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Abstract

In this paper, we consider jump amplitudes which are arbitrary and normal to study the risk seeking investor’s equilibrium
risk premium in the semimartingale market. We realize that, there is no optimal consumption for this investor in the
market. The investor’s premium differ significantly with risk aversion in both martingale and semimartingale markets in
that the risk seeking investor has no optimal consumption and the wealth process only affects the rare-event premia with
no effect on the diffusive premia. The compensation for this investor is highly attractive compared to risk aversion in this
market.
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1. Introduction

The risk premium is the compensation an investor recieves for risk taking in the stock market. This premium is found by
subtracting the estimated bond return from the estimated stock return. Infact, the size of the premium varies as the risk
in a particular stock or in the stock market at large. It is generally true that high risk investments are compensated with a
higher equity premium and vice-versa.

The reason behind this premium is to entice investors to engage themselves in riskier investments because of the higher
rate of return attached to them (Simon & John, 2005). However, an investment in stocks is less guaranteed as companies
usually suffer downturns or go out of business. Infact, Aswath (2012) observes that this premium reflects fundamental
judgments investors make about how much risk one sees in the market and what price one attaches to that risk. In this
regard, investors can base their payment for a share of stock on the risk perceived and anticipated stock return. This will
enable them calibrate their investments in a manner that properly compensates them for the excess risk they are taking.

If the consumer has reasonable preferences then it is possible to use utility function to describe these preferences (Bellamy
& Jeanblanc, 2000). As (Eberlein & Jacod, 1997) states, utility (happiness) depends on consumption. The more the
consumption, the more the utility. However, the increase in utility which results from the increase in consumption is
smaller the more consumption you already have. This implies that utility is a concave function (Mukupa & Offen, 2015).
This follows directly from the fact that people do not like risks and so to induce people to substitute to a risky alternative,
it is vital to compensate them by making the riskless alternative unfair and that is by giving less than its expected value.
This makes investors indifferent between undertaking the risky or non risky investment.The certainty equivalent (C) for
some investment whose outcome is a random variable Z is

U(C) = E[U(Z)].

In this paper, the investor with utility function U has current wealth less than C so that the investment is attractive.

It is important to consider that much of the work in finance has been based on martingale markets whose future is deemed
fair and unpredictable by normalizing prices. This gives investors a fair chance to either gain or lose out on their invest-
ments. In this paper, we consider a market Xt to allow a decomposition

Xt = X0 + M + A,

such that M = (Mt)0≤t≤T is a square-integrable martingale with M0 = 0 and A = (At)0≤t≤T is a predictable process of finite
variation |A| with A0 = 0.
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Here, the semi martingale approach is used to determine equilibrium equity premium for a risk seeking investor in a
production economy with jumps as opposed to option pricing. This is because several articles [(Bellamy & Jeanblanc,
2000), (El Karoui, 1998), (Hobson, 1998) , (Henderson, 2005), (Henderson, 2003), (Henderson & Hobson, 2003), (Moller,
2004), (Jakubenas, 2002), (Gushchin & Mordecki, 2002), (Frey & Sin, 1999)] have addressed the option pricing problem.
The results for models with nontrivial pricing intervals and the corresponding comparison results are less complete.
(Henderson & Hobson, 2003) proved that the price of a European call for a diffusion with jumps is bounded below by
the corresponding Black-Scholes price and above by the trivial upper price (see also (Hobson, 2005) and (Frontczak,
2013) for alternative proofs). An important generalization of the technique introduced in (Bellamy & Jeanblanc, 2000)
and ( El Karoui, 1998) has been established by (Gushchin & Mordecki, 2002) who derive a general comparison result for
one-dimensional semimartingales.

In this paper, we take the certainty equivalent to be greater than the expected profit for the alternative so that the investor
is risk seeking or risk loving. Therefore, the graph of utility is convex. We can then compare our paper to (Zhang, Zhao &
Chang, 2012) and also further elaboration by (Mukupa & Offen 2015), (Mukupa & Offen, 2016), (Mukupa, Offen, Kunda
& Lungu, 2016), (Mukupa, Offen & Lungu, 2016), (Mukupa & Offen, 2018a) and (Mukupa & Offen, 2018b) although
they considered the case for risk averse investors.

