Localization, Isomorphisms and Adjoint Isomorphism in the Category $\operatorname{Comp}(A-M o d)$

Bassirou Dembele ${ }^{1}$, Mohamed Ben Faraj Ben Maaouia ${ }^{1}$ \& Mamadou Sanghare ${ }^{2}$
${ }^{1}$ Gaston Berger University, Saint Louis Senegal
${ }^{2}$ Cheikh Anta Diop University, Damar, Senegal
Correspondence: Bassirou Dembele, Gaston Berger University, Senegal. E-mail: bassirou.dembele@aims-senegal.org

Received: June 8, 2020 Accepted: July 6, 2020 Online Published: July 30, 2020
doi:10.5539/jmr.v12n4p65
URL: https://doi.org/10.5539/jmr.v12n4p65

Abstract

A and B are considered to be non necessarily commutative rings and X a complex of $(A-B)$ bimodules. The aim of this paper is to show that:

1. The functors $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(X,-): \operatorname{Comp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(B-\operatorname{Mod})$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}(B-\operatorname{Mod})}(X,-): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-M o d)$ are adjoint functors.
2. The functor $S_{C}^{-1}()$ commute with the functors $X \otimes-, \operatorname{Hom}^{\bullet}(X,-)$ and their corresponding derived functors $\overline{E X T}_{\text {Comp }(A-M o d)}^{n}(X,-)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}(B-M o d)}(X,-)$.

Keywords: saturated multiplicative subset, left Ore conditions, localization, category of complexes, functors $S^{-1}()$ and $S_{C}^{-1}(), \mathrm{Hom}^{\bullet}$ functor, tensor product functor, derived functors

1. Introduction

The adjunction study between Hom functor and tensor product functor has been done by several authors in the category $A-\operatorname{Mod}$ of A-modules (see Rotman, J., J. (1972), theorem 2.76 for instance). That is the functors $H o m_{A}(M,-)$ and $M \otimes-$, where M is a $(A-B)$ bimodule, are adjoint functors. Its analogue, considered in the category of complexes, has equally been shown in (Beck, V. (2008), corollary 5.16). Otherwise the functors $\operatorname{Hom}^{\bullet}(X,-)$ and $X \otimes$ - are adjoint functors, where X is a complex of $(A-B)$ bimodules.
Now since on the one hand $\operatorname{Hom}^{\bullet}(X,-)$ and $\overline{E X T}_{\text {Comp(A-Mod) }}^{0}(X,-)$, where $\overline{E X T}^{n}$ is considered to be the n-th funtor derived of $\operatorname{Hom}^{\bullet}$, are isomorphic and on the other hand $X \bigotimes-\operatorname{and} \operatorname{Tor}_{0}^{\operatorname{Comp(B-Mod})}(X,-)$, where $\operatorname{Tor}_{n}^{\operatorname{Comp(B-Mod})}$ is the n-th derived functor of the tensor product functor $X \bigotimes-$, are isomorphic then we can conclude that $\overline{E X T}_{C o m p(A-M o d)}^{0}(X,-)$ and $\operatorname{Tor}_{0}^{\operatorname{Comp}(B-M o d)}(X,-)$ are adjoint functors. Besides, in (Dembele, B., Maaouia, B.,F., \& Sanghare, M. (2020)) we showed that the functor $S_{C}^{-1}()$ commute with the functors tensor product, $H o m^{\bullet}, \overline{E X T}^{n}$ and $T o r_{n}$ on the objects. So, the question is of course this: if we can have the generalization of that results. Otherwise if the functors $\overline{E X T}_{\text {Comp (A-Mod) }}^{n}(X,-)$: $\operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}(B-\operatorname{Mod})$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}(B-M o d)}(X,-): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-M o d)$ are adjoint functors. Equally, if $S_{C}^{-1}()$ commute in the general case with the functors tensor product, $\operatorname{Hom}^{\bullet}, \overline{E X T}^{n}$ and Tor_{n}. So let A and B be two rings, X a complex of $(A-B)$ bimodules, C a complex of A-modules and n an integer, we organize this work as following:
we give some definitions and preliminary results in our first section for reminder.
In our second section we prove the following results:

