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Abstract

Nonlinear systems of convection-dominated diffusion equations are used as the mathematical model of contamination
transport problem which is an important topic in environ mental protection science. An elliptic equation defines the pres-
sure, a convection-diffusion equation expresses the concentration of contamination, and an ordinary differential equation
interprets the surface absorption concentration. The transport pressure appears in the equation of the concentration which
determines the Darcy velocity and also controls the physical process. The method of conservative mixed volume element
is used to solve the flow equation which improves the computational accuracy of Darcy velocity by one order. We use
the mixed volume element with the characteristic to approximate the concentration. This method of characteristic not
only preserves the strong computational stability at sharp front, but also eliminates numerical dispersion and nonphysical
oscillation. In the present scheme, we could adopt a large step without losing accuracy. The diffusion is approximated by
the mixed volume element. The concentration and its adjoint vector function are obtained simultaneously, and the locally
conservative law is preserved. An optimal second order estimates in l2-norm is derived.

Keywords: contamination transport, mixed finite volume element, characteristic mixed volume element, local conserva-
tion of mass, second order estimate in l2 norm

1. Introduction

Numerical simulation of the contamination transport problem is an efficient way to find how to protect the environment
and treat the pollution. The physical interpretation is given by a mathematical system of partial differential equations.
In this model, an elliptic equation defines the pressure, a convection-diffusion equation expresses the concentration of
contamination, and an ODE interprets the surface absorption concentration. We provide a simplified physical background
in the following. When the chemical substances are dissolved in the underground water, the substances are absorbed by the
surface of the media, and then the chemical reaction takes place. The chemical reaction also affects the transportation of
the solutes as the underground water moves. Consideration of the reaction helps us to understand how the contamination
transport in terms of time and space. The reaction speed depends on the absorption. The equilibrium is donoted quick
reaction, and non-equilibrium absorption is denoted by slow reaction speed. In this paper, we discuss the non-equilibrium
absorption. The following mathematical model is discussed with the initial-boundary value conditions (Dawson, Van
Duiji & Wheeler, 1994; Dawson, 1998; Hornung, 1988; Vogt, 1982):

∇ · u = −∇ ·
(
κ(c)∇p

)
= q(X, t), X = (x, y, z)T ∈ Ω, t ∈ J = (0,T ], (1a)

u = −κ(c)∇p, X ∈ Ω, t ∈ J, (1b)

θ(X)
∂c
∂t

+ ρ(X)
∂s
∂t

+ ∇ · (uc) − ∇ · (θD∇c) = 0, X ∈ Ω, t ∈ J, (2)

∂s
∂t

= α̂ (φ(c) − s) , X ∈ Ω, t ∈ J, (3)

where Ω is a bounded domain in R3. p(X, t) denotes the pressure, and u = (ux, uy, uz)T is Darcy velocity. The functions
c(X, t) and s(X, t) denote the contamination concentration and non-equilibrium absorption concentration. κ(c) is the per-
meability. θ(X) and ρ(X), two positive functions, are water storage rates of moving water and the density, respectively. D
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is a total matrix of molecular diffusion and chemical dispersion,

θD(X,u) = θDmol(X)I + α1|u|β
 û2

x ûxûy ûxûz

ûyûx û2
y ûyûz

ûzûx ûzûy û2
z

 + αt |u|β
 û2

y + û2
z −ûxûy −ûxûz

−ûxûy û2
x + û2

z −ûyûz

−ûxûz −ûzûy û2
x + û2

y

 . (4)

Dmol(X) is a molecular diffusion matrix and I is a 3 × 3 identity matrix. αl and αt respectively represent longitudinal
and transverse diffusion coefficients. ûx, ûy and ûz are three direction cosines of Darcy velocity u. Generally speaking,
β is a constant not less than 2, and diffusion-dispersion matrix is positive definite. Here we only consider the molecular
diffusion. Suppose that D∗ ≤ Dmol(X) ≤ D∗ holds for positive constants D∗ and D∗. α̂, a positive constant, is the
exchange coefficient. φ(c) denotes the isothermal absorption, generally defined by two different methods

(I) Langmuir isotherm, φ(c) = k1c
1+k2c , k1, k2 > 0,

(II) Freundlinch isotherm, φ(c) = k3cp, k3 > 0, where p ∈ [0, 1].

The case (II) is a degraded parabolic equation for p < 1, and φ ∈ C0 ⋂
C1((−∞, 0)

⋃
(0,∞)) is an increasing function with

φ(0) = 0. Since the parameter p ∈ (0, 1) is locally Hölder continuous, thus the regularity of c decreases. q(X, t) is the
source and sink term. Three unknown functions are p(X, t), c(X, t) and s(X, t).

Assume that the mixture is impermeable across the boundary,

u · ν = 0, X ∈ ∂Ω, (θD∇c − cu) · ν = 0, X ∈ ∂Ω, t ∈ J, (5)

where ν denotes the outer normal vector at the boundary ∂Ω of Ω.

The initial conditions are defined by

c(X, 0) = c0(X), s(X, 0) = s0(X), X ∈ Ω. (6)

The following restriction is introduced to confirm the existence and uniqueness∫
Ω

q(X, t)dX = 0,
∫

Ω

p(X, t)dX = 0, t ∈ J. (7)