2. The Model

Our price process evolves according to the stochastic differential equation;

dXt = µdt + δdBt + (ex − 1)dNt − λE(ex − 1)dt.

which is a semimartingale with discontinuities because of the presence of jumps.

We take µ, δ and λ as constants and x as a vector of arbitrary distributed jump sizes. Thereafter, we fix the amplitudes to
be normally distributed.The processes Bt and Nt are independent. This follows directly from the definition of Brownian
motion as being a continuous process and the Poisson being discrete which we obviously know that continuous processes
and discrete are independent. λ is the frequency of the Poisson process. We set (ex − 1) in the jump process so that
ex − 1 = 0 if there is no jump as x is then a zero vector. E is the expectation which makes the process ex − 1 deterministic.
dNt models the sudden changes as a result of rare events happening and dBt models small continuous changes generated
by the noise whose volatility is a constant δ.

The compensated compound Poisson process (ex − 1)dNt − λE(ex − 1)dt has the mean of zero because

E[(ex − 1)dNt − λE(ex − 1)dt] = E(ex − 1)E(dNt) − E(ex − 1)E(λdt) = 0

and E(dNt) = λdt.

To solve
dXt = µdt + δdBt + (ex − 1)dNt − λE(ex − 1)dt,

we do not need to apply Itô Lemma with Jumps because the diffusion part is a continuous semi martingale whose procedure
for solution does not require the integrating factor. We solve for the price process at the terminal time T as follows;

dXt = [µ − λE(ex − 1)]dt + δdBt + (ex − 1)dNt

By integration we have

XT = Xt + [µ − λE(ex − 1)]τ + δBτ +

Nτ∑
i=1

(exi − 1), f or τ = T − t

as the investment period.

Suppose also that, at the risk-free rate ρ, the money market account X0(t) is such that

dX0(t) = ρ(t)X0(t)dt

whose total supply is assumed to be zero. Consider here that ρ is risk-free because it is the rate for the non risky asset
(money account).

Since the value of someone’s investment in this production economy at any time t is given by Vt = φXt, for some portfolio
φ = (1 − ω,ω) consisting of 1 − ω non risky assets and ω risky assets, we have that by the self financing strategy,

dVt = φdXt
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so that the total wealth at any time t is
Vt = V0(t) + V1(t)

where V0(t)is the value of the money market account and V1(t) is the value of the investment in the stock market at time t.

Now
dVt = dV0(t) + dV1(t)

= (1 − ω)dX0(t) + ωdX(t)

= (1 − ω)(ρX0(t)dt) + ω[µ − λE(ex − 1)]dt + ωδdBt + ω(ex − 1)dNt.

Since the equity premium φ = µ − ρ, we have that µ = φ + ρ, hence

dVt = [ρX0(t) − ωρX0(t) + ωφ + ωρ − λωE(ex − 1)]dt + ωδdBt + ω(ex − 1)dNt.

The investor’s optimal control problem then is to maximize his expected utility function

max Et

∫ T

t
y(t)U(rt)dt,

subject to

dVt = [ρX0(t) − ωρX0(t) + ωφ + ωρ − λωE(ex − 1) − rt]dt + ωδdBt + ω(ex − 1)dNt

The wealth ratio ω and consumption rate rt are control variable. The general equilibrium occur when ω = 1.

3. Results and Discussions

Theorem 1 In a semimartingale market with arbitrary jumps, an investor’s equilibrium risk premium with the risk seeking
utility function U(rt) = p−rt , 0 < p < 1 in the production economy is given by

φ = ρX0(t) − ρ + λE(ex − 1) + σ2ln p −
λ

Qt p−Vt ln p
E[Qt p−Vtex

(ln p)Vt(ex − 1)].

where φδ = ρX0(t) − ρ + σ2ln p is the diffusive risk premium and φN = λE(ex − 1) − λ
Qt p−Vt ln p E[Qt p−Vtex

(ln p)Vt(ex − 1)]
is the rare-event premium. We realize here that, the diffusive risk always exist even if we normalize the market. Also, the
wealth process only affects the rare-event premia.

Proof. We optimize the investor’s utility based on the Hamilton-Jacobi-Bellman (HJB) equation

Et[dJ + yU(rt)dt] = 0.

