model

To derive a stochastic model, we apply a similar procedure to that described in (Allen, 1999). Here, we neglect the
possibility of multiple events of order (∆t)2. The possible changes in the populations over a short time ∆t, concern
individual births, deaths and transformation. These changes are produced in Table 1, together with their corresponding
probability. Let’s denote this change by η = (∆S ,∆I,∆R)T .

Neglecting terms of the order (∆t)2, the mean of system (1) is given by

E(η) =

8∑
i=1

Piηi =


B − µ1S − f (S , I) + δR

f (S , I) − (µ2 + γ)I

γI − (µ3 + δ)R

 ∆t = µ∆t (18)

Further, the covariance matrix of system (1) is given by

E(ηηT ) =

8∑
i=1

Piηiη
T
i =

 B11 B12 B13
B12 B22 B23
B13 B23 B33

 ∆t = B∆t, (19)

where

B11 = B + µ1S + f (S , I) + δR,

B12 = − f (S , I),
B13 = −δR,

B22 = f (S , I) + (µ2 + γ)I,
B23 = −γI,

B33 = γI + (µ3 + δ)R.
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Table 1. Possible changes in the population

Change Probabilty
η1 = (1, 0, 0)T P1 = B∆t
η2 = (−1, 0, 0)T P2 = µ1S ∆t
η3 = (−1, 1, 0)T P3 = f (S , I)∆t
η4 = (0,−1, 0)T P4 = µ2I∆t
η5 = (0,−1, 1)T P5 = γI∆t
η6 = (0, 0,−1)T P6 = µ3R∆t
η7 = (1, 0,−1)T P7 = δR∆t
η8 = (0, 0, 0)T P8 = 1 −

∑7
i=1 Pi

It has been presented in(Allen, 1999) that the changes η are normally distributed. Then,

Y(t + ∆t) = Y(t) + η⇔ Y(t + ∆t) = Y(t) + µ∆t +
√

B∆tγ,

where γi ∈ N(0, 1) for i = 1, 2, 3. Furthermore, as ∆t → 0, Y(t) converges strongly to the solution of the stochastic system

dY(t)
dt

= µ(Y(t)) +
√

B(Y(t))
dW(t)

dt
, (20)

where Y(t) = (S , I,R)T and W(t) is the three-dimensional Wiener process in (Allen, 1999). The computational of (20)
implies the calculation of

√
B(Y(t)) at each time step that is difficult.

In the next section, we derive an equivalent stochatic model which seem to be easier to implement.

3.2 Equivalent Stochastic Differential Model

In this section, we develop a stochastic model to examine the changes occured on each vector individually. We use the
vectors defined in the previous section but here the Poisson processes (P) are used to establish the different probabilities.
Then, we have 

∆S = u1 − u2 − u3 + u4,

∆I = u3 − u5 − u6,

∆R = u6 − u7 − u4,

(21)

where

u1 ∼ P(B∆t), u2 ∼ P(µ1S ∆t), u3 ∼ P( f (S , I)∆t), u4 ∼ P(δR∆t), u5 ∼ P(µ2I∆t),
u6 ∼ P(γI∆t), u7 ∼ µ3R∆t.

We normalize the Poisson process to get



∆S = B∆t +
√

B∆tΛ1 − µ1S ∆t −
√
µ1S ∆tΛ2 − f (S , I)∆t −

√
f (S , I)∆tΛ3 + δR∆t +

√
δR∆tΛ4,

∆I = f (S , I)∆t +
√

f (S , I)∆tΛ3 − µ2I∆t −
√
µ2I∆tΛ5 − γI∆t −

√
γI∆tΛ6,

∆R = γI∆t +
√
γI∆tΛ6 − µ3R∆t −

√
µ3R∆tΛ7 − δR∆t −

√
δR∆tΛ4

(22)

where Λi ∈ N(0, 1) for i = 1, 2, ..., 7. Then, as ∆t → 0, the system (22) to the following itô stochastic differemtial equation
in (Allen, 1999)