The Lipschitz continuity does not hold for this physical model, and this nonlinearity decreases the regularity. It brings trou-
ble on numerical analysis for the full discrete scheme. Dawson first presents and analyzes the method of characteristics-
Galerkin for non-equilibrium absorption (Dawson, Van Duiji & Wheeler, 1994; Dawson, 1998). While numerical os-
cillation possibly appears and the local conservation of mass is lost. Furthermore, an upwind with mixed finite element
method is put forward to discuss a nonlinear contamination transport equation with equilibrium absorption in one variable.
Convergence analysis is shown only for a local low-order semidiscrete algorithm. It is well-known that standard finite
element could not solve convection-diffusion problems well because of strong numerical oscillation. In order to treat
this problem well, some efficient numerical methods are put forward such as characteristic difference, characteristic fi-
nite element (Ewing, 1983; Yuan, 1996,1999,2013), upstream-weighted finite difference (Todd, ODell & Hirasaki, 1972),
high-order Godunov scheme (Bell, Dawson & Shubin, 1988), streamline diffusion method (Johnson, 1986), least squares
mixed finite element (Yang, 2000), modified method of characteristics with Galerkin finite element (MMOC-Galerkin)
(Dawson, Russell & Wheeler, 1989), Eulerian-Lagrangian localized adjoint method (ELLAM) ( Cella, Russell, Herrera
& Ewing, 1990) and so on. This problem should consider an important physical conservation. Arbogast and Wheeler
present a type of characteristic mixed finite element (Arbogast & Wheeler, 1995) to solve the convection-diffusion equa-
tion efficiently, where MMOC-Galerkin is conservative locally on every elements and a 3/2 order error estimates is
derived. Lots of mapping integrals of test functions make the computations more complicated. Therefore, we develop
and improve substantially the work of Arbogast and Wheeler (Arbogast & Wheeler, 1995), and put forward a mixed finite
element-characteristic mixed element method. This method decreases computational work greatly, and the feasibility and
effectiveness are tested experimentally (Sun & Yuan, 2009). This method could not be generalized for three-dimensional
problems. Finite volume method (Cai, 1991; Li & Chen, 1994) is carried out simply, and it has high accuracy and conser-
vation. Thus it is an effective tool for solving partial differential equations. The method of mixed finite element (Douglas,
Ewing & Wheeler, 1983, 19832; Raviart & Thomas, 1977) can solve the pressure and Darcy velocity simultaneously, and
develops the accuracy. Combined the above two methods, a mixed finite volume method is discussed (Russell, 1995; Vogt,
1982; Weiser & Wheeler, 1988) and numerical experiments are argued (Cai, Jones, Mccormilk & Russell, 1997; Jones,
1995). Theoretical analysis is given for elliptic problem and a general discussion frame is given for mixed finite volume
method (Chou, Kawk & Vassileviki, 1998, 2000; Chou & Vassileviki, 1999). Rui and Pan use this method to discuss
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numerical computation for hypotonic oil-gas flow problems (Pan & Rui, 2012, 20122). In this paper, a type of mixed
volume element with characteristic mixed volume element method is put forward for three-dimensional underground wa-
ter pollution problem. The pressure and Darcy velocity are computed simultaneously by a conservative mixed volume
element and the accuracy of Darcy velocity is improved. A conservative characteristic mixed finite volume element is
used to compute the concentration, where the convection is approximated along the characteristics and the diffusion is
discretized by the mixed volume element. The method of characteristics obtains the values at the sharp fronts very well.
In actual computations, a large time step may be adopted and the efficiency is improved. Piecewise-defined constants are
taken as test functions, and the local conservation of mass is preserved. Finally, we obtain an optimal order estimates in
L2 norm superior to 3/2-order (Arbogast & Wheeler, 1995). Thus, the potential is shown to be an efficient tool in solving
some actual applications (Arbogast & Wheeler, 1995; Ewing, 1983; Shen, Liu & Tang, 2002; Yuan, 2013).

Some symbols and assumptions are introduced. The regularity conditions of (1)-(7) are defined by

(R)


p ∈ L∞(H1),
u ∈ L∞(H1(div))

⋂
L∞(W1

∞)
⋂

W1
∞(L∞)

⋂
H2(L2),

c ∈ L∞(H2)
⋂

H1(H1)
⋂

L∞(W1
∞)

⋂
H2(L2),

s ∈ L∞(H2)
⋂

H2(L2).

Suppose that the coefficients satisfy the following positive definite conditions

(C) 0 < k∗ ≤ κ(c) ≤ k∗, 0 < θ∗ ≤ θ(X) ≤ θ∗, 0 < ρ∗ ≤ ρ(X) ≤ ρ∗, 0 < D∗ ≤ D(X) ≤ D∗,

where k∗, k∗, θ∗, θ∗, ρ∗, ρ∗, D∗ and D∗ are positive constants.

For simplicity, the problem (1)-(7) is assumed to be Ω-periodic (Dawson, Van Duiji & Wheeler, 1994; Dawson, 1998;
Ewing, 1983; Hornung, 1988; Vogt, 1982), that is, all the functions are Ω-periodic. This assumption seems physically
reasonable, since no-flow boundaries are generally treated by reflection, and because interior flow factors are much more
important than boundary effects. Thus, the conditions (5) possibly is dropped (Ewing, 1983; Yuan, 1999, 2013).

In this paper, let K and ε denote a generic positive constant and a generic small positive number, respectively. They may
have different definitions at different places.

2. The Preparations

Two different partitions are supposed to be regular for showing the numerical composite scheme. The first partition
with a large step is nonuniform for solving the pressure and Darcy velocity, and the second nonuniform one is for the
concentration. For simplicity, take Ω = {[0, 1]}3 and let ∂Ω denote the boundary. The first partition is defined by δx×δy×δz,

δx : 0 = x1/2 < x3/2 < · · · < xNx−1/2 < xNx+1/2 = 1,
δy : 0 = y1/2 < y3/2 < · · · < yNy−1/2 < yNy+1/2 = 1,
δz : 0 = z1/2 < z3/2 < · · · < zNz−1/2 < zNz+1/2 = 1.

Nx, Ny and Nz are positive integers. The element is defined by Ωi jk = {(x, y, z) : xi−1/2 < x < xi+1/2, y j−1/2 < y <
y j+1/2, zk−1/2 < z < zk+1/2}. xi, y j, zk, hxi , hy j , hzk , hx,i+1/2, hy, j+1/2, hz,k+1/2 are defined in the traditional manner (Weiser &
Wheeler, 1988; Yuan, 2013). Let hx = max

1≤i≤Nx

{hxi }, hy = max
1≤ j≤Ny

{hy j }, hz = max
1≤k≤Nz

{hzk } and hp = (h2
x+h2

y+h2
z )1/2. The spaces are

defined by S h = M0
−1(δx)

⊗
M0
−1(δy)

⊗
M0
−1(δz), Vh = {w|w = (wx,wy,wz),wx ∈ M1

0(δx)
⊗

M0
−1(δy)

⊗
M0
−1(δz),wy ∈

M0
−1(δx)

⊗
M1

0(δy)
⊗

M0
−1(δz),wz ∈ M0

−1(δx)
⊗

M0
−1(δy)

⊗
M1

0(δz),w · γ|∂Ω = 0}.

The inner products and norms are defined as follows

(v,w)m =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

hxi hy j hzk vi jkwi jk, (v,w)x =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

hxi−1/2 hy j hzk vi−1/2, jkwi−1/2, jk,

(v,w)y =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

hxi hy j−1/2 hzk vi, j−1/2,kwi, j−1/2,k,

(v,w)z =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

hxi hy j hzk−1/2 vi j,k−1/2wi j,k−1/2,

||v||2s = (v, v)s , s = m, x, y, z, ||v||∞ = max
1≤i≤Nx,1≤ j≤Ny,1≤k≤Nz

|vi jk |,

||v||∞(x) = max
1≤i≤Nx,1≤ j≤Ny,1≤k≤Nz

|vi−1/2, jk |, ||v||∞(y) = max
1≤i≤Nx,1≤ j≤Ny,1≤k≤Nz

|vi, j−1/2,k |,
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||v||∞(z) = max
1≤i≤Nx,1≤ j≤Ny,1≤k≤Nz

|vi j,k−1/2|.