Now,

dVt = [ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt]dt + ωδdBt + ω(ex − 1)dNt

.

Take d∗Vt as the diffusion part;

d∗Vt = [ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt]dt + ωδdBt

then
d∗J = Jtdt + JVt d

∗Vt +
1
2

JVtVt (d
∗Vt)2

so that
dJ = d∗J + [J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)]dNt
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= Jtdt + JVt d
∗Vt +

1
2

JVtVt (d
∗Vt)2 + [J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)]dNt

= Jtdt + JVt [[ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt]dt + ωδdBt] +
1
2

JVtVt [ω
2δ2dt]

+[J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)]dNt

dJ = Jtdt + JVt [ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt]dt + JVtωδdBt +
1
2

JVtVt [ω
2δ2dt]

+[J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)]dNt.

Take
Et[dJ + yU(rt)dt] = 0

Jtdt + JVt [ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt]dt +
1
2

JVtVtω
2δ2dt

+E[J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)]λdt + yU(rt)dt = 0

divide through by dt

Jt + JVt [ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt] +
1
2

JVtVtω
2δ2

+λE[J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)] + yU(rt) = 0

To evaluate

max
(rt ,ω)
{Jt + JVt [ρX0(t) − ωρX0(t) + ωφ + ωρ − ωλE(ex − 1) − rt] +

1
2

JVtVtω
2δ2

+λE[J(Vt(1 + ω(ex − 1)), t) − J(Vt, t)] + yU(rt) = 0},

take partial derivatives with respect to rt and ω to obtain the first order conditions

−JVt + yU(rt) = 0, (1)

[−ρX0(t) + φ + ρ − λE(ex − 1)]JVt + JVtVtωδ
2 + λE[JVt (Vt(1 + ω(ex − 1)), t)Vt(ex − 1)] = 0. (2)

Solving for φ in the second equation and taking the equilibrium condition ω = 1 yields the general equilibrium equity
premium

φ = ρX0(t) − ρ + λE(ex − 1) −
JVtVt

JVt

δ2 −
λ

JVt

E[JVt (Vtex, t)Vt(ex − 1)].

Substituting this φ into the Bellman equation

Jt + JVtρX0(t) − JVtρX0(t) + JVt [ρX0(t) − ρ + λE(ex − 1) −
JVtVt

JVt

δ2 −
λ

JVt

E[JVt (Vtex, t)Vt(ex − 1)]

+JVtρ − JVtλE(ex − 1) − JVt rt +
1
2

JVtVtδ
2 + λE[J(Vtex), t) − J(Vt, t)] + yU(rt) = 0

which simplifies to the integro p.d.e

Jt + JVtρX0(t) − JVt rt −
1
2

JVtVtδ
2 − λE[JVt (Vtex, t)Vt(ex − 1)] + λE[J(Vtex), t) − J(Vt, t)]

+yU(rt) = 0
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Consider now the risk seeking utility function

U(rt) = p−rt , p < 1,

which is a convex function. We solve for J(Vt, t) based on the indirect utility

J(Vt, t) = Q(t)p−Vt . (3)

The optimal consumption will be solved from the first order conditiion (0.1) as:

yU′(rt) = JVt

which by implicit differentiation yields
U′(rt) = −p−rt ln p

and hence
y[−p−rt ln p] = Q(t)Vβ−1

t

and therefore

rt =
− ln(−QtV

β−1
t

y ln p )

ln p
(4)

meaning that the optimal consumption we require does not exist because the log of a negative number does not exist. This
is because Qt and Vt, are functions of time hence they can not yield a negative result. Also 0 < p < 1.