1. $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n+1}(X,-): \operatorname{Comp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(B-\operatorname{Mod})$ and
$\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}\left(K_{0},-\right): \operatorname{Comp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(B-\operatorname{Mod})$, where K_{0} is considered to be the $0-t h$ kernel of X, are isomorphic;
2. $\operatorname{Tor}_{n+1}^{\operatorname{Comp}(B-M o d)}(X,-): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-M o d)$ and
$\operatorname{Tor}_{n}^{\operatorname{Comp}(B-M o d)}\left(K_{0},-\right): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-\operatorname{Mod})$ are isomorphic;
3. $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(X,-): \operatorname{Comp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(B-M o d)$ and
$\operatorname{Tor}_{n}^{\operatorname{Comp}(B-\operatorname{Mod})}(X,-): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-M o d)$ are adjoint functors;
4. if A is a subring of B, S a saturated multiplicative subset of A and B satisfying the left Ore conditions then:
$\overline{E X T}_{\operatorname{Comp}\left(S^{-1} A-M o d\right)}^{n}\left(S_{C}^{-1}(X),-\right): \operatorname{Comp}\left(S^{-1} A-M o d\right) \longrightarrow \operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right)$ and
$\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} B-M o d\right)}\left(S_{C}^{-1}(X),-\right): \operatorname{Comp}\left(S^{-1} B-M o d\right) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ are adjoint functors.

And finally, in the last section, we show the following results:

1. $\overline{E X T}_{C o m p\left(S^{-1} A-M o d\right)}^{n+1}\left(S_{C}^{-1}(C), S_{C}^{-1}(-)\right)$ and $\overline{E X T}_{C o m p\left(S^{-1} A-M o d\right)}^{n}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}(-)\right)$ are isomorphic ;
2. $\operatorname{Tor}_{n+1}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(C), S_{C}^{-1}(-)\right)$ and $\operatorname{Tor}_{n}^{\text {Comp }\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}(-)\right)$ are isomorphic ;
3. $S_{C}^{-1}(X \otimes-): \operatorname{Comp}(B-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ and $S_{C}^{-1}(X) \otimes S_{C}^{-1}(-): \operatorname{Comp}(B-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} A-\operatorname{Mod}\right)$ are isomorphic ;
4. If X is of finite type then $S_{C}^{-1} \operatorname{Hom}^{\bullet}(X,-): \operatorname{Comp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} B-M o d\right)$ and $\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}(-)\right): \operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} B-M o d\right)$ are isomorphic;
5. If X is of type $F P_{\infty}$ then $S_{C}^{-1} \overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(X,-): \operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} B-M o d\right)$ and $\overline{E X T}_{\operatorname{Comp}\left(S^{-1} A-M o d\right)}^{n}\left(S_{C}^{-1}(X), S_{C}^{-1}(-)\right): \operatorname{Comp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} B-M o d\right)$ are isomorphic;
6. $S_{C}^{-1} \operatorname{Tor}_{n}^{\operatorname{Comp}(B-\operatorname{Mod})}(X,-): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ are isomorphic.

2. Definitions and Preliminary Results

Definition and proposition 2.1

The category of complexes of left A-modules is the category denoted by $\operatorname{Comp}(A-\operatorname{Mod})$ such that:

1. objects are complexes of left A-modules.

A complex of left A-modules C is a sequence of homomorphisms of left A-modules $\left(C^{n} \xrightarrow{d_{C}^{n}} C^{n+1}\right)_{n \in \mathbb{Z}}$ such that $d^{n+1} \circ d^{n}=0$, for all $n \in \mathbb{Z}$.
2. Morphisms are maps of complexes of left A-modules. Let C and D be two complexes, a map of complexes of left A-modules $f: C \longrightarrow D$ is a sequence of homomorphisms of left A-modules $\left(f^{n}: C^{n} \longrightarrow D^{n}\right)_{n \in \mathbb{Z}}$ such that $f^{n+1} \circ d_{C}^{n}=d_{D}^{n} \circ f^{n}$ for $n \in \mathbb{Z}$.

Proposition 2.2

Let A be a ring and S a saturated multiplicative subset of A verifying the left Ore conditions. Then the relation:
$S_{C}^{-1}(): \operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ such that

1. if $C:=\ldots \longrightarrow C^{n} \xrightarrow{\delta_{C}^{n}} C^{n+1} \longrightarrow \ldots$ is an objet of $\operatorname{Comp}(A-M o d)$ then :

$$
S_{C}^{-1}(C):=\ldots \longrightarrow S^{-1} C^{n} \xrightarrow{S^{-1} \delta_{C}^{n}} S^{-1} C^{n-1} \longrightarrow \ldots
$$

is an objet of $\operatorname{Comp}\left(S^{-1} A-M o d\right)$
2. if $f: C \longrightarrow D$ is a morphism of $\operatorname{Comp}(A-M o d)$ then
$S_{C}^{-1}(f): S_{C}^{-1}(C) \longrightarrow S_{C}^{-1}(D)$ is a morphism of $\operatorname{Comp}\left(S^{-1} A-\operatorname{Mod}\right)$

Then $S_{C}^{-1}()$ is an exact covariant functor.