For a vector w = (wx,wy,wz)T , let

|||w||| =
(
||wx||2x + ||wy||2y + ||wz||2z

)1/2
, |||w|||∞ = ||wx||∞(x) + ||wy||∞(y) + ||wz||∞(z),

||w||m =
(
||wx||2m + ||wy||2m + ||wz||2m

)1/2
, ||w||∞ = ||wx||∞ + ||wy||∞ + ||wz||∞.

The difference operators and other notation are introduced,

[dxv]i+1/2, jk =
vi+1, jk − vi jk

hx,i+1/2
,
[
dyv

]
i, j+1/2,k

=
vi, j+1,k − vi jk

hy, j+1/2
,
[
dzv

]
i j,k+1/2 =

vi j,k+1 − vi jk

hz,k+1/2
;

[Dxw]i jk =
wi+1/2, jk − wi−1/2, jk

hxi

,
[
Dyw

]
i jk

=
wi, j+1/2,k − wi, j−1/2,k

hy j

,
[
Dzw

]
i jk =

wi j,k+1/2 − wi j,k−1/2

hzk

;

ŵx
i jk =

wx
i+1/2, jk + wx

i−1/2, jk

2
, ŵy

i jk =
wy

i, j+1/2,k + wy
i, j−1/2,k

2
, ŵz

i jk =
wz

i j,k+1/2 + wz
i j,k−1/2

2
,

w̄x
i jk =

hx,i+1

2hx,i+1/2
wi jk +

hx,i

2hx,i+1/2
wi+1, jk, w̄

y
i jk =

hy, j+1

2hy, j+1/2
wi jk +

hy, j

2hy, j+1/2
wi, j+1,k,

w̄z
i jk =

hz,k+1

2hz,k+1/2
wi jk +

hz,k

2hz,k+1/2
wi j,k+1,

and ŵi jk = (ŵx
i jk, ŵ

y
i jk, ŵ

z
i jk)T , w̄i jk = (w̄x

i jk, w̄
y
i jk, w̄

z
i jk)T .

The properties are prepared for the following numerical analysis.

Lemma 1 For v ∈ S h, w ∈ Vh,

(v,Dxwx)m = − (dxv,wx)x ,
(
v,Dywy

)
m

= −
(
dyv,wy

)
y
, (v,Dzwz)m = − (dzv,wz)z . (8)

Lemma 2 For w ∈ Vh,
||ŵ||m ≤ |||w|||. (9)

Lemma 3 For q ∈ S h,
||q̄x||x ≤ M||q||m, ||q̄y||y ≤ M||q||m, ||q̄z||z ≤ M||q||m, (10)

where M is a constant independent of q and h.

Lemma 4 For w ∈ Vh,
||wx||x ≤ ||Dxwx||m, ||wy||y ≤ ||Dywy||m, ||wz||z ≤ ||Dzwz||m. (11)

Another partition is obtained by refining the coarse partition of Ω = {[0, 1]}3 uniformly. Generally, we take the step by
hc = hp/2 or hp/4.

Since the absorption concentration changes slow and stably, eq. (2) is discussed on the first partition. A first-order finite
element space Mh is constructed on a hexahedron element Ωi jk = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] × [zk−1/2, zk+1/2] (Cialet,
1978; Jiang & Pang, 1979).

3. The Procedures of Mixed Finite Volume Element With Modified Characteristic Mixed Volume Element

3.1 The Procedures

In order to use the mixed finite volume element, we rewrite eq.(1) in a normalized formulation

∇ · u = q, (12a)
u = −k(c)∇p. (12b)

For eq.(2), considering that the flow transports along the characteristic direction, thus we apply the method of character-
istics to approximate the first-order hyperbolic term. The computational algorithm could use a large time step and has
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the strong stability and high order accuracy. Let ψ(X,u) = [θ2(X) + |u|2]1/2, ∂
∂τ

= ψ−1{θ ∂
∂t + u · ∇}. Eq.(2) is rewritten as

follows for applying the method of mixed volume element,

ψ
∂c
∂τ

+ ρ
∂s
∂t

+ ∇ · g = f (X, c), (13a)

g = −θD∇c, (13b)

where f (X, c) = −qc.

Let P,U,C,G and S denote the discrete solutions of p,u, c, g and s, respectively. The pressure and Darcy velocity are
computed by the method of characteristic mixed volume element,(

DxU x,n+1 + DyUy,n+1 + DzUz,n+1, v
)

m
=

(
qn+1, v

)
m
, ∀ v ∈ S h, (14a)(

k−1(C̄x,n)U x,n+1,wx
)

x
+

(
k−1(C̄y,n)Uy,n+1,wy

)
y

+
(
k−1(C̄z,n)Uz,n+1,wz

)
z

−
(
Pn+1,Dxwx + Dxwy + Dxwz

)
m

= 0, ∀ w ∈ Vh. (14b)

The derivative along the characteristics in (13a) is approximated by the backward difference quotient

∂cn+1

∂τ
≈

cn+1 − cn(X − θ−1un+1(X)∆t)
∆t(1 + θ−2|un+1|2)1/2 .

Eq.(13) is discretized by the characteristic mixed volume element method(
θ

Cn+1 − Ĉn

∆t
, v

)
m

+
(
ρ

S n+1 − S n

∆t
, v

)
m

+
(
DxGx,n+1 + DyGy,n+1 + DzGz,n+1, v

)
m

=
(
f (Ĉn), v

)
m, ∀ v ∈ S h, (15a)(

D−1Gx,n+1,wx
)

x
+

(
D−1Gy,n+1,wy

)
y

+
(
D−1Gz,n+1),wz

)
z
−

(
Cn+1,Dxwx + Dywy + Dzwz

)
m

= 0, ∀ w ∈ Vh, (15b)

where Ĉn = Cn(X̂n), X̂n = X − θ−1Un+1∆t.

The adsorption concentration changes slow and stably with respect to t, so we obtain an explicit scheme to approximate
eq.(3), (S n+1 − S n

∆t
, ϕ

)
= α̂ (φ(Cn) − S n, ϕ) , ϕ ∈ Mh. (16)

Initial approximations are defined by

C0 = C̃0, G0 = G̃0, S 0 = S̃ 0, X ∈ Ω, (17)

where (C̃0, G̃0) is the elliptic projection of (c0, g0), and S̃ 0 is an L2 projection of s0 (see the definitions in the next section).