Substituting the functions J(Vt, t) = Q(t)p−Vt , JVt = −Q(t)p−Vt ln p and JVtVt = Q(t)p−Vt (ln p)2 into the integro p.d.e gives

Qt p−Vt − Qt p−Vt (ln p)ρX0(t) + rtQt p−Vt ln p − 0.5σ2Qt p−Vt (ln p)2

−λE[−Qt p−Vtex
(ln p)Vt(ex − 1)] + λE[Qt p−Vtex

− Qt p−Vt ] + yp−rt = 0

differentiating with respect to Vt and dividing through by −(ln p)p−Vt gives the terminal conditions

Qt − Qt(ln p)ρX0(t) + Qtrt(ln p) + 0.5σ2Qt(ln p)2

+λE[Vt(ex − 1)ex(ln p)Qt p−Vt(ex−1) − Qt p−Vt(ex−1)(ex − 1)] − λE[Qt − exQt p−Vt(ex−1)] = 0

and
Q(T ) = 0,

Substituting J(Vt, t) = Q(t)p−Vt , JVt = −Q(t)p−Vt ln p and JVtVt = Q(t)p−Vt (ln p)2 into the general equilibrium equity
premium gives us the risk premium for arbitrary jumps as;

φ = ρX0(t) − ρ + λE(ex − 1) + σ2ln p −
λ

Qt p−Vt ln p
E[Qt p−Vtex

(ln p)Vt(ex − 1)].

Notice here that, if we normalize the market by X0(t) = 1, the equilibrium equity premium will be given by

φ = λE(ex − 1) + σ2ln p −
λ

Qt p−Vt ln p
E[Qt p−Vtex

(ln p)Vt(ex − 1)].

This is not consistent to taking ρ = 0 in martingale markets. We also observe that the value process affects only the
rare-event premia but it has no effect on the diffusive premia.

Theorem 2 When jump amplitudes are normally distributed, the risk seeking investor’s risk premium in the semi martin-
gale market is given by

φ = ρX0(t) − ρ + σ2ln p + λ(eµx+0.5σ2
x ) − λ − λVt(eµx+0.5σ2

x − 1)p−Vt(1−eµx+0.5σ2
x )]

.
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Proof. Since X ∼ N(µx, σ
2
x) then eX is a lognormal random variable with parameters µx and σ2

x thus

E[eX] = E[ex] = eµx+
1
2σ

2
x .

For the risk seeking utility function, the rare-event premium

φN = λE(ex − 1) −
λ

Qt p−Vt ln p
E[Qt p−Vtex

(ln p)Vt(ex − 1)].

Now

λE(ex) − λ −
λQtVt ln p
Qt p−Vt ln p

E[p−Vtex
(ex − 1)]

λE(ex) − λ −
λVt

p−Vt
E[p−Vtex

(ex − 1)]

λE(ex) − λ −
λVt

p−Vt
[E(p−Vtex

ex) − E(p−Vtex
)]

Now, since X ∼ N(µx, σ
2
x) but Vt is not normally distributed, the two processes are uncorrelated and hence

λ(eµx+0.5σ2
x ) − λ −

λVt

p−Vt
[eµx+0.5σ2

x p−Vt(eµx+0.5σ2
x ) − p−Vt(eµx+0.5σ2

x )]

λ(eµx+0.5σ2
x ) − λ −

λVt

p−Vt
[p−Vt(eµx+0.5σ2

x )(eµx+0.5σ2
x − 1)]

Therefore, the equilibrium equity premium is:

φ = ρX0(t) − ρ + σ2ln p + λ(eµx+0.5σ2
x ) − λ − λVt(eµx+0.5σ2

x − 1)p−Vt(1−eµx+0.5σ2
x )]

We realise in Figure 1 that the equity premium is almost zero whenever volatility is zero. This result is similar to the
risk averse investor in this market. It can be concluded from this result that the deterministic process yields no significant
equilibrium equity premium although the premium realised here is better than that of the risk averse investor. This is an
important result because the premium is only dependent on the volatility in the diffusive risk and not in the jump risk. The
premium is also symmetrical about zero volatility. In Figure 2 and Figure 3, we see that the equity premium increases
with an increase in the mean or variance. In this regard, it is highly dependent on the mean and variance of the normality
in the jump sizes. In Figure 4, the premium decreases with an increase in the wealth process. This is because, the more
the wealth of this investor, the less is the exposure to the jump risk.
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Figure 1. Volatility Effect on Equity Premium

Figure 2. Mean Effect on Equity Premium
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Figure 3. Variance Effect on Equity Premium

Figure 4. Wealth Effect on Equity Premium

Theorem 3 In the semimartingale market, the investor’s equilibrium equity premium in the production economy with
normally distributed jumps under the CARA negative exponential utility function U(rt) = −e−αrt , α > 0, is given by