Proof

see (Dembele, B., Maaouia, B.,F., \& Sanghare, M. (2020)), proposition 1

Definition and proposition 2.3:

Let X be a complex of $(A-B)$ - bimodules and let be the following correspondance:

$$
X \bigotimes-: \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-M o d)
$$

such that:

- If $Y \in \operatorname{Ob}(\operatorname{Comp}(B-\operatorname{Mod}))$ then $X \bigotimes Y$ is a complex of left A-modules such that :

$$
\begin{gathered}
(X \bigotimes Y)^{n}=\bigoplus_{t \in \mathbb{Z}} X^{t} \otimes Y^{n-t} \\
\delta_{(X \otimes Y)}^{n}(x \otimes y)=d_{X}^{t}(x) \otimes y+(-1)^{t} x \otimes d_{Y}^{n-t}(y)
\end{gathered}
$$

- If $f: Y_{1} \longrightarrow Y_{2}$ is a map of complexes of $\operatorname{Comp}(B-M o d)$ then
$(X \otimes-)(f): X \bigotimes Y_{1} \longrightarrow X \bigotimes Y_{2}$ such that :

$$
\begin{aligned}
(X \bigotimes-)(f)^{n}:\left(X \bigotimes Y_{1}\right)^{n} & \longrightarrow\left(X \bigotimes Y_{2}\right)^{n} \\
x \otimes y & \longmapsto x \otimes f^{n-t}(y)
\end{aligned}
$$

is a map of complexes of $\operatorname{Comp}(A-M o d)$.

Then $X \otimes$ - is a covariant functor that is right exact.
Proof
see [Dembele, B., Maaouia, B.,F., \& Sanghare, M. (2020)], definition and proposition 2

Definition and proposition 2.4:

Let X be a complex of $(A-B)$-bimodules. Let be the following correspondence:

$$
\operatorname{HOm}^{\bullet}(X,-): \operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}(B-M o d)
$$

such that

- If Y is a complex of left A-modules then $\operatorname{HOm}^{\bullet}(X,-)(Y)=\operatorname{HOm}^{\bullet}(X, Y)$ is a complex of left B-modules such that:

$$
\operatorname{HOm}^{\bullet}(X, Y)^{n}=\prod_{t \in \mathbb{Z}} \operatorname{Hom}_{A}\left(X^{t}, Y^{n+t}\right)
$$

and $\delta_{H O m \cdot(X, Y)}$ is defined as following:

$$
\begin{aligned}
\left(\delta_{H O m}^{n}(X, Y)\right)_{t}: \quad \operatorname{Hom}_{A}\left(X^{t}, Y^{n+t}\right) & \longrightarrow \operatorname{Hom}_{A}\left(X^{t}, Y^{n+t+1}\right) \\
g^{t} & \longmapsto d_{Y}^{n+t} g^{t}+(-1)^{n+1} g^{t+1} d_{X}^{t}
\end{aligned}
$$

- If $f: Y_{1} \longrightarrow Y_{2}$ is a morphism of $\operatorname{Comp}(A)$ then:

$$
\begin{aligned}
\operatorname{HOm}^{\bullet}(X,-)(f)^{n}: \quad \operatorname{HOm}^{\bullet}\left(X, Y_{1}\right)^{n} & \longrightarrow \operatorname{HOm}^{\bullet}\left(X, Y_{2}\right)^{n} \\
\left(g^{t}\right)_{t} & \longmapsto\left(f^{n+t} \circ g^{t}\right)_{t}
\end{aligned}
$$

is morphism of $\operatorname{Comp}(B-M o d)$.

Then $\operatorname{HOm}^{\bullet}(X,-)$ is a covariant functor that is left exact.

Proof

see [Dembele, B., Maaouia, B.,F., \& Sanghare, M. (2020)], definition and proposition 3

Definition 2.5

Let C be a complex of left A-modules and C. a projective resolution of C such us:

$$
C_{\bullet}:=\ldots \longrightarrow P_{n+1} \xrightarrow{d_{n+1}} P_{n} \longrightarrow \ldots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\epsilon} C \longrightarrow 0 .
$$

Then we said that $\operatorname{Ker}\left(d_{n}\right)$ is the $n-t h$ kernel of C • and we denote it by K_{n}.