The composite procedures run as follows. First of all, the elliptic projection and the initial values are used to obtain
{C̃0, G̃0}, as the initial approximations of c0 and g0 = −θD∇c0, i.e. C0 = C̃0,G0 = G̃0. Use s0 and the L2 projection to
get S 0 = S̃ 0. Secondly, S 1 is computed by (16). Then, {U1, P1} is computed by the method of conjugate gradient and
mixed volume element (14). Similarly, {C1,G1} is obtained by (15). Next, S 2, {U2, P2} and {C2,G2} are computed by
(15), (14) and (16). The computations proceed repeatedly and all the numerical solutions are obtained. By the positive
definite condition (C), the solutions exist and are unique.

3.2 The Conservation of Mass

Assume that the problem (1)-(7) has no source or sink, i.e., q ≡ 0, and assume that the boundary condition is impermeable.
Here we ignore the effect of adsorption. Thus, for simplicity we take l = 1, or suppose that two partitions are the same.
On every element Jc ⊂ Ω, Jc = Ωi jk = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] × [zk−1/2, zk+1/2], the local conservation of mass is
interpreted for eq.(2) by ∫

Jc

ψ
∂c
∂τ

dX −
∫
∂Jc

g · γJc dS = 0. (18)

∂Jc denotes the boundary of Jc and γJc denotes its outer normal vector. Then, the discrete local conservation holds for
eq.(15a).
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Theorem 1. If q ≡ 0, and the factor of surface absorption is ignored, then on every element Jc ⊂ Ω, (15a) satisfies the
conservation law ∫

Jc

θ
Cn+1 − Ĉn

∆t
dX −

∫
∂Jc

Gn+1 · γJc dS = 0. (19)

Proof. Note that v =

{
1, Jc = Ωi jk,
0, otherwise, v ∈ S h. Then, (15a) turns into

(
θ

Cn+1 − Ĉn

∆t
, 1

)
Ωi jk

+
(
DxGx,n+1 + DyGy,n+1 + DzGz,n+1, 1

)
Ωi jk

= 0. (20)

Using the previous notation, we have

(
θ

Cn+1 − Ĉn

∆t
, 1

)
Ωi jk

= θi jk

(Cn+1
i jk − Ĉn

i jk

∆t

)
hxi hy j hzk =

∫
Ωi jk

θ
Cn+1 − Ĉn

∆t
dX, (21a)(

DxGx,n+1 + DyGy,n+1 + DzGz,n+1, 1
)
Ωi jk

=
(
Gx,n+1

i+1/2, jk −Gx,n+1
i−1/2, jk

)
hy j hzk

+
(
Gy,n+1

i, j+1/2,k −Gy,n+1
i, j−1/2,k

)
hxi hzk +

(
Gz,n+1

i j,k+1/2 −Gz,n+1
i j,k−1/2

)
hxi hy j = −

∫
∂Ωi jk

Gn+1 · γJc dS . (21b)

Substituting (21) into (20), we could complete this proof.

Furthermore, we get the conservation of mass on the whole domain.

Theorem 2. Suppose q ≡ 0 and the boundary is impermeable. The factor of surface absorption is ignored. Then,∫
Ω

θ
Cn+1 − Ĉn

∆t
dX = 0, n ≥ 0. (22)

Proof. Summing (19) on all the elements, we have

∑
i, j,k

∫
Ωi jk

θ
Cn+1 − Ĉn

∆t
dX −

∑
i, j,k

∫
∂Ωi jk

Gn+1 · γJc dS = 0. (23)

Then, the proof is completed by using −
∑
i, j,k

∫
∂Ωi jk

Gn+1 · γJc dS = −
∫
∂Ω

Gn+1 · γdS = 0.

4. Convergence Analysis

The elliptic projections are introduced first. Ũ ∈ Vh and P̃ ∈ S h are defined by(
DxŨ x + DyŨy + DzŨz, v

)
m =

(
q, v

)
m,∀ v ∈ S h, (24a)(

k−1(c)Ũ x,wx)
x +

(
k−1(c)Ũy,wy)

y +
(
k−1(c)Ũz,wz)

z −
(
P̃,Dxwx + Dywy + Dzwz)

m = 0,∀ w ∈ Vh, (24b)

where c denotes the exact solution of (1)-(7).

Let F = f − ψ ∂c
∂τ
− ρ ∂s

∂t . Define G̃ ∈ Vh, C̃ ∈ S h by(
DxG̃x + DyG̃y + DzG̃z, v

)
m =

(
F, v

)
m,∀ v ∈ S h, (25a)(

D−1G̃x,wx)
x +

(
D−1G̃y,wy)

y +
(
D−1G̃z,wz)

z −
(
C̃,Dxwx + Dywy + Dzwz)

m = 0,∀ w ∈ Vh. (25b)

The L2 finite element projection S̃ ∈ Mh is defined by

(S , z) = (s, z) , ∀ z ∈ Mh. (26)

Let π = P − P̃, η = P̃ − p, σ = U − Ũ, ρ = Ũ − u, ξ = C − C̃, ζ = C̃ − c, α = G − G̃, β = G̃ − g, µ = S − S̃ , λ = S̃ − s.
Suppose that (1)-(7) satisfies the positive definite condition (C), and suppose that exact solutions satisfy the regularity (R).
From the discussions of Weiser and Wheeler (Weiser & Wheeler, 1988), we see that auxiliary functions {Ũ, P̃, G̃, C̃} of
(24) and (25) exist and are unique.
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Lemma 5 If the coefficients and exact solutions of (1)-(7) satisfy (C) and (R), then there exist two constants C̄1 > 0 and
C̄2 > 0 independent of h such that

||η||m + ||ζ ||m + |||ρ||| + |||β||| +

∣∣∣∣∣∣∣∣∣∣∂η∂t

∣∣∣∣∣∣∣∣∣∣
m

+

∣∣∣∣∣∣∣∣∣∣∂ζ∂t

∣∣∣∣∣∣∣∣∣∣
m
≤ C̄1{h2

p + h2
c}, (27a)∣∣∣∣∣∣∣∣∣Ũ∣∣∣∣∣∣∣∣∣

∞
+

∣∣∣∣∣∣∣∣∣G̃∣∣∣∣∣∣∣∣∣
∞
≤ C̄2. (27b)

Under the same assumptions, using the property of L2 projection (Cialet, 1978; Jiang & Pang, 1979), we have the following
estimates.