φ = ρX0(t) − ρ + αδ2 + λeµx+
1
2σ

2
x − λqexp[µx + qα − qαeµx+

1
2σ

2
x ]
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[
exp{ 12 [σ2

x + µ2
x + 2αqµx − 2αqµxeµx+

1
2σ

2
x + α2q2 − 2α2q2eµx+

1
2σ

2
x + α2q2e2µx+2σ2

x ]}

exp{ 12 [µx + αq − αqeµx+
1
2σ

2
x ]2}

]

−λ + λqeαq−αqeµx+ 1
2 σ

2
x + 1

2 [α2q2−2α2q2eµx+ 1
2 σ

2
x +α2q2e2µx+2σ2

x−[αq−αqeµx+ 1
2 σ

2
x ]2]

Proof. For a CARA Negative exponential utility function, the rare-event premium

φN = λE[(ex − 1)(1 −
Vte−αVtex

e−αVt
)]

= λE[ex − ex+αVt .Vte−αVtex
− 1 +

Vte−αVtex

e−αVt
]

= λE[ex − Vtex+αVt(1−ex) − 1 + VteαVt(1−ex)]
= λ[E(ex) − qE(ex+αVt(1−ex)) − 1 + qE(eαVt(1−ex))]

Now X ∼ N(µx, σ
2
x),

E[x + αVt(1 − ex)] = E[x] + E[αVt(1 − ex)]
= E[x] + αq − αqE[ex]

= µx + αq − αqeµx+
1
2σ

2
x

Also

var[x + αVt(1 − ex)] = E[(x + αVt(1 − ex))2] − [E[x + αVt(1 − ex)]]2

var[x + αVt(1 − ex)] = E[x2 + 2xVtα(1 − ex) + α2V2
t (1 − ex)2] − [µx + αq − αqeµx+

1
2σ

2
x ]2

= E[x2] + 2qαE[x] − 2qαE[x]E[ex] + α2q2E(1 − 2ex + e2x) − [µx + αq − αqeµx+
1
2σ

2
x ]2

= σ2
x + µ2

x + 2qαµx − 2qαµxeµx+
1
2σ

2
x + α2q2(1 − 2eµx+

1
2σ

2
x + e2µx+2σ2

x ) − [µx + αq − αqeµx+
1
2σ

2
x ]2

Thus E[ex+αVt(1−ex)] is then,

eµx+αq−αqeµx+ 1
2 σ

2
x + 1

2 [σ2
x+µ2

x+2qαµx−2qαµxeµx+ 1
2 σ

2
x +α2q2(1−2eµx+ 1

2 σ
2
x +e2µx+2σ2

x )−[µx+αq−αqeµx+ 1
2 σ

2
x ]2]

Also

E[αVt(1 − ex)] = αq − αqeµx+
1
2σ

2
x

and
var[αVt(1 − ex)] = E[(αVt(1 − ex))2] − [αq − αqeµx+

1
2σ

2
x ]2

= α2q2E(1 − ex)2 − [αq − αqeµx+
1
2σ

2
x ]2

= α2q2E(1 − 2ex + e2x) − [αq − αqeµx+
1
2σ

2
x ]2

= α2q2(1 − 2eµx+
1
2σ

2
x + e2µx+2σ2

x ) − [αq − αqeµx+
1
2σ

2
x ]2

= α2q2 − 2α2q2eµx+
1
2σ

2
x + α2q2e2µx+2σ2

x − [αq − αqeµx+
1
2σ

2
x ]2
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So that E[eαVt(1−ex)] is now

eαq−αqeµx+ 1
2 σ

2
x + 1

2 [α2q2−2α2q2eµx+ 1
2 σ

2
x +α2q2e2µx+2σ2

x−[αq−αqeµx+ 1
2 σ

2
x ]2]

Therefore our rare-event premium is,

λE(ex) − λqE(ex+αVt(1−ex)) − λ + λqE(eαVt(1−ex))

which is just the rare-event premium of Theorem 3.1 and implies that our equilibrium equity premium is

φ = ρX0(t) − ρ + αδ2 + λeµx+
1
2σ

2
x − λqexp[µx + qα − qαeµx+

1
2σ

2
x ]