3. Adjoint Isomorphism Between $\overline{E X T}$ and Tor in $\operatorname{Comp}(A-M o d)$

Definition 3.1

Let C and \mathcal{D} be two categories, $F: C \longrightarrow \mathcal{D}$ and $G: \mathcal{D} \longrightarrow C$ two functors. It is said that the couple (F, G) is adjoint if for any $A \in O b(C)$ and for any $B \in O b(\mathcal{D})$, there is an isomorphism:

$$
r_{A, B}: \operatorname{Hom}_{C}(A, G(B)) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(A), B)
$$

so that:
a) For any $f \in \operatorname{Hom}_{C}\left(A^{\prime}, A\right)$, the following diagram is commutative:

b) For any $g \in \operatorname{Hom}_{\mathcal{D}}\left(B, B^{\prime}\right)$, the following diagram is commutative:

Lemma 3.2

Let C be a complex of left A-modules and $C \cdot$ projective resolution of C of n-th kernel $\operatorname{Ker}\left(d_{n}\right)=K_{n}$. Then the functors $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n+1}(C,-)$ and $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}\left(K_{0},-\right)$ are isomorphic where $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(X,-)$ is the n-th right derived functor of $\mathrm{HOm}^{\bullet}(\mathrm{X},-)$.

Proof

Since $\ldots \longrightarrow P_{n+1} \xrightarrow{d_{n+1}} P_{n} \longrightarrow \ldots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\epsilon} C \longrightarrow 0$ is a projective resolution of C then $\ldots \longrightarrow P_{n+1} \xrightarrow{d_{n+1}} P_{n} \longrightarrow \ldots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} K_{0} \longrightarrow 0$ is a projective resolution of K_{0}. So on the one hand:

$$
\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n+1}(C, D) \cong \overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}\left(K_{0}, D\right), \quad \forall D \in \operatorname{Ob}(\operatorname{Comp}(A-M o d))
$$

On the other hand, by doing the same thing for maps of complexes, we get the result.

Lemma 3.3

Let C be a complex of A-modules and C. projective resolution of C of n-th kernel $\operatorname{Ker}\left(d_{n}\right)=K_{n}$. Then the functors

$$
\operatorname{Tor}_{n+1}^{\operatorname{Comp}(A-M o d)}(C,-) \cong \operatorname{Tor}_{n}^{\operatorname{Comp}(A-M o d)}\left(K_{0},-\right)
$$

where $\operatorname{Tor}_{n}^{\operatorname{Comp}(A-M o d)}(X,-)$ is the n -th left derived functor of $X \bigotimes-$

Proof

The proof is the same as the one of the previous lemma.

Lemma 3.4:

Let X be a complex of $(A-B)$-bimodules. Then the functors
$\operatorname{HOm}^{\bullet}(X,-): \operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}(B-M o d)$ and
$X \otimes-: \operatorname{Comp}(B-M o d) \longrightarrow \operatorname{Comp}(A-M o d)$ are adjoint functors.

Proof

see [Beck, V. (2008), p 180]

Theorem 3.5

Let X be a complex of $(A-B)$-bimodules. Then the functors
$\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(X,-): \operatorname{Comp}(A-M o d) \longrightarrow \operatorname{Comp}(B-\operatorname{Mod})$ and
$\operatorname{Tor}_{n}^{\operatorname{Comp}(B-\operatorname{Mod})}(X,-): \operatorname{Comp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}(A-\operatorname{Mod})$ are adjoint functors.

Proof

For $n=0$, we have on the one hand $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{0}(X,-) \cong \operatorname{HOm}^{\bullet}(X,-)$ and on the other hand
$\operatorname{Tor}_{0}^{\operatorname{Comp}(B-M o d)}(X,-) \cong X \bigotimes-$. And according to lemma $3.4 \operatorname{HOm}^{\bullet}(X,-)$ and $X \bigotimes$ - are adjoint functors. Therefore $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{0}(X,-)$ and $\operatorname{Tor}_{0}^{\operatorname{Comp}(B-M o d)}(X,-)$ are actually adjoint functors.
Suppose now by induction that the relation is verified for all $k<n$ and show that it is verified for $k=n$. That is $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(X,-)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}(B-M o d)}(X,-)$ are adjoint functors.
According to lemma $3.2 \overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(C,-) \cong \overline{E X T}_{\operatorname{Comp(A-Mod)}}^{n-1}\left(K_{0},-\right)$ and according to lemma 3.3
$\operatorname{Tor}_{n}^{\operatorname{Comp}(B-M o d)}(C,-) \cong \operatorname{Tor}_{n-1}^{\operatorname{Comp}(B-M o d)}\left(K_{0},-\right)$. By hypothesis $\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n-1}\left(K_{0},-\right)$ and $\operatorname{Tor}_{n-1}^{\operatorname{Comp}(B-M o d)}\left(K_{0},-\right)$ are adjoint functors then $\overline{E X T}_{\operatorname{Comp(A-Mod)}}^{n}(X,-)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}(B-M o d)}(X,-)$ are adjoint functors.

Theorem 3.6

Let B be a ring, A a sub-ring of B, S a saturated multiplicative subset of A and B satisfying the left and right Ore conditions and X a complex of $(A-B)$-bimodules. Then the functors $\overline{E X T}^{n}\left(S_{C}^{-1}(X),-\right): \operatorname{Comp}\left(S^{-1} A-\operatorname{Mod}\right) \longrightarrow \operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} B-M o d\right)}\left(S_{C}^{-1}(X),-\right): \operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ are adjoint functors.