Lemma 6 Suppose that the adsorption concentration satisfies the regularity (R). Then there exists a constant C̄3 > 0
independent of hc such that

||λ||L2 +

∣∣∣∣∣∣∣∣∣∣∂λ∂t

∣∣∣∣∣∣∣∣∣∣
L2
≤ C̄3h2

c . (28)

π and σ are estimated first. Subtracting (24a) (t = tn+1) and (24b) (t = tn+1) respectively from (14a) and (14b), we have(
Dxσ

x,n+1 + Dyσ
y,n+1 + Dzσ

z,n+1, v
)

m
= 0,∀ v ∈ S h, (29a)(

k−1(C̄x,n)σx,n+1,wx
)

x
+

(
k−1(C̄y,n)σy,n+1,wy

)
y

+
(
k−1(C̄z,n)σz,n+1,wz

)
z

−
(
πn+1,Dxwx + Dywy + Dzwz

)
m

= −
{ ((

k−1(C̄x,n) − k−1(cn+1)
)

Ũ x,n+1,wx
)

x

+
((

k−1(C̄y,n) − k−1(cn+1)
)

Ũy,n+1,wy
)

y
+

((
k−1(C̄z,n) − k−1(cn+1)

)
Ũz,n+1,wz

)
z

}
,∀ w ∈ Vh. (29b)

Take v = πn+1 in (29a), w = σn+1 in (29b), and combine them together, we have(
k−1(C̄x,n)σx,n+1, σx,n+1

)
x

+
(
k−1(C̄y,n)σy,n+1, σy,n+1

)
y

+
(
k−1(C̄z,n)σz,n+1, σz,n+1

)
z

= −
∑

s=x,y,z

(
(k−1(C̄ s,n) − k−1(cn+1))Ũ s,n+1, σs,n+1)

s.
(30)

Eq.(30) is estimated by using Lemma 1-Lemma 5, the Taylor expansion and (C),∣∣∣∣∣∣∣∣∣σn+1
∣∣∣∣∣∣∣∣∣2 ≤ K

∑
s=x,y,z

∣∣∣∣∣∣C̄ s,n − cn+1
∣∣∣∣∣∣2

m ≤ K
{ ∑

s=x,y,z

∣∣∣∣∣∣C̃ s,n − cn
∣∣∣∣∣∣2

m + ||ξn||
2
m + ||ζn||

2
m + (∆t)2

}
≤ K

{
||ξn||

2
+ h4

c + (∆t)2
}
.

(31)

πn+1 ∈ S h is discussed by using the method of duality (Jiang Pang, 1979; Nithsche, 1968) later. Consider the following
elliptic problem

∇ · ω = πn+1, X = (x, y, z)T ∈ Ω, (32a)
ω = ∇p, X ∈ Ω, (32b)
ω · γ = 0, X ∈ ∂Ω. (32c)

Using the regularity (32), ∑
s=x,y,z

∣∣∣∣∣∣∣∣∣∣∂ωs

∂s

∣∣∣∣∣∣∣∣∣∣2
m
≤ K

∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2

m . (33)

If ω̃ ∈ Vh satisfies

(∂ω̃s

∂s
, v

)
m =

(∂ωs

∂s
, v

)
m, ∀ v ∈ S h, s = x, y, z, (34a)

then the solution ω̃ exists and is estimated by

∑
s=x,y,z

∣∣∣∣∣∣∣∣∣∣∂ω̃s

∂s

∣∣∣∣∣∣∣∣∣∣2
m
≤

∑
s=x,y,z

∣∣∣∣∣∣∣∣∣∣∂ωs

∂s

∣∣∣∣∣∣∣∣∣∣2
m
. (34b)

7
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Using Lemma 4, (32), (33) and (29), we have∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2

m =
(
πn+1,∇ · ω

)
=

(
πn+1,Dxω̃

x + Dyω̃
y + Dzω̃

z
)

m

=
∑

s=x,y,z

(
k−1(C̄ s,n)σs,n+1, ω̃s)

s +
∑

s=x,y,z

(
(k−1(C̄ s,n) − k−1(cn+1))Ũ s,n+1, ω̃s)

s

≤ K |||ω̃|||
{ ∣∣∣∣∣∣∣∣∣σn+1

∣∣∣∣∣∣∣∣∣2 + ||ξn||
2
m + h4

c + (∆t)2
}1/2

.

(35)

From Lemma 4, (33) and (34), we have

|||ω̃|||2 ≤
∑

s=x,y,z

||Dsω̃
s||

2
m =

∑
s=x,y,z

∣∣∣∣∣∣∣∣∣∣∂ω̃s

∂s

∣∣∣∣∣∣∣∣∣∣2
m
≤

∑
s=x,y,z

∣∣∣∣∣∣∣∣∣∣∂ωs

∂s

∣∣∣∣∣∣∣∣∣∣2
m
≤ K

∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2

m . (36)

Substituting (36) into (35),∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2

m ≤ K
{ ∣∣∣∣∣∣∣∣∣σn+1

∣∣∣∣∣∣∣∣∣2 + ||ξn||
2
m + h4

c + (∆t)2} ≤ K
{
||ξn||

2
m + h4

c + (∆t)2}. (37)

Error function µ is discussed later. It follows from (3) (t = tn+1), (16) and (26),

(µn+1 − µn

∆t
, ϕ

)
= α̂

(
φ(Cn) − φ(C̃n) + φ(C̃n) − φ(Cn+1), ϕ

)
− α̂ (θn, ϕ) − α̂

(
S n+1 − S n, ϕ

)
−

(∂s̃n+1

∂t
−

sn+1 − sn

∆t
, ϕ

)
, ∀ϕ ∈ Mh.

(38)

For the Langmuir isotherm, it is easy to see that φ′(c) ≤ k1 holds from φ(c) = k1c
1+k2c and φ′(c) = k1

(1+k2c)2 . For the Freundlinch
isotherm, φ(c) = k3cp, φ′(c) = k3 pcp−1, let p = 1, then f ′(c) ≤ k3. The analysis proceeds by applying the Lagrange mean
value theorem. Taking ϕ = ∂tµ

n =
µn+1−µn

∆t in (38), using Lemma 5, Lemma 6 and the regularity (R), we have

||∂tµ
n||

2
L2 ≤ K

{
||ξn||

2
L2 + ||µn||

2
L2 + h4

c + h4
p + (∆t)2

}
. (39a)

Taking ϕ = µn+1 in (38), we have

1
2∆t

{ ∣∣∣∣∣∣µn+1
∣∣∣∣∣∣2

L2 − ||µ
n||

2
L2

}
≤ K

{ ∣∣∣∣∣∣µn+1
∣∣∣∣∣∣2

L2 + ||µn||
2
L2 + ||ξn||

2
L2 + h4

c + h4
p + (∆t)2}. (39b)

Next, eq.(2) is estimated. Subtracting (25a) and (25b) t = tn+1 respectively from (15a) and (15b), and taking v = ξn+1 and
w = αn+1, we have