[
exp{ 12 [σ2

x + µ2
x + 2αqµx − 2αqµxeµx+

1
2σ

2
x + α2q2 − 2α2q2eµx+

1
2σ

2
x + α2q2e2µx+2σ2

x ]}

exp{ 12 [µx + αq − αqeµx+
1
2σ

2
x ]2}

]

−λ + λqeαq−αqeµx+ 1
2 σ

2
x + 1

2 [α2q2−2α2q2eµx+ 1
2 σ

2
x +α2q2e2µx+2σ2

x−[αq−αqeµx+ 1
2 σ

2
x ]2]

Theorem 4 An investor’s equilibrium equity premium with quadratic utility function U(rt) = rt − ar2
t , a > 0 in the

semimartingale market with normal jumps is given by

φ = ρX0(t) − ρ +
2aδ2

1 − 2aVt
+ λeµx+

1
2σ

2
x −

λqeµx+
1
2σ

2
x

1 − 2aq
+

2λaq2e2µx+2σ2
x

1 − 2aq
− λ +

λq
1 − 2aq

−
2λaq2eµx+

1
2σ

2
x

1 − 2aq

where φδ = ρX0(t)−ρ+ 2aδ2

1−2aVt
is the diffusive risk premium and φN = λeµx+

1
2σ

2
x−

λqeµx+ 1
2 σ

2
x

1−2aq +
2λaq2e2µx+2σ2

x

1−2aq −λ+
λq

1−2aq−
2λaq2eµx+ 1

2 σ
2
x

1−2aq
is the rare-event premium.

Proof. For the HARA Quadratic utility function,

φN = λE[(ex − 1)(1 −
Vt(1 − 2aVtex)

1 − 2aVt
)].

and so

φN = λE[ex −
Vtex − 2aV2

t e2x

1 − 2aVt
− 1 +

Vt

1 − 2aVt
−

2aV2
t ex

1 − 2aVt
]

= λE[ex −
Vtex

1 − 2aVt
+

2aV2
t e2x

1 − 2aVt
− 1 +

Vt

1 − 2aVt
−

2aV2
t ex

1 − 2aVt
]

= λ[E(ex) −
qE(ex)
1 − 2aq

+
2aq2E(e2x)

1 − 2aq
− 1 +

q
1 − 2aq

−
2aq2E(ex)

1 − 2aq
]

Now since X ∼ N(µx, σ
2
x), we have that

E(ex) = eµx+
1
2σ

2
x

and
E(e2x) = e2µx+2σ2

x

thus

φN = λeµx+
1
2σ

2
x −

λqeµx+
1
2σ

2
x

1 − 2aq
+

2λaq2e2µx+2σ2
x

1 − 2aq
− λ +

λq
1 − 2aq

−
2λaq2eµx+

1
2σ

2
x

1 − 2aq

So that our equilibrium equity premium is now

φ = ρX0(t) − ρ +
2aδ2

1 − 2aVt
+ λeµx+

1
2σ

2
x −

λqeµx+
1
2σ

2
x

1 − 2aq
+

2λaq2e2µx+2σ2
x

1 − 2aq
− λ

22



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

+
λq

1 − 2aq
−

2λaq2eµx+
1
2σ

2
x

1 − 2aq

We can conclude based on Figure 5 that the wealth value and equilibrium equity premium for the quadratic utility
function are inversely proportional. Infact, the premium is zero whenever the wealth process becomes zero. All in
all, the equilibrium equity premium for normally distributed jump amplitudes in the normalized semi martingale market
does not differ significantly from the martingale market. However, the premium is highly dependent on the utility function
of the investor.

Figure 5. Quadratic Utility Wealth Effect

4. Conclusion

In the semimartingale market, the equilibrium equity premium for risk seeking investors is very attractive compared to
that of risk averse investors in both martingale and semimartingale markets. This investor’s premium is only affected by
the wealth process in the rare-event premia. In addition, there is no optimal consumption for this investor in this market.
The equity premium is almost zero whenever volatility is zero. It is also symmetrical about zero volatility. The mean and
variance in the normality of jump sizes are directly proportional to the compensation received for having taken up some
diffusive and jump risks in this market.
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