dS = (B − µ1S − f (S , I) + δR)dt +
√

BdW1 −
√
µ1S dW2 −

√
f (S , I)dW3 +

√
δRdW4,

dI = ( f (S , I) − µ2I − γI)dt +
√

f (S , I)dW3 −
√
µ2IdW5 −

√
γIdW6,

dR = (γI − µ3R − δR)dt +
√
γIdW6 −

√
µ3RdW7 −

√
δRdW4

(23)
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System (23) can be rewritten as follows.
dY(t)

dt
= µ(Y(t)) + G

dW(t)
dt

, (24)

where Y(t) and µ are the same as in system (20), W is the seven-dimensional Wiener process and G is defined by

G =

 G1 −G2 −G3 G4 0 0 0
0 0 G3 0 −G5 −G6 0
0 0 0 −G4 0 G6 −G7

 (25)

where
G1 =

√
B, G2 =

√
µ1S , G3 =

√
f (S , I), G4 =

√
δR, G5 =

√
µ2I, G6 =

√
γI, G7 =

√
µ3R

4. Numerical Simulations

In this section, computational simulations are given for the stochastic system (24). We use the Euler-Maruyama method
to solve the SDE model (24). Let h be a specified time step. The numerical method for system (24) is given by:

S k+1 = S k + h(B − µ1S − f (S , I) + δR) +
√

h(
√

Bη1,k −
√
µ1S η2,k −

√
f (S , I)η3,k +

√
δRη4,k),

Ik+1 = Ik + h( f (S , I) − µ2I − γI) +
√

h(
√

f (S , I)η3,k −
√
µ2Iη5,k −

√
γIη6,k),

Rk+1 = Rk + h(γI − µ3R − δR) +
√

h(
√
γIη6,k −

√
µ3Rη7,k −

√
δRη4,k),

for k = 0, 1, 2, ... until the maximum time is reached.

Here, ηi,k for i = 1, 2, ..., 9 and k = 0, 1, 2, ... are normally distributed numbers with zero mean and unit variance.

Here, one case of computational simulation were studied. In this case R0 < 1. In the computation, the functions f is
chosen as follows f (S , I) = βS I(mass action).

The parameters values used are given as: B = 14(recruitment),µ1 = 0.014, δ = 0.002, µ2 = 0.014, γ = 0.05, µ3 = 0.2.
The initial values of the population sizes are taken as S (0) = 600, I(0) = 1300, R(0) = 400. The time step h is chosen
as h = 0.3 year and the final time was taken as 300 days. These figures are produced by Matlab.

Figure 1. Deterministic and equivalent stochastic models for R0 < 1
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Figure 2. Deterministic and equivalent stochastic models for R0 > 1

Figure 1 illustrates the deterministic model (1) and the equivalent stochastic model (24) when R0 < 1. We can see that,
in the Figure 1 the trajectory of deterministic and stochastic graphs are approximately the same behaviour. Indeed, the
infected extinction is effective if R0 < 1.

Figure 2 illustrates the deterministic model (1) and the equivalent stochastic model (24) when R0 > 1. In Figure 2, we
can see that the determinsitic graph are similar to those of the stochastic graph, the susceptible decrease is effective for
this two models when R0 < 1.

5. Conclusion

In this paper, an SIR epidemic model with the general incidence function is derived. In the first hand, the global behaviour
of the model system was studied. We proved that, if R0 ≤ 1 holds, then the disease-free equilibrium is globally asymptot-
ically stable, Which implies that the disease fades out from the population. If R0 > 1, then there exists a unique endemic
equilibrium which is globally asymptotically stable, and this implies that the disease will persist in the population.

In a second part of this work, we construct a stochastic models derive from the deterministic models. The behavior of the
stochastic models are studied. Computational simulations were presented to make comparison between deterministic and
equivalent stochastic models. The behavior of the detrministic and equivalent stochastic models are approximately the
same.
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