(
θ

Cn+1 − Ĉn

∆t
, ξn+1

)
m

+
(
ρ

C′n+1 −C′n

∆t
, ξn+1

)
m

+
(
Dxα

x,n+1 + Dyα
y,n+1 + Dzα

z,n+1, ξn+1
)

m

=
(

f (Ĉn) − f (cn+1) + ψn+1 ∂cn+1

∂τ
+ ρ

∂c′n+1

∂t
, ξn+1

)
m
, (40a)(

D−1αx,n+1, αx,n+1
)

x
+

(
D−1αy,n+1, αy,n+1

)
y

+
(
D−1αz,n+1), αz,n+1

)
z

−
(
ξn+1,Dxα

x,n+1 + Dyα
y,n+1 + Dzα

z,n+1
)

m
= 0. (40b)

Considering the sum of (40a) and (40b),

(
θ

Cn+1 − Ĉn

∆t
, ξn+1

)
m

+
(
ρ

C′n+1 −C′n

∆t
, ξn+1

)
m

+
(
D−1αx,n+1, αx,n+1

)
x

+
(
D−1αy,n+1, αy,n+1

)
y

+
(
D−1αz,n+1, αz,n+1

)
z

=
(

f (Ĉn) − f (cn+1) + ψn+1 ∂cn+1

∂τ
+ ρ

∂c′n+1

∂t
, ξn+1

)
m
.

(41)

8
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Subtracting (2) t = tn+1 from (41), we get the error equation

(
θ
ξn+1 − ξn

∆t
, ξn+1

)
m

+
∑

s=x,y,z

(
D−1αs,n+1, αs,n+1

)
s

= −
(
ρ
µn+1 − µn

∆t
, ξn+1

)
m

+
(
ρ(
∂sn+1

∂t
−

sn+1 − sn

∆t
), ξn+1

)
m
− (ρ∂tλ

n, ξn)

+
(
[θ
∂cn+1

∂t
+ un+1 · ∇cn+1] − θ

cn+1 − čn

∆t
, ξn+1

)
m

+
(
θ
ζn+1 − ζn

∆t
, ξn+1

)
m

+
(
f (Ĉn) − f (cn+1), ξn+1) +

(
θ

ĉn − čn

∆t
, ξn+1

)
m
−

(
θ
ζ̂n − ζ̌n

∆t
, ξn+1

)
m

+
(
θ
ξ̂n − ξ̌n

∆t
, ξn+1

)
m
−

(
θ
ζ̌n − ζn

∆t
, ξn+1

)
m

+
(
θ
ξ̌n − ξn

∆t
, ξn+1

)
m
,

(42)

where čn = cn(X − θ−1un+1∆t), ĉn = cn(X − θ−1Un+1∆t), · · · .

The inequality a(a − b) ≥ 1
2 (a2 − b2) is used to estimate the left-hand term of (42). The terms on the right-hand side are

denoted by T1,T2, · · · ,T11. Then,

1
2∆t

{(
θξn+1, ξn+1

)
m
− (θξn, ξn)m

}
+

∑
s=x,y,z

(
D−1αs,n+1, αs,n+1

)
s
≤

11∑
i=1

Ti. (43)

T1,T2 and T3 of (43) are estimated by using the relation of continuous L2-norm and discrete m-norm (Douglas, 1982;
Raviart & Thomas, 1977) and (39),

|T1 + T2 + T3| ≤ K ||∂tµ
n||

2
m + K

{∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2

m + h4
c + (∆t)2

}
≤ K

{∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2

m + ||ξn||
2
m + ||µn||

2
m + h4

c + h4
p + (∆t)2

}
.

(44)

Noting that θ ∂cn+1

∂t + un+1 · ∇cn+1 = ψn+1 ∂cn+1

∂τ
, we have

∂cn+1

∂τ
−

θ

ψn+1

cn+1 − čn

∆t
=

θ

ψn+1∆t

∫ (X,tn+1)

(X̌,tn)

[∣∣∣X − X̂
∣∣∣2 + (t − tn)2

]1/2 ∂2c
∂τ2 dτ. (45)

Multiplying both sides by ψn+1 and estimating it in m-norm, we have∣∣∣∣∣∣
∣∣∣∣∣∣ψn+1 ∂cn+1

∂τ
− θ

cn+1 − čn

∆t

∣∣∣∣∣∣
∣∣∣∣∣∣2
m
≤

∫
Ω

[
ψn+1

∆t

]2
∣∣∣∣∣∣∣
∫ (X,tn+1)

(X̌,tn)

∂2c
∂τ2 dτ

∣∣∣∣∣∣∣
2

dX

≤ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣ (ψn+1)3

θ

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

∫
Ω

∫ (X,tn+1)

(X̌,tn)

∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣2 dτdX

≤ ∆t

∣∣∣∣∣∣
∣∣∣∣∣∣ (ψn+1)4

θ2

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

∫
Ω

∫ tn+1

tn

∫ 1

0

∣∣∣∣∣∣∂2c
∂τ2 (τ̄X̌ + (1 − τ̄)X, t)

∣∣∣∣∣∣2 dτ̄dXdt.

(46)

Therefore, T4 is bounded by

|T4| ≤ K

∣∣∣∣∣∣
∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(tn,tn+1;m)

∆t + K
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2
m . (47a)

From Lemma 5, T5 and T6 are estimated similarly

|T5| ≤ K
{
(∆t)−1

∣∣∣∣∣∣∣∣∣∣∂ζ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn,tn+1;m)

+
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2
m

}
, (47b)

|T6| ≤ K
{∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2
m + ||ξn||

2
m + (∆t)2 + h4

}
. (47c)
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T7, T8 and T9 are argued as follows. If f is a function defined on Ω, denoting one of three functions c, ζ and ξ, and Z
means the unit vector of Un+1 − un+1, then∫

Ω

θ
f̂ n − f̌ n

∆t
ξn+1dX = (∆t)−1

∫
Ω

θ

∫ X̂

X̌

∂ f n

∂Z
dZ

 ξn+1dX

= (∆t)−1
∫

Ω

θ

[∫ 1

0

∂ f n

∂Z
((1 − Z̄)X̌ + Z̄X̂)dZ̄

] ∣∣∣X̂ − X̌
∣∣∣ ξn+1dX

=

∫
Ω

[∫ 1

0

∂ f n

∂Z
((1 − Z̄)X̌ + Z̄X̂)dZ̄

]
|u − U| ξn+1dX,

(48)

where the parameter Z̄ ∈ [0, 1], X̂ − X̌ = ∆t[un+1(X) − Un+1(X)]/θ(X). Define

g f =

∫ 1

0

∂ f n

∂Z
((1 − Z̄)X̌ + Z̄X̂)dZ̄,

then we obtain three special inequalities from (48),

|T7| ≤ ||gc||∞

∣∣∣∣∣∣(u − U)n+1
∣∣∣∣∣∣

m

∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣

m , (49a)

|T8| ≤
∣∣∣∣∣∣gζ ∣∣∣∣∣∣m ∣∣∣∣∣∣(u − U)n+1

∣∣∣∣∣∣
m

∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣
∞
, (49b)

|T9| ≤
∣∣∣∣∣∣gξ ∣∣∣∣∣∣m ∣∣∣∣∣∣(u − U)n+1

∣∣∣∣∣∣
m

∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣
∞
. (49c)