Proof

Since X is a complex of $(A-B)$ bimodules then $S_{C}^{-1}(X)$ is a complex of $\left(S^{-1} A-S^{-1} B\right)$ bimodules. Then according to theorem 3.5 the functors $\overline{E X T}_{\operatorname{Comp}\left(S^{-1} A-M o d\right)}^{n}\left(S_{C}^{-1}(X),-\right): \operatorname{Comp}\left(S^{-1} A-\operatorname{Mod}\right) \longrightarrow \operatorname{Comp}\left(S^{-1} B-M o d\right)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} B-M o d\right)}\left(S_{C}^{-1}(X),-\right): \operatorname{Comp}\left(S^{-1} B-M o d\right) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ are adjoint functors.
4. Isomorphisms and localization in $\operatorname{Comp}(A-M o d)$

Definition 4.1

Let C and \mathcal{D} be two categories, F and G two functors with same variance from C to \mathcal{D}. A natural transformation or functorial morphism from F to G is a map $\Phi: F \longrightarrow G$ so that:

- If F and G are covariant, then

$$
\begin{aligned}
\Phi: & O b(C) \longrightarrow \operatorname{Mor}(\mathcal{D}) \\
& M \longmapsto \Phi_{M}
\end{aligned}
$$

is a map such that $\Phi_{M}: F(M) \longrightarrow G(M)$ and for any $f \in \operatorname{Mor}(C)$ so that $f: M \longrightarrow N$, then the following diagram is commutative:

- If F and G are contravariant then the following diagram is commutative:

If Φ_{M} is an isomorphism for all M then Φ is called functorial isomorphism.

Definition 4.2

1. We say that a complex of left A-modules C is bounded if for $|n|$ large, $C^{n}=0$.
2. We say that a complex of left A-modules C is of finite type if C is bounded and for all $n \in \mathbb{Z}, C^{n}$ is of finite type .
3. We say that a complex of left A-modules C is of type $F P_{\infty}$ if it has a projective resolution:

$$
\ldots \longrightarrow P_{n} \xrightarrow{d_{n}} \cdots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\epsilon} C \longrightarrow 0
$$

with P_{n} is a finite type complex of left A-modules for all $n \geq 0$.

Lemma 4.3

Let C be a complex of A-modules and C. a projective resolution of C of n-th kernel $\operatorname{Ker}\left(d_{n}\right)=K_{n}$. Then the functors $\overline{E X T}_{\operatorname{Comp}\left(S^{-1} A-M o d\right)}^{n+1}\left(S_{C}^{-1}(C), S_{C}^{-1}()\right)$ and $\overline{E X T}_{\operatorname{Comp}\left(S^{-1} A-M o d\right)}^{n}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}()\right)$ are isomorphic where $\overline{E X T}_{C o m p\left(S^{-1} A-M o d\right)}^{n}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$ is the n-th right derived functor of $\mathrm{HOm}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$.
Proof
As the one of lemma 3.2

Lemma 4.4

Let C be a complex of A-modules and C. a projective resolution of C of n-th kernel $\operatorname{Ker}\left(d_{n}\right)=K_{n}$. Then

$$
\operatorname{Tor}_{n+1}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(C), S_{C}^{-1}()\right) \cong \operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}()\right)
$$

where $\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$ is the n-th left derived functor of $S_{C}^{-1}(X) \otimes S_{C}^{-1}()$.
Proof As the one of lemma 3.2.

Theorem 4.5

Let B be a ring, A a sub-ring of B, S a suturated multiplicative subset of A and B verifying the left Ore conditions and X a complex of $A-B$ bimodules.
Let be the functors $S_{C}^{-1}(X \bigotimes-): \operatorname{Cmp}(B-\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} A-\operatorname{Mod}\right)$ and $S_{C}^{-1}(X) \otimes S_{C}^{-1}(): \operatorname{Cmp}(B-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ such that:

1. for all complex of left B-modules Y we have:
(a) $S_{C}^{-1}(X \bigotimes-)(Y)=S_{C}^{-1}(X \bigotimes Y)$
(b) $S_{C}^{-1}(X) \otimes S_{C}^{-1}()(Y)=S_{C}^{-1}(X) \otimes S_{C}^{-1}(Y)$
2. for all map of complexes $f: Y_{1} \longrightarrow Y_{2}$ we have:
(a) $S_{C}^{-1}(X \bigotimes f): S_{C}^{-1}\left(X \bigotimes Y_{1}\right) \longrightarrow S_{C}^{-1}\left(X \bigotimes Y_{2}\right)$
(b) $S_{C}^{-1}(X) \otimes S_{C}^{-1}(f): S_{C}^{-1}(X) \otimes S_{C}^{-1}\left(Y_{1}\right) \longrightarrow S_{C}^{-1}(X) \otimes S_{C}^{-1}\left(Y_{1}\right)$

Then $S_{C}^{-1}(X \otimes-)$ and $S_{C}^{-1}(X) \otimes S_{C}^{-1}()$ are isomorphic.