From Lemma 1-Lemma 5, and (31), we have∣∣∣∣∣∣(u − U)n+1
∣∣∣∣∣∣2

m ≤ K
{
||ξn||

2
m + h4

p + h4
c + (∆t)2

}
. (50)

Since gc(X) is the mean value of first-order partial derivatives of cn, it could be estimated by ||cn||W1
∞

. It follows from (49a),

|T7| ≤ K
{∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2
m + ||ξn||

2
m + h4

p + h4
c + (∆t)2

}
. (51)

In order to estimate
∣∣∣∣∣∣gζ ∣∣∣∣∣∣m and

∣∣∣∣∣∣gξ ∣∣∣∣∣∣m, we introduce the following induction hypothesis

sup
0≤n≤L

|||σ|||∞ → 0, sup
0≤n≤L

||ξn||m → 0, (hc, hp,∆t)→ 0, (52)

and the partition restriction
∆t = O(h2), h2 = o(h3/2

p ). (53)

Considering ∣∣∣∣∣∣g f

∣∣∣∣∣∣2 ≤ ∫ 1

0

∫
Ω

[
∂ f n

∂Z
((1 − Z̄)X̌ + Z̄X̂)

]2

dXdZ̄. (54)

Using the transformation,

GZ̄(X) = (1 − Z̄)X̌ + Z̄X̂ = X − [θ−1(X)un+1(X) + Z̄θ−1(X)(U − u)n+1(X)]∆t, (55)

then, we have ∣∣∣∣∣∣g f

∣∣∣∣∣∣2 ≤ ∫ 1

0

∑
Jp

∣∣∣∣∣∂ f n

∂Z
(GZ̄(X))

∣∣∣∣∣2 dXdZ̄, (56)

where Jp = Ωi jk = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] × [zk−1/2, zk+1/2] denotes a grid element of the flow equation.

It follows from (52) and (53),
detDGZ̄ = 1 + o(1).

Then, eq.(56) is estimated by ∣∣∣∣∣∣g f

∣∣∣∣∣∣2 ≤ K ||∇ f n||
2 . (57)

Using (57), Lemma 5 and the Sobolev embedding theorem (Adams, 1975), we could estimate T8,

|T8| ≤ K ||∇ζn|| ·
∣∣∣∣∣∣(u − U)n+1

∣∣∣∣∣∣ · h−(ε+1/2)
∣∣∣∣∣∣∇ξn+1

∣∣∣∣∣∣
≤ K

{
h2−(ε+1/2)

c

∣∣∣∣∣∣(u − U)n+1
∣∣∣∣∣∣ ∣∣∣∣∣∣∇ξn+1

∣∣∣∣∣∣}
≤ K

{∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2

m + ||ξn||
2
m + h4

p + h4
c + (∆t)2

}
+ ε

∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 . (58a)

10
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From (50), we find that
∣∣∣∣∣∣(u − U)n+1

∣∣∣∣∣∣
m = o(h−(ε+1/2)

c ). Therefore, it is necessary to prove ||ξn||m = O(h2
p + h2

c + ∆t). Using
the argument similar to the reference (Yuan, 2013), we have

|T9| ≤ K ||∇ξn|| ·
∣∣∣∣∣∣(u − U)n+1

∣∣∣∣∣∣ · h−(ε+1/2)
∣∣∣∣∣∣∇ξn+1

∣∣∣∣∣∣
≤ ε

{∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 + |||αn|||

2
}
.

(58b)

T10 and T11 are treated by using the negative norm estimates

|T10| ≤ Kh4
c + ε

∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 , (59a)

|T11| ≤ K ||ξn||
2
m + ε

∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 . (59b)

Considering the resulting estimates (43), (44), (47), (51), (58), (59) and (42) together, we have

1
2∆t

{(
θξn+1, ξn+1

)
m
− (θξn, ξn)m

}
+

∑
s=x,y,z

(
D−1αs,n+1, αs,n+1

)
s

≤ K
{ ∣∣∣∣∣∣
∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣2
L2(tn,tn+1;m)

∆t + (∆t)−1
∣∣∣∣∣∣∣∣∣∣∂ζ∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn,tn+1;m)

+
∣∣∣∣∣∣ξn+1

∣∣∣∣∣∣2
m + ||ξn||

2
m + ||µn||

2
m

+ h4
p + h4

c + (∆t)2
}

+ ε
{∣∣∣∣∣∣∣∣∣αn+1

∣∣∣∣∣∣∣∣∣2 + |||αn|||
2
}
.

(60)

Multiplying (60) by 2∆t, summing them on n (0 ≤ n ≤ L), and noting that ξ0 = 0, we have

∣∣∣∣∣∣ξL+1
∣∣∣∣∣∣2

m +

L∑
n=0

∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 ∆t ≤ K

{ L∑
n=0

[∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2

m + ||µn||
2
m

]
∆t + h4

p + h4
c + (∆t)2

}
. (61)

It holds for (39b) from µ0 = 0,

∣∣∣∣∣∣µL+1
∣∣∣∣∣∣2

L2 ≤ K
{ L∑

n=1

[
||µn||

2
L2 + ||ξn||

2
L2

]
∆t + h4

c + h4
p + (∆t)2

}
. (62)

Considering (61), (62) and the relation of continuous L2-norm and discrete m-norm (Douglas, 1982; Raviart & Thomas,
1977) together, we obtain

∣∣∣∣∣∣ξL+1
∣∣∣∣∣∣2

m +
∣∣∣∣∣∣µL+1

∣∣∣∣∣∣2
L2 +

L∑
n=0

∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 ∆t ≤ K

{ L∑
n=0

[∣∣∣∣∣∣ξn+1
∣∣∣∣∣∣2

m + ||µn||
2
L2

]
∆t + h4

p + h4
c + (∆t)2

}
. (63)

Applying the Gronwall Lemma, we get

∣∣∣∣∣∣ξL+1
∣∣∣∣∣∣2

m +
∣∣∣∣∣∣µL+1

∣∣∣∣∣∣2
L2 +

L∑
n=0

∣∣∣∣∣∣∣∣∣αn+1
∣∣∣∣∣∣∣∣∣2 ∆t ≤ K

{
h4

p + h4
c + (∆t)2

}
. (64a)