Proof

we know, according to the proof of theorem 6 in [Dembele, B., Maaouia, B.,F., \& Sanghare, M. (2020)], that for all complex of left A modules Y there exist an isomorphism $\Phi_{Y}: S_{C}^{-1}(X \otimes Y) \longrightarrow S_{C}^{-1}(X) \otimes S_{C}^{-1}(Y)$ such that:

$$
\begin{aligned}
\Phi_{D}^{m}: S^{-1}\left(\bigoplus C^{t} \otimes D^{m-t}\right) & \longrightarrow \bigoplus S^{-1} C^{t} \otimes S^{-1} D^{m-t} \\
\frac{\sum c_{t} \otimes p_{m-t}}{s} & \longmapsto \sum \frac{c_{t}}{s} \otimes \frac{p_{m-t}}{s}
\end{aligned}
$$

Now it remaind to prove, for all map of complexes $f: Y_{1} \longrightarrow Y_{2}$, the commutativity of the following diagram:

That is for all integer m the following diagram is commutative:

So let $\frac{\sum x_{i} \otimes p_{m-t}}{s} \in S^{-1}\left(\bigoplus X^{t} \bigotimes\left(Y_{1}\right)^{m-t}\right)$. We have on one hand:

$$
\Phi_{Y_{2}}^{m} \circ S_{C}^{-1}(X \bigotimes f)^{m}\left(\frac{\sum x_{t} \otimes p_{m-t}}{s}\right)=\Phi_{Y_{2}}^{m}\left(\frac{\sum x_{t} \otimes f^{m-t}\left(p_{m-t}\right)}{s}\right)=\sum \frac{x_{t}}{s} \otimes \frac{f^{m-t}\left(p_{m-t}\right)}{s}
$$

And on the other hand we have:

$$
\begin{aligned}
\left(S_{C}^{-1}(X) \bigotimes S_{C}^{-1}(f)^{m}\right) \circ \Phi_{Y_{1}}^{m}\left(\frac{\sum x_{t} \otimes p_{m-t}}{s}\right) & =\left(S_{C}^{-1}(X) \bigotimes S_{C}^{-1}(f)^{m}\right)\left(\sum \frac{x_{t}}{s} \otimes \frac{p_{m-t}}{s}\right) \\
& =\sum \frac{x_{t}}{s} \otimes \frac{f^{m-t}\left(p_{m-t}\right)}{s}
\end{aligned}
$$

Theorem 4.6

Let B be a ring, A a sub-ring of B, S a suturated multiplicative subset of A and B verifying the left Ore conditions and X a complex of $(A-B)$ bimodules of finite type.
Let be the functors $S_{C}^{-1} \operatorname{Hom}^{\bullet}(X,-): \operatorname{Cmp}(A-\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right)$ and $\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right): \operatorname{Cmp}(A-$ $\operatorname{Mod}) \longrightarrow \operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right)$ such that:

1. for all complex of left A-modules Y we have:
(a) $S_{C}^{-1} \operatorname{Hom}^{\bullet}(X,-)(Y)=S_{C}^{-1} \operatorname{Hom}^{\bullet}(X, Y)$
(b) $\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)(Y)=\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}(Y)\right)$
2. for all map of complexes $f: Y_{1} \longrightarrow Y_{2}$ we have:
(a) $S_{C}^{-1} \operatorname{Hom}^{\bullet}(X, f): S_{C}^{-1} \operatorname{Hom}^{\bullet}\left(X, Y_{1}\right) \longrightarrow S_{C}^{-1} \operatorname{Hom}^{\bullet}\left(X, Y_{2}\right)$
(b) $\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}(f)\right): \operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}\left(Y_{1}\right)\right) \longrightarrow \operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}\left(Y_{2}\right)\right)$

Then $S_{C}^{-1} \operatorname{Hom}^{\bullet}(X,-)$ and $\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$ are isomorphic.