By (64a), (31) and (37), we have

sup
0≤n≤L

{∣∣∣∣∣∣πn+1
∣∣∣∣∣∣2

m +
∣∣∣∣∣∣∣∣∣αn+1

∣∣∣∣∣∣∣∣∣2} ≤ K
{
h4

p + h4
c + (∆t)2

}
. (64b)

It remains to testify the induction hypothesis (52). For n = 0, it is true obviously by using the initial conditions and ξ0 = 0.
Suppose that it holds for 1 ≤ n ≤ L. Then, it follows from (64) and (53)∣∣∣∣∣∣∣∣∣σL+1

∣∣∣∣∣∣∣∣∣
∞
≤ Kh−3/2

p

{
h2

p + h2
c + ∆t

}
≤ Kh1/2

p → 0, (65a)∣∣∣∣∣∣ξL+1
∣∣∣∣∣∣
∞
≤ Kh−3/2

c

{
h2

p + h2
c + ∆t

}
≤ Kh1/2

c → 0. (65b)

Therefore, it holds for n = L + 1 and the proof is completed.

The following theorem is concluded from (64), Lemma 5 and Lemma 6.
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Theorem 3. Suppose that the conditions (R) and (C) hold. Numerical solutions are obtained by using the procedures (14),
(15) and (16). If the restriction (53) holds, then

||p − P||L̄∞(J;m) + ||u − U||L̄∞(J;V) + ||c −C||L̄∞(J;m) + ||g −G||L̄2(J;V) + ||s − S ||L̄∞(J;L2)

≤ M∗
{
h2

p + h2
c + ∆t

}
,

(66)

where ||g||L̄∞(J;X) = sup
n∆t≤T

||gn||X , ||g||L̄2(J;X) = sup
L∆t≤T

{ L∑
n=0
||gn||2X ∆t

}1/2, and the constant M∗ depends on p, c, s and their

derivatives.

5. Modified Mixed Volume Element With Characteristic Volume Element and Its Numerical Analysis

In §3 and §4, we discuss the method of mixed volume element with characteristic volume element. While in actual
applications, Darcy velocity changes more slow than the concentration with respect to t. Therefore, a large time step may
be used for solving eq.(1). The interval J is partitioned by 0 = t0 < t1 < · · · < tL = T . Let ∆tm

p = tm − tm−1, and suppose
that the partition is measured uniformly by ∆tm

p = ∆tp,m ≥ 2 except ∆t1
p. The concentration is computed by a small

uniform step ∆tc = tn − tn−1. Suppose that there exists a positive integer n corresponding to m such that the pressure and
the concentration have the same nodes, tm = tn. Let j = ∆tp/∆tc and j1 = ∆t1

p/∆tc. Let ψm(X) = ψ(X, tm). Darcy velocity
un+1 at tn+1, tm−1 < tn+1 ≤ tm, in (15) is defined as follows. The approximation is defined by a linear extrapolation of Um−1
and Um−2 for m ≥ 2

EUn+1 =
(
1 +

tn+1 − tm−1

tm−1 − tm−2

)
Um−1 −

tn+1 − tm−1

tm−1 − tm−2
Um−2, (67)

If m = 1, define EUn+1 = U0.

The procedures of (1) and (2) are formulated. Numerical solutions (Um, Pm) : (t0, t1, · · · , tL)→ S h×Vh and (Cn,Gn,C′n) :
(t0, t1, · · · , tR)→ S h × Vh × Mh are computed by(

DxU x
m + DyUy

m + DzUz
m, v

)
m̂

= (qm, v)m̂ , ∀ v ∈ S h, (68a)(
k−1(C̄x

m)U x
m,w

x
)

x
+

(
k−1(C̄y

m)Uy
m,wy

)
y

+
(
k−1(C̄z

m)Uz
m,w

z
)

z

−
(
Pm,Dxwx + Dywy + Dzwz

)
m̂

= 0, ∀ w ∈ Vh, (68b)

For clarity, the previous m-norm is replaced by m̂-norm.

(
θ

Cn+1 − Ĉn

∆t
, v

)
m̂

+
(
ρ

C′n+1 −C′n

∆t
, v

)
m̂

+
(
DxGx,n+1 + DyGy,n+1 + DzGz,n+1, v

)
m̂

=
(

f (Ĉn), v
)

m̂
, ∀ v ∈ S h, (69a)(

D−1Gx,n+1,wx
)

x
+

(
D−1Gy,n+1,wy

)
y

+
(
D−1Gz,n+1,wz

)
z
−

(
Cn+1,Dxwx + Dywy + Dzwz

)
m̂

= 0, ∀ w ∈ Vh. (69b)

(S n+1 − S n

∆t
, ϕ

)
L2

= α̂ (φ(Cn) − S n, ϕ)L2 , ∀ ϕ ∈ Mh, (70)

where Ĉn = Cn(X − θ−1EUn+1∆t).
C0 = C̃0, G0 = G̃0, S 0 = S̃ 0, X ∈ Ω. (71)

The procedures (68), (69), (70) and (71) are carried out similarly to (14)-(17) of §3. Here it is pointed out that eqs.(1) and
(2) are discretized with two different steps. It can shorten the computational work greatly without losing accuracy.

In a similar analysis to Theorem 3, we conclude the following result.

Theorem 4. Suppose that exact solutions of (1)-(7) are regular (R), and the coefficients are positive definite (C). Adopting
the procedures (68)-(71) to obtain numerical solutions, under the restriction (53), we have

||p − P||L̄∞(J;m) + ||u − U||L̄∞(J;V) + ||c −C||L̄∞(J;m) + ||g −G||L̄2(J;V) + ||s − S ||L̄∞(J;L2)

≤ M∗∗
{
h2

p + h2
c + ∆tc + (∆tp)2 + (∆t1

p)3/2
}
,

(72)

where the constant M∗∗ depends on p, c, s and their derivatives.
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6. Conclusions and Discussions

Numerical approximation and theoretical analysis of three-dimensional contamination transport are considered in this
paper. A type of mixed volume element-characteristic mixed volume element method is discussed. Several interesting
conclusions are stated as follows.

(I) The method has the physical nature of conservation (local and whole), an important physical nature in numerical
simulation of underground environmental science problems.

(II) The composite method combines a mixed volume element and the idea of characteristics, so it has strong stability and
high accuracy. It is quite useful especially in large-scaled engineering computation on a three-dimensional complicated
region.

(III) The method develops the convergence result of 3/2-order of Arbogast and Wheeler to second order, and possibly
solves the problems better (Arbogast & Wheeler, 1995; Ewing, 1983; Shen, Liu & Tang, 2002; Vogt, 1982).
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