Proof

we know that according to the proof of theorem 7 in [Dembele, B., Maaouia, B.,F., \& Sanghare, M. (2020)] that for all complex of left A modules Y there exist an isomorphism $\Phi_{X, Y}: S_{C}^{-1} \operatorname{Hom}^{\bullet}(X, Y) \longrightarrow \operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}(Y)\right)$ such that:

$$
\Phi_{\left(C^{t}, P^{n+1}\right)}\left(\frac{g_{t}}{\sigma}\right)\left(\frac{p}{s}\right)=\frac{1}{s} \cdot \frac{g_{t}(p)}{\sigma}
$$

Now let $f: Y_{1} \longrightarrow Y_{2}$ be a map of complexes, let us show the commutativity of the following diagram:

That is for all integers m and t the following diagram commutative:

So let $\frac{g_{t}}{\sigma} \in S^{-1} \operatorname{Hom}\left(X^{t},\left(Y_{1}\right)^{m+t}\right)$. At first we have

$$
\Phi_{\left(X^{t},\left(Y_{2}\right)^{m+t}\right)} \circ S^{-1} \operatorname{Hom}\left(X^{t}, f^{m+t}\right)\left(\frac{g_{t}}{\sigma}\right)\left(\frac{p}{s}\right)=\Phi_{\left(X^{t},\left(Y_{2}\right)^{m+t}\right)}\left(\frac{f^{m+t} \circ g_{t}}{\sigma}\right)\left(\frac{p}{s}\right)=\frac{1}{s} \cdot \frac{f^{m+t} \circ g_{t}}{\sigma}(p)
$$

And secondly:

$$
\operatorname{Hom}\left(S^{-1} X^{t}, S^{-1} f^{m+t}\right) \circ \Phi_{\left(X^{t},\left(Y_{1}\right)^{m+t}\right)}\left(\frac{g_{t}}{\sigma}\right)\left(\frac{p}{s}\right)=S^{-1}\left(f^{m+t}\right) \circ \Phi_{\left(X^{t},\left(Y_{1}\right)^{m+t}\right)}\left(\frac{g_{t}}{\sigma}\right)\left(\frac{p}{s}\right)=\frac{1}{s} \cdot \frac{f^{m+t} \circ g_{t}}{\sigma}(p)
$$

Theorem 4.7

Let B be a ring, A a sub-ring of B, S a suturated multiplicative subset of A and B verifying the left Ore conditions and X a complex of $(A-B)$ bimodules of type $F P_{\infty}$.
Then the functors $\left.S_{C}^{-1} \overline{E X T}_{(}^{n} X,-\right): \operatorname{Cmp}(A-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} B-\operatorname{Mod}\right)$ and $\left.\overline{E X T}_{(}^{n} S_{C}^{-1}(X), S_{C}^{-1}()\right): \operatorname{Cmp}(A-M o d) \longrightarrow$ $\operatorname{Comp}\left(S^{-1} B-M o d\right)$ are isomorphic.

Proof

Let us show it by induction on n.
On one part we have:

$$
\operatorname{Hom}^{\bullet}(X,-) \cong \overline{E X T}^{0}(X,-)
$$

and so

$$
S_{C}^{-1} \operatorname{Hom}^{\bullet}(X,-) \cong S_{C}^{-1} \overline{E X T}^{0}(X,-)
$$

and other part we have:

$$
\operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right) \cong \overline{E X T}^{0}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)
$$

According to theorem 4.6 $S_{C}^{-1} \operatorname{Hom}^{\bullet}(X,-) \cong \operatorname{Hom}^{\bullet}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$ and then $\left.S_{C}^{-1} \overline{E X T}_{(}^{0} X,-\right) \cong \overline{E X T}^{0}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$. That show us that the relation is true for $k=0$.
Assume that it is true for all $k<n$ and show that it is true for n.
According to lemma 3.2 we have:

$$
\overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(C,-) \cong \overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n-1}\left(K_{0},-\right)
$$

and so

$$
S_{C}^{-1} \overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n}(C,-) \cong S_{C}^{-1} \overline{E X T}_{\operatorname{Comp}(A-M o d)}^{n-1}\left(K_{0},-\right)
$$

And according to lemma 4.3 we have:

$$
\overline{E X T}^{n}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right) \cong \overline{E X T}^{n-1}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}()\right)
$$

By hypothesis we have:

$$
S_{C}^{-1} \overline{E X T}_{C o m p(A-M o d)}^{n-1}\left(K_{0},-\right) \cong \overline{E X T}^{n-1}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}()\right)
$$

Thus $S_{C}^{-1} \overline{E X T}_{\text {Comp }(A-M o d)}^{n}(C,-) \cong \overline{E X T}^{n}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$.

Theorem 4.8

Let B be a ring, A a sub-ring of B, S a suturated multiplicative subset of A and B verifying the left Ore conditions and X a complex of $(A-B)$ bimodules. Then the fuctors $S_{C}^{-1} \operatorname{Tor} r_{n}^{\operatorname{Comp}(A-M o d)}(X,-): \operatorname{Comp}(B-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} A-\operatorname{Mod}\right)$ and $\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right): \operatorname{Comp}(B-M o d) \longrightarrow \operatorname{Comp}\left(S^{-1} A-M o d\right)$ are isomorphic.

Proof

Let us show it by induction on n.
On one part :

$$
X \bigotimes-\cong \operatorname{Tor}_{0}^{\text {Comp }(A-M o d)}(X,-)
$$

and so

$$
S_{C}^{-1}(X \bigotimes-) \cong S_{C}^{-1} \operatorname{Tor}_{0}^{\operatorname{Comp}(A-M o d)}(X,-)
$$

and on other part:

$$
S_{C}^{-1}(X) \bigotimes S_{C}^{-1}() \cong \operatorname{Tor}_{0}^{\text {Comp }\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)
$$

According to theorem $4.5 S_{C}^{-1}(X \otimes-) \cong S_{C}^{-1}(X) \otimes S_{C}^{-1}()$ and so
$\left.S_{C}^{-1} \operatorname{Tor}_{0}^{\operatorname{Comp}(A-M o d)}(X,-) \cong \operatorname{Tor}_{0}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}\right)\right)$ and the relation is true for $k=0$.
Suppose that the relation is true for all $k<n$ and prove that it is true for n.
According to lemma 3.3 we have:

$$
\operatorname{Tor}_{n}^{\operatorname{Comp}(A-M o d)}(X,-) \cong \operatorname{Tor}_{n-1}^{\operatorname{Comp}(A-M o d)}\left(K_{0},-\right)
$$

then

$$
S_{C}^{-1} \operatorname{Tor}_{n}^{\text {Comp }(A-M o d)}(X,-) \cong S_{C}^{-1} \operatorname{Tor}_{n-1}^{\text {Comp }(S-1 A-M o d)}\left(K_{0},-\right)
$$

We have also according to lemma 4.4

$$
\operatorname{Tor}_{n}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right) \cong \operatorname{Tor}_{n-1}^{\operatorname{Comp}\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}\left(K_{0}\right), S_{C}^{-1}()\right)
$$

By hypothesis we have:

Thus ${ }_{C}^{-1} \operatorname{Tor}_{n}{ }^{\text {Comp }(A-M o d)}(X,-) \cong \operatorname{Tor}_{n}{ }^{\text {Comp }\left(S^{-1} A-M o d\right)}\left(S_{C}^{-1}(X), S_{C}^{-1}()\right)$.

References

Anderson, F. W., \& Fuller, K. R. (2012). Rings and categories of modules (Vol. 13). Springer Science \& Business Media.
Atiyah, M. F., \& Macdonald, I. G. (1969). Introduction to commutative algebra, AddisonWesley. Reading, MA.
Beck, V. (2008). These de doctorat, Universite Denis Diderot-Paris 7.
Dembele, B., Maaouia, B. F., \& Sanghare, M. (2020). The Functor $S_{C}^{-1}()$ and its relationships with Homological Functors $T o r_{n}$ and $\overline{E x t}^{n}$. In Molina, S. M., Kaoutit, E. L., Louzari, M., Yakoub, B. L., \& Benslimane, M. (Eds.), Associative and Non-Associative Algebraq and Applications, MAMAA 2018. Springer Proceedings in Mathematics \& Statistics, 311, Springer, Cham. Retrieved from https://www.springerprofessional.de/en/the-functor-and-its-relationship-with-homological-functors-and/17537126
Diallo, E. O. (2013). These de doctorat, Universite Cheikh Anta Diop, Dakar.
Faye, D., Maaouia, B. F., \& Sanghare, M. (2016). Localization in duo-ring and polynomials Algebra, Springer Int. Publishing Switgzerland, Gueye, C. T., \& Molina, M. S. (eds), Non associative, non-commutative Algebra and Operator theory, Springer proceeding in Math and Statistics, 160, 183-191. https://doi.org/10.1007/978-3-319-32902-4_13
Maaouia, M. B., \& Sanghar, M. (2012). Modules de Fractions, Sous-modules S-satures et Foncteur S-1 (). International Journal of Algebra, 6(16), 775-798.
Maaouia, B. F. (2011). These detat, Universite Cheikh Anta Diop, Dakar.

Rozas, J. R. G. (1999). Covers and envelopes in the category of comlexes of modules, Research Notes in Mathematics no. 407, Chapman \& Hall/CRC, Boca Raton, FL.

Rotman, J. J. (1972). An introduction to homological algebra, academic Press New York.
Rotman, J. J. (1968). Notes on homological algebras, university of Illinois, Urban.
Weibel, C. A. (1995). An introduction to homological algebra (No. 38). Cambridge university press. https://doi.org/10.1017/CBO9781139644136